
Low Power Synthesis of Finite State Machines with Mixed D
and T Flip-Flops

Ali Iranli
Department of EE-Systems

University of Southern California
iranli@usc.edu

Peyman Rezvani
Magma Design Automation

Cupertio CA
peyman@magma-da.com

Massoud Pedram
Department of EE-Systems

University of Southern California
pedram@ceng.usc.edu
Abstract
This paper presents a state assignment technique to reduce
dynamic power consumption in finite state machines (FSM).
The key idea is to decompose the state machine into a set of
cycles that are collectively equivalent to the original FSM, and
perform state assignment based on the cycle realization of the
state machine using Gray codes. A new implementation of
state machines by using a combination of D and T flip-flops is
thereby proposed, which in conjunction with the proposed
encoding algorithm, reduces power consumption by an aver-
age of 15%.

1. Introduction
The demand for battery-powered products has resulted in a
significant interest in energy efficient design. Meanwhile, inte-
grated-circuit densities and operating speeds have continued to
increase, following the Moore’s Law. The result is that VLSI
circuits are becoming larger, faster, and more complex and
because of this, dissipating ever-increasing amount of power.

These increases in power have created new and difficult
challenges for circuit designers. Realizing that static voltage

scaling was insufficie1nt to solve the “power problem,”
designers subsequently began to focus on advanced design
methodologies and tools to address the power issues. Compli-
cating designers’ attempts to deal with these issues are the
complexities of modern IC designs and the design flows
required to build them.

In recent years, various types of design automation tech-
niques and tools have been developed that focus on power-
aware and/or power-efficient design. Many works have been
reported that address power modelling at different abstraction
levels, power estimation, and power optimization, and low
power synthesis [6]. Low power synthesis includes state
assignment, retiming, logic minimization and technology map-
ping.

State encoding/assignment, as a crucial step in the synthesis
of the controller circuitry, has been extensively studied. Early
research on state assignment was focused on finding a state
encoding that minimizes area of the circuit [3, 8, 11]. More
recently, a number of low power state-encoding techniques
have also been proposed [5, 7, 8]. Roy et al. was the first to
address the problem of reducing switching activity of input
state lines of next state logic during state assignment, formu-
lating it as a Minimum Weighted Hamming Distance

(MWHD) problem [7]. Olson et al. used a linear combination
of switching activity of the next state lines and the number of
literals as the cost function [5]. Tsui et al. [8] used simulated
annealing as a search strategy to find a low power state encod-
ing that accounts for both the switching activity of the next
state lines and switched capacitance of the next state and out-
put logic .

In [10], Wu et al. proposed the idea of realizing a low power
FSM by using T flip-flops. The authors showed that use of T
flip flops results in a natural clock gating and may result in
reduced next state logic complexity. However, that work was
mostly focused on BCD counters which have cyclic behavior.
The cyclic behavior of counters resulted in a significant reduc-
tion of combinational logic complexity and, hence, lower
power consumption.

This paper proposes a novel state assignment technique,
which identifies most probable cycles in the FSM and encodes
states on these cycles with Gray codes. The objective function
is to minimize the Weighted Hamming Distance. Notice that
although techniques such as those presented in [8] use more
accurate cost functions for two and multi-level logic realiza-
tion of the state machines, the MWHD metric is still relevant
and quite effective. In other words, although MWHD does not
exhibit a high absolute accuracy, but it certainly exhibits a
high degree of fidelity. This paper also teaches how a combi-
nation of T and D flip-flops as state registers can be used to
achieve a low power realization of the FSM in question.

The remainder of this paper is organized as follows. Section
2 provides the theoretical background for the proposed encod-
ing technique; the cycle-based state encoding technique is pre-
sented in Section 3, and in Section 4, the power-efficient
implementation of an FSM using both T and D flip-flops is
discussed. Experimental results and conclusion are given in
Sections 5 and 6, respectively.

2. Background
An FSM is described by a six-tuple (X, Y, S, s0, λ, η) where X

is the set of input symbols, Y is the set of output symbols, S is

the set of states, s0 is the initial state, is the out-

put function, and is the next state function.

From a probabilistic point of view, an FSM can be described
by a Markov process in which pi is the probability of being in

state si, and pij is the conditional probability of transition from

state vi to state vj.

The state transition graph of an FSM is a vertex/edge
weighted directed graph G(V, E), where the set of vertices V1. This research was supported in part by DARPA PAC/C program

under contract no. DAAB07-02-C-P302 and by NSF under grant no.
9988441.

λ :X S× Y→
η :X S× S→

and set of edges E correspond to the states of the FSM and transitions
between them respectively:

The weight assigned to each vertex vi is the state probability pi, and

the weight assigned to each edge (vi, vj) is the probability pij in the

Markov process.

Assume states si and sj are encoded using binary strings bi and bj

respectively. The transition from state si to state sj will have a switch-

ing activity equal to dij, the hamming distance between bi and bj.

Since dynamic power consumption is directly related to switching
activity and state transition in an FSM corresponds to the switching of
the state bits, state encoding will have a major effect on the power
consumption. The goal is to perform state assignment in such a way
that state transitions with higher probability take place with a smaller
switching activity on state bits. The objective function to minimize

would then be: (1)

Implementation of an FSM is usually done using D flip-flops. The

input to the flip-flops would then be where x is the
input and s is the present state. One can also implement FSM using T
flip-flops in which case the input to the flip-flops would be

. Since implementation using T flip-flops tends to
result in more complex circuits for the combinational logic because of
the additional XOR operation, in practice, it has not been heavily
used. Recently, Wu et al. in [10] showed that if the circuit exhibits a
cyclic behavior, use of T flip-flops as state registers can indeed result
in simpler combinational logic and, hence, lower area cost and power
consumption.

In our proposed technique for low power state encoding, the FSM
is first decomposed into a set of cycles. These cycles are then encoded
in order to minimize the total switching according to the cost function
in (1). Once the cycles are encoded, the entire FSM will be imple-
mented using D and T flip-flops.

3. Cycle-based Encoding
We first show in a systematic way that a Markov process, which
defines the behavior of the FSM, can be represented by a set of
weighted directed cycles. Next we introduce a new state-encoding
algorithm based on this cycle representation of the FSM.

We start with a simple example of a cyclic process modeling the
motion of a particle on a closed curve and focus on the particle’s
motion through p points of this curve at moments that are one unit of
time apart; cf. Figure 1a.

This leads us to a discretization of the curve into an infinite
sequence of points C = (v1, v2,..., vp, vp+1=v1, vp+2=v2,...) called a

directed cycle with period p. If no disturbance occurs, the passing of
the particle through vi can be codified by an infinite binary sequence

 where 1 or 0 means the particle

is passing through vi or is not. The sequence is understood

as a non-random sequence in the context of Kolmogorov’s theory of
complexities since both 1 and 0 appear periodically after each p steps
[4].

Consider a set of possibly overlapping cycles {C1,..., Cr} where

each cycle Ci () is associated with some positive number

W(Ci); cf. Figure 1b. Imagine that at some instance of time, the parti-

cle appears at some point v that is common to t cycles, say C1,..., Ct

(). The particle may continue its way to another point v’, which

is the intersection point of m cycles (out of that t cycles that had point

v as an intersection point) say C1,... Cm (). A natural measure of

particle’s transition when moving from v to v’ can then be defined as:

(2)

Accordingly the binary sequence yv,v’ codifying the transition of

the particle from v to v’ is given by a chaotic sequence. Furthermore,
since expression (2) provides transition probability from v to v’ of a
Markov process ξ that behaviorally models the particle’s movement,
it can be concluded that:

 “A collection of cycles C along with some weights assigned to
each cycle defines a Markov process ξ.”

Motivated by the above example, we proceed with a formal defini-
tion of directed cycles and cycle-based representation of Markov pro-
cesses.

Definition 1. A directed cycle over a countable set of states S is a
periodic function C from the set Z of integers into S. Furthermore,

C(i), is called a vertex of the cycle and (C(i), C(i+1)) is called

a directed edge of the cycle.

Each cycle C belongs to an equivalence class of cycles C where

 where t is a translation func-

tion over Z. Two cycles belonging to the same equivalence class are
called equivalent.

Definition 2. For a cycle C, passage function JC is a binary function

defined over the set of states S as follows:

The second order passage function can accordingly be defined as:

V vi vi S∈{ }=

E vi vj,() x X η x vi,() vj=,∈∃{ }=

pi pijdij

j : vi vj,() E∈
∑

i

∑

D η x s,()=

T η x s,()= s⊕

v1

v2

v3

v4

v5

vp

Fig. 1a: Particle’s Motion on
a Closed Curve

v

v’

Fig. 1b: Superimposing
Cycles

yvi vi 1+, …0 10…0

p
10…010…=   

yvi vi 1+,

i r≤

t r≤

m t≤

W C1() W C2() … W Cm()+ + +

W C1() W C2() … W Ct()+ + +
--

i Z∈

C C ′ i Z C ′ i() C t i()()=,∈∀{ }=

JC v()
1 if i Z C i() v=,∈∃
0 otherwise




=

JC v v’,()
1 if i Z C i() v and =,∈∃

C i 1+() v’=

0 otherwise





=

Theorem 1. Let S be a finite set of states. Consider a homogeneous
recurrent |S|-state Markov process ξ defined over a probability space

with common invariant probability distribution pi, ; then there

exists a finite set of weighted cycles C such that superposing the
cycles will define ξ; i.e.,

(3)

Proof. Refer to [4]. �

Based on Theorem 1, the FSM decomposition problem can be
stated as follows.

Cycle Decomposition Problem (CyDec): Given a |S|-state finite state
machine, find a set of weighted cycles C such that their superposition
defines the Markov process corresponding to the given FSM.

Solutions to CyDec can be classified as probabilistic or determinis-
tic solutions depending on whether or not the weighted cycles are
subjected to probabilistic interpretation. As examples of a probabilis-
tic and a deterministic solution to CyDec, consider the following two
approaches.

Randomized Approach: Consider a homogenous and recurrent
Markov process with a countable state space, which is derived from a
given FSM. The process is allowed to run along a sample path for vir-
tually infinite time. Along this sample path, a set of cycles will be
generated. Theoretically, if we let the process run for an infinitely
long time, all possible cycles will be generated. Now, the Markov
process can be decomposed into a set of cycles C, generated in the
above manner, with weights calculated by the following set of equa-
tions, which are in turn derived from (3):

These cycle weights are unique and independent of the ordering in
which the cycles were generated. The weights have a probabilistic
interpretation, in the sense that W(C) is equal to the expected number
of times that C appears along an infinitely long sample path.

Deterministic Approach: Consider a homogenous and recurrent
Markov process, which is derived from a given FSM. Pick an arbi-
trary state vi. Since the process is recurrent, there exists at least one

state vj such that the transition probability Pij is non-zero. Pick this

new state vj and repeat the procedure. Since the number of states is

finite, a cycle will finally be created. Set the weight for this cycle
equal to the minimum probability of the transitions on the cycle,
decrease the probability of each transition on the cycle, Pij, by this

cycle weight, and proceed similarly to find other cycles until no non-
zero probability transition is left.

Theorem 2: Let ξ be a homogenous and recurrent Markov process
and C be the set of weighted cycles generated using the above-men-
tioned deterministic approach. The set of cycles in C is a decomposi-
tion of ξ that satisfies Theorem 1.

Proof: Following the cycle generation procedure mentioned above,
it is trivial to show that:

 �

Notice that the cycles generated by the deterministic approach are
not unique and depend on the policy for selecting the next state.
Moreover, even if the same set of cycles is generated, the weight for
each cycle will depend on the order in which the cycles were gener-
ated.

Theorem 3: Let ξ be a homogenous and recurrent Markov process
and C be the set of weighted cycles generated using the above-men-

tioned deterministic approach, then |C| is of O(|S|2) where |S| is the
number of states in ξ.

Proof: Because in each iteration of the deterministic approach,
after extracting a cycle, weight of at least one edge becomes zero,

therefore, |C| is O(|S|2). �

Having described the mathematical framework for FSM cycle
decomposition, we now proceed with the state-encoding problem. As
mentioned earlier, the technique for state assignment proposed here is
based on the decomposition of FSM into a set of cycles. Due to the
high complexity of the probabilistic method and since the number of
cycles in that approach can grow exponentially large (in the number
of states of the FSM), the deterministic method will be used in this
paper to generate the cycles. The algorithm generate_cycles for gen-
erating the cycles of any given FSM ξ is shown in Figure 2.

In this algorithm, the weight of each edge is the total transition
probability of that edge; i.e., wij = pipij ∀ i, j=1..|S|

i S≤

pi W C()JC vi()
C C∈
∑=

pij W C()JC vi vj,()
C C∈
∑ pi⁄=

vi vj S∈,∀

pipij W C()JC vi vj,()
C C∈
∑= vi vj S∈,∀

pipij W C()
vi vj,() C∈

∑ W C()JC vi vj,()
C C∈
∑= =

pi W C()
vj vi,() C∈

∑
vj

∑ W C()
vi C∈
∑= =

W C()JC vi()
C C∈
∑=

algorithm generate_cycles (FSM ξ)
begin

1. ;
2. while max. edge weight > 0
3. pick (vi, vj) w/ max. weight;

4. ;
5. repeat
6. Φ = Φ + (vi, vj);
7. pick (vi, vj) w/ max. weight in (E - Φ);
8. until there is a cycle in Φ;
9. C = cycle_of (Φ);
10. W(C) = min. {wij|JC(vi, vj)=1};

11. ;

12. wij = wij - W(C), ;

13. return C;
end

C ∅=

Φ ∅=

C C C{ }∪=

i j, :JC vi vj,()∀ 1=

Fig. 2: Cycle Generation Algorithm

The algorithm starts with the edge with maximum weight in line 3
and then repeatedly picks the maximum weight edges from the set of
edges (line 7). This process is repeated until a cycle is generated (line
8); the cycle weight will then be set to the minimum of all the edge
weights on the cycle (line 10), and the weights of all the edges on the
cycle will be decreased by the cycle weight (line 12). This process is
repeated till there are no more edges with non-zero weights.

Now that the FSM has been decomposed into a set of cycles, the
cycle_encode_states algorithm of Figure 3 is employed for the state
assignment step.

After all of the cycles are generated in line 1, they are first sorted
according to their weights (line 2) and then a table of all the Gray
codes for the minimum required bit count is generated. The number

of such Gray codes will be (line 3). The cycles will then be

encoded one by one according to the sorted order by using the
encode_cycle algorithm. This algorithm assigns the codes to the states
on the cycle in such a way that the hamming distance of each state
from its neighboring states is minimized. However, this is not feasible
for those cycles whose states are partially encoded as part of a previ-
ously encoded cycle (line 7). In fact, when the number of already-
encoded states in a cycle is sufficiently large, it makes more sense to
switch from a Gray coding scheme to a Minimum Weighted Ham-
ming Distance algorithm (MWHD). That is precisely what
cycle_encode_states does for the few uncoded states in these cycles
(lines 8, 9).

Gray codes are used to encode states in a cycle because Gray codes
are the optimal solution with respect to the considered cost function,
i.e., the minimum weighted hamming distance. Consider a table of
Gray codes shown in Figure 5; codes are divided into two sets. A
code is a high-code if its MSB is 1, and is a low-code if its MSB is 0.

A table of Gray codes can inductively be constructed from a

table of Gray codes following a very simple procedure:

1. Write a Gray code table

2. Concatenate the above table with a copy of itself written in
reverse order.

3. Add a 0 as the MSB of the entries in the first half of the table and
a 1 as the MSB of the second half.

Constructing a Gray code table according to this simple procedure,
low-codes will always be in top and high-codes will be at bottom. The
line which separates the high-codes from low-codes is called middle-
line. Note that the only difference between high and low codes with
equal distances from the middle-line is the MSB, thus they have a
hamming distance of one. Moreover, each code differs from its neigh-
boring codes only in one bit (this is the well-known Gray code prop-
erty). Given a cycle C, we can encode it optimally by following a
ping-pong movement in the Gray code table starting from the very
first high-code under the middle-line and choosing the codes in high,
low, low, high, high, low, ... order as shown in figure 6.

Figure 4 shows the proposed heuristic for encoding cycles. For

those cycles, none of whose states are encoded, it makes no difference
which state to start with for encoding. As we proceed with other
cycles, some of the states will have already been encoded, and there-
fore, we must first determine what state to start with. In line 1,
find_best_rotation returns the beginning of the largest consecutive
sequence of already encoded states on the cycle. In line 2, the algo-
rithm will proceed with all the uncoded states on the cycle.

The high and low codes are selected as candidate codes for the yet-
uncoded state (lines 3, 4) and find_best_code is used to compare the
cost for each of the two candidate codes and pick the best one (line 5).
This function follows the Gray code sequence if the cycle is not par-
tially encoded, but if some of the states in the cycle are already
encoded, this function chooses the nearest code (in terms of the ham-
ming distance cost) to the last encoded state and continues with Gray
codes from there on. As a secondary tie breaking term, the low and
high codes balance is used. This is useful because the ping-pong
movement will always be possible if we keep a balance between the
number of high and low codes that have been used.

4. Hybrid FSM Implementation
As mentioned before, D flip-flops are commonly used as state regis-
ters when implementing FSMs because the combinational logic for

calculating the next state tends to be more complex for T flip-flops.1

Wu et al. showed that using T flip-flops for BCD counters, which
exhibit a purely cyclic behavior, results in a very simple combina-
tional logic realization, thereby, very low power consumption [10]. In
the case of counter’s state lines, the bit-level switching activity of

algorithm cycle_encode_states (FSM ξ)
begin
1. C = generate_cycles (ξ);

2. = sort (C);
3. generate_Gray_code_table ();

4. while

5. C = get the cycle w/ max. weight from ;
6. encode_cycle (C);

7. remove from those cycles in which
more than t% of their states are encoded;

8. V = get all remaining uncoded states;
9. MWHD (V);
end

C
·

C
· ∅≠

C
·

C
·

Fig. 3: State Assignment Algorithm

2
lg2 S

2
n 1+

2
n

2
n

algorithm encode_cycle (cycle C)
begin
1. start = find_best_rotation (C);
2. foreach uncoded state on C starting at start
3. high = find first available high-code;
4. low = find first available low-code;
5. code(state) = find_best_code (high, low);
end

Fig. 4: Cycle Encoding Heuristic

000
001
011
010
110
111
101
100

low

highdi
st

=
1

di
st

=
1

di
st

=
1

Fig. 5: Gray code table

state lines increases as one moves from the MSB toward the LSB. So
it pays off to use T flip-flops for the LSB state lines. More generally
(and intuitively), if one uses T signals to implement high switching
activity state lines, then the on-set of the logic function that produces
the T signal would include most of the minterms in the Boolean
space, resulting in simpler combinational logic realization, and there-
fore, lower power consumption.

This ituitive (yet inexact) observation is the key rationale behind
using both T and D flip-flops for low power realization of FSMs, pri-
marily because the encoding technique proposed in this paper is
based on the cycle realization of FSM.

Of all generated cycles for a given FSM, the ones with larger
weights, which are considered first, are optimally encoded, i.e., the
states are encoded using consecutive Gray codes, but those with
smaller weights, which are encoded later, may end up having non-
consecutive codes. When FSM runs and the circuit makes transitions
from one state to another, each flip-flop experiences some switching
activity. The best way of implementing this FSM would be to use D
flip-flops for those bits that have smaller switching activity, and T
flip-flops for those that have larger activity.

Consider encode_cycle, which starts with the middle-line (cf. Fig-
ure 6). To keep the minimum distance of 1 between each state and its
neighboring states, the algorithm experiences a ping-pong like behav-
ior, switching between high and low codes. Assuming a cycle over all
states of FSM, one can see that with the exception of the most signifi-
cant bit (leftmost bit), the switching activity is higher for lower-order
bits. The most significant bit (MSB) is an exception and has the larg-
est switching activity among all bits (cf. Figure 6). .

Based on the above observations, the high-order bits (but not the
MSB itself) are implemented with D flip-flops whereas the low-order
bits and the MSB, are implemented with T flip-flops. The boundary
between high-order and low-order bits and hence the number of bits
to be implemented using T flip-flops is chosen by the following equa-
tion:

T flip-flop count =

where n is the total number of states on those cycles that are encoded
using the encode_cycle algorithm. Note that the cycles encoded by

encode_cycle are the ones that end up having a consecutive set of
Gray codes and are hence suitable for T flip-flop implementation.

5. Experimental Results
The cycle-based encoding algorithm was implemented in C and run
on an IBM IntelliStation with a 730 MHz Pentium III processor and
256 MB memory to generate the experimental results.

The total weighted Hamming distance (WHD) for a number of
FSM benchmark circuits and for different encoding techniques are
reported in Table 1. For these results, we assumed uniform external
input distribution and used equation (1) to calculate the WHD value
for each state machine. The purpose of this table is to demonstrate the
relative efficiency of the cycle-based encoding algorithm compared to
a genetic search based algorithm. .

The first column provides names of the FSM circuits, which are all
selected from LGSynth89 or ISCAS89 benchmark sets. The largest
circuit used for generating experimental results has 256 states. Col-
umn 2 shows the number of states in each FSM. Columns 3 and 4
report the average switching activity per state bit line and the runtime
(in seconds) for the proposed cycle-based state assignment (i.e., the
cycle_encode_states algorithm). All FSMs were encoded in the order
of one second or less. Columns 5 and 6 report the average switching
activity and runtime for a genetic search algorithm that was imple-
mented to calculate the low power state assignment based on the min-
imum weighted hamming distance cost. For these results, parameter t
(cf. line 7, Figure 3) was set to 40% for all of the above experiments.
The results show a significant speedup compared to the genetic
search algorithm with nearly the same quality of results. The case of
s208 is a notable exceoption, where we obtain more than 70% reduc-
tion in the WHD metric. The reason for this siginificant improvement
is that s208 is indeed a 256 state counter. As a result we perform
much better than the genetic search algorithm (the quality of GA
solution may improve if it is given more computation time)

1. There are also legacy reasons. The use of D flip-flops is so com-
mon that almost all of the state assignment techniques published
to-date support only D flip flops; this introduces a barrier to wide-
spread and effective use of T flip-flops. A barrier that we are
attempting to lower in this paper.

000
001
011
010
110
111
101
100

Fig. 6: Ping-pong encoding and switching activity
of state bits

sw=2sw=1sw=4

lg2n

FSM
state

#

cycle-
based
WHD

cycle-
based

time (s)

genetic
search
WHD

genetic
search
time (s)

dk16 28 1.89 0.6 1.83 220

dk512 15 1.35 0.4 1.42 130

donfile 24 1.45 0.5 1.39 165

ex1 21 0.72 0.7 0.70 155

ex2 19 1.61 0.6 1.60 100

ex5 9 1.33 0.4 1.29 42

ex7 10 1.46 0.4 1.35 56

planet 48 1.31 0.8 1.86 600

s208 256 0.50 1.6 3.55 3450

s298 218 3.12 1.2 4.50 2875

s820 25 0.49 0.5 0.55 170

s953 20 0.37 0.6 0.45 300

s1488 48 0.35 1.0 0.36 700

sand 32 0.65 0.8 0.82 390

sse 16 0.78 0.5 0.88 150

styr 30 0.57 0.7 0.61 250

tbk 32 1.05 0.8 1.17 400

train11 11 0.41 0.4 0.46 5

Table 1: Average Switching Activity

.

Table 2 shows the post-mapping area and power consumption of
the FSMs using genetic search generated state codes v.s. codes gener-
ated by cycle_encode_states algorithm. Fidelity of WHD cost func-
tion can be noticed by considering tables 1 and 2 side by side. For the
next set of experimental results, we investigate the effect of using
both T and D flip flops to implement an FSM that has been coded by
the cycle_encode_states algorithm. script.rugged was then used in
SIS to optimize the encoded circuit, which was subsequently technol-
ogy mapped to an industrial 0.25 µm ASIC cell library. A gate-level
power simulation tool was used to calculate the power consumption
of the final circuit. We used a uniformly-distributed vector set of size
100,000 to excite each circuit from a randomly selected initial state or
the reset state (if specified). The results are reported in Table 3.

Columns 2 through 5 report the power consumption and mapped
gate area of the resulting circuits for D flip-flop only and the hybrid
flip-flop implementations, respectively. The percentage improvement
in power dissipation is reported in column 6. As one can see, the
hybrid implementation always results in lower power-consuming cir-
cuits compared to D flip-flop-only implementation. Experimental
results demonstrate an average improvement of 15% in the total
(post-mapping) power dissipation and an area savings of 10% in
terms of the total gate area. Note that T flip-flops can easily be imple-
mented using clock gating on D flip-flops as shown in [10].

6. Conclusions
A mathematical framework for the cyclic representation of FSMs is
introduced. Based on this representation, a new state-encoding tech-
nique was proposed to reduce switching activity in FSMs. Since a
cyclic behavior is better implemented by T flip-flops, a hybrid-flip-
flop scheme for FSM implementation based on cycle decomposition
was proposed to achieve further power reduction in the final circuit.
Experimental results show the effectiveness of this approach.

References
[1]L. Benini and G. De Micheli, “Automatic Synthesis of Low-power
Gated-clock FSM,” IEEE TCAD, vol. 15, pp. 630-643, Jun. 1996.
[2]L. Benini, G De Micheli, E. Macii, M. Poncino, and R. Scarsi,
“Symbolic Synthesis of Clock-Gating Logic for Power Optimization
of Control-Oriented Synchronous Networks,” Proc. of ICCAD, pp.
514-520, Nov. 1997.
[3]G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Optimal State Assignment of Finite State Machines,” IEEE Trans.
on CAD, vol. 4, pp. 269-285, Jul. 1985.
[4]S. L. Kalpazidou, Cycle Representations of Markov Processes,
Springer-Verlag, 1995.
[5]E. Olson and S. M. Kang, “Low-Power State Assignment for
Finite State Machines,” Proc. of IWLPD, pp. 63-68, April 1994.
[6]M. Pedram, “Power Minimization in IC Design: Principles and
Applications,” ACM Trans. on Design Automation of Electronic Sys-
tems, vol. 1, pp. 3-56, Jan. 1996.
[7]K. Roy and S. Prasad, “Syclop: Synthesis of CMOS Logic for
Low-Power Application,” Proc. of ICCD, pp. 464-467, Oct. 1992.
[8]C. Y. Tsui, M. Pedram and A. M. Despain, “Low-Power State
Assignment Targeting Two- and Multilevel Logic Implementation,”
IEEE Trans. on CAD, vol. 17, pp. 1281-1291, Dec. 1998.
[9]T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State Assign-
ment of Finite State Machines for Optimal Two-Level Logic Imple-
mentations,” IIEEE Trans. on CAD, vol. 9, pp. 905-924, Sep. 1990.
[10]X. Wu, J. Wei, Q. Wu, and M. Pedram, “Low-Power Design of
Sequential Circuits Using a Quasi-Synchronous Derived Clock,” Int’l
Journal of Electronics, Taylor and Francis Publishing Group, vol. 88,
no. 6, pp. 635-643, Jun. 2001.
[11]S. Yang and M. Ciesielski, “On the Relationship Between Input
Encoding and Logic Minimization,” Proc. of 23rd. Hawaii Int’l Conf.
System Sciences, vol. I, pp. 377-386, Jan. 1990.

FSM
genetic
search
Power

genetic
search
Area

cycle-
based
Power

cycle-
based
Area

dk16 1650 97852 1760 99539

dk512 429 32976 427 32864

donfile 1106 85012 1215 84711

ex1 983 72985 968 73538

ex2 997 67862 1089 68544

ex5 572 35676 507 36606

ex7 581 40227 634 41576

planet 1326 117382 1179 110112

s208 362 63120 220 54351

s298 8943 985651 8307 917559

s820 1269 134263 1137 130741

s953 1311 113176 1047 106007

s1488 1054 159124 923 153947

sand 1623 134278 1455 129910

sse 629 48319 459 43044

styr 926 134257 840 131997

tbk 2391 173216 2135 171718

train11 310 30128 240 29533

Table 2: Genetic v.s. cycle_encode_cycle

FSM
Power
D-FF

Area
D-FF

Power
D/T-FF

Area
D/T-FF

Power
savings

dk16 1760 99539 1364 96302 18%

dk512 427 32864 401 32369 2%

donfile 1215 84711 1177 69504 21%

ex1 968 73538 832 78801 13%

ex2 1089 68544 995 65266 15%

ex5 507 36606 429 36788 9%

ex7 634 41576 595 37151 19%

planet 1179 110112 1153 107227 4%

s208 220 54351 118 40718 25%

s298 8307 917559 7688 864484 8%

s820 1137 130741 977 102539 14%

s953 1047 106007 922 90876 12%

s1488 923 153947 716 130737 22%

sand 1455 129910 1366 121025 6%

sse 459 43044 398 40839 13%

Table 3: Final Power Consumption

styr 840 131997 639 125992 24%

tbk 2135 171718 1904 168050 11%

train11 240 29533 103 27011 35%

FSM
Power
D-FF

Area
D-FF

Power
D/T-FF

Area
D/T-FF

Power
savings

Table 3: Final Power Consumption

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

