
Efficient DDD-based Term Generation Algorithm for Analog Circuit
Behavioral Modeling

Sheldon X.-D. Tan C.-J. Richard Shi

Department of Electrical Engineering Department of Electrical Engineering
University of California, Riverside, CA 92521, USA University of Washington, Seattle, WA 98195, USA

stan@ee.ucr.edu shi@ee.washington.edu

Abstract— An efficient approach to generating symbolic prod-
uct terms for behavioral modeling of large linear analog circuits
is presented. The approach is based on a compact determinant
decision diagram (DDD) representation of transfer functions and
characteristics of analog circuits. The new algorithm is based on
the concept that a dominant term in a DDD graph can be found by
searching the shortest path in the graph. But instead of travers-
ing a whole DDD graph each time, we show that a shortest path
can be found by just updating a small number of the newly added
vertices after the first shortest path is found. Experimental results
indicate that the new symbolic term generation algorithm out-
performs both pure shortest path based algorithm and dynamic
programming based algorithm, which is the fastest symbolic term
generation algorithm published so far.

I. INTRODUCTION

Behavioral modeling aims at generating compact and sim-
ulation ready models for analog circuit blocks that capture
the circuit characteristics of interests. Behavioral models can
be used to speed up full system design analysis and verifica-
tion. Behavioral modeling is a critical technique for emerging
system-on-a-chip (SoC) designs as efficient implementations
of analog building blocks in SoC systems becomes increas-
ingly important. One way to derive behavioral models of ana-
log modules is by means of symbolic analysis. As illustrated
in [3], simple yet accurate symbolic expressions can also be
interpretable by analog designers to gain the insight into cir-
cuit behavior, performance and stability, and are important for
many applications in circuit design such as transistor sizing
and optimization, topology selection, sensitivity analysis, fault
simulation, testability analysis and yield enhancement [4].

Research on symbolic analysis can date back to 1960s [6].
Recently, various schemes to drive approximate symbolic ex-
pressions have been developed. Approximation can be carried
out after generation of all the symbolic product terms [3, 11,
16]; or during generation [2, 15, 17] and even before genera-
tion [5, 17].

Recently Tan and Shi proposed an efficient DDD graph
based method of deriving simple yet accurate symbolic ex-
pressions for behavioral modeling of linear(ized) analog cir-
cuits [12]. Their DDD-based approximation method has

both the reliability in the approximation-after-generationmeth-
ods [3, 11, 16], and the capability in approximation-before [5,
17]/during-generation [2, 15, 17] methods for analyzing large
analog circuits.

In this paper, we consider how to obtain the dominant prod-
uct terms from exact or simplified DDD graphs representing
circuit characteristics. An efficient algorithm was proposed
in [12] where finding a dominant term is transformed into
searching the shortest path in a DDD graph. Once the short-
est path is found, it can be subtracted from the DDD graph by
simple DDD graph operations. The next dominant term can
be found on the resulting DDD graph in the same way. Re-
cently, Verhaegen and Gielen presented another DDD-based
dominant-term generation algorithm, which is based on dy-
namic programming concept [14]. It is shown in [13] that the
dynamic programming based algorithm is faster than the short-
est path based algorithm in general but at cost of more memory
use.

In this paper, we present a more efficient shortest path based
algorithm for dominant term generation. The success of the
new algorithm is based on the observation that if the source
vertex in a DDD graph are properly defined, a shortest path can
be found by just updating a small number of the newly added
vertices after the first shortest path is found. Experimental re-
sults show that our incremental shortest path based algorithm
outperforms both the pure shortest path based algorithm and
the dynamic programming based algorithm for different types
of analog circuits.

This paper is organized as follows. Section II reviews the
concepts of DDDs and s-expanded DDDs. Section III presents
new incremental shortest path based algorithm. We also briefly
review our implementation of the dynamic programming based
algorithm based on DDD graphs. Experimental results are de-
scribed in Section IV. Section V concludes the paper.

II. DDDS AND s-EXPANDED COEFFICIENT DDDS

In this section, we provide a brief overview of the notion
of determinant decision diagrams [8]. We review how a s-
expanded DDD can be used to represent the symbolic coef-
ficients of a s polynomial.

Determinant Decision Diagrams [8] are compact and canon-
ical graph-based representation of determinants. The concept
is best illustrated using a simple RC filter circuit shown in
Fig. 1. Its system equations can be written as

1 R2 R3

C2 C3R1 C1

2 3

I

Fig. 1. A simple RC circuit.�� 1
R1 � sC1 � 1

R2 � 1
R2

0� 1
R2

1
R2 � sC2 � 1

R3 � 1
R3

0 � 1
R3

1
R3 � sC3

����
v1
v2
v3 �
	 � I00 �

We view each entry in the circuit matrix as one distinct sym-
bol, and rewrite its system determinant in the left-hand side of
Fig. 2. Then its DDD representation is shown in the right-hand
side. Please refer to [8] for the formal definition of a DDD
graph.

A B 0

C D E

0 F G

0 edge

1 0

1 edge

+

+

+

-

+

+

-

A

B

CD

F

E

G

Fig. 2. A matrix determinant and its DDD.

A 1-path in a DDD corresponds a product term in the origi-
nal DDD, which is defined as a path from the root vertex (A in
our example) to the 1-terminal including all symbolic symbols
and signs of the vertices that originate all the 1-edges along the
1-path. In our example, there exist three 1-paths representing
three product terms: ADG, � AFE and � CBG. The root vertex
represents the sum of these product terms. Size of a DDD is
the number of DDD vertices, denoted by �DDD � . Note that the
size of a DDD depends on the size of circuits in a very com-
plicated way. �DDD � is a linear function of the circuit size for
ladder circuits and it may grow superlinearly in general with
sizes of circuits [8].

To exploit the DDD to derive circuit characteristics, we need
to directly represent circuit parameters not matrix entries. To
this end, s-expanded DDDs are introduced [10]. Consider
again the circuit in Fig. 1 and its system determinant. Let us
introduce a unique symbol for each circuit parameter in its ad-
mittance form. Specifically, we introduce a 	 1

R1
, b 	 f 	 1

R2
,

d 	 e 	 � 1
R2

g 	 k 	 1
R3

, i 	 j 	 � 1
R3

, C1 	 c h 	 C2 l 	 C3.
Then the circuit matrix can be rewritten as�

a � b � cs d 0
e f � g � hs i
0 j k � ls �

0 edge

1 edge

1

0SS1S23S

+c

h

a

c

a

f b

l

h

k

a

f b

e

d
e

d

gc

b h+

+ + +

+

−

+

+

+

_

+ +

++

+

+ +

+

+
+

+

i +

j _

+

g

Fig. 3. An s-expanded DDD.

The original 3 product terms will be expanded to 23 product
terms in different powers of s. We can represent these product
terms nicely using a slight extension of the original DDD, as
shown in Fig. 3. This DDD has exactly the same properties as
the original DDD except that there are four roots representing
coefficients of s0 s1 s2 s3. Each DDD root represents a sym-
bolic expression of a coefficient in the corresponding s poly-
nomial. Each such DDD is called a coefficient DDD, and the
resulting DDD is a multiple-root DDD. The original DDD in
which s is contained in some vertices is called complex DDD.

The s-expanded DDD can be constructed from the complex
DDD in linear time in the size of the original complex DDD [9,
10].

III. DOMINANT TERM GENERATION METHODS

Many circuit characteristics are dominated by a small num-
ber of product terms called significant or dominant terms.
Those dominant terms can be used to well approximate the
circuit behavior with very small accuracy loss. In the sequel,
we first review the implementation of the dynamic program-
ming based term generation algorithm based on DDD graphs
and then discuss the graphic properties the algorithm depends
on and its time complexity. Then we will details our new in-
cremental shortest path (SP) based term generation algorithm
and compare it with the dynamic programming (DP) based al-
gorithm.

A. Dynamic Programming (DP) Based Generation of Domi-
nant Terms

Verhaegen and Gielen [14] recently proposed a fast term
generation algorithm based on dynamic programming concept.
Their implementation, however, is based on the DDD structure
that is slightly different from the one developed originally by
Tan and Shi [8, 10]. Inspired by their work, we implemented a
DP based algorithm based on the original DDD structure.

In a DDD graph, a 1-edge pointed vertex (vertex which have
incoming 1-edge) represents a minor in a determinant with the
root vertex representing the whole determinant. So recursively,

we can cache all the generated dominant terms from the minor
at the vertex to avoid regenerating them again. To avoid gener-
ating a term more than twice, each vertex also has a counter to
keep track of the terms generated through the vertex.

Specifically, let D be a 1-edge pointed vertex. We use
D.counter to keep track of the number of dominant terms gen-
erated for the vertex D (i.e. D is included in those terms).
We use an ordered array, denoted as D.term-list, to keep track
of those generated dominant terms in the minor represented
by D, where D.term-list[1], D.term-list[2],... represents the
largest term (first dominant term), the second largest term (sec-
ond dominant term). D.counter is initially set to 1 for all 1-
edge pointed vertices, and can be increased up to k. We use
V � child1

�
V � child0 � to represent the vertex pointed to by the 1-

edge (0-edge) originating from vertex V . The pseudo code of
the algorithm is shown in Fig. 4.

GETKDOMINANTTERMS(D � k)
1 if (D � 1)
2 return 1
3 if (D � 0)
4 return NULL
5 else if (D.term-list[k] exists)
6 return D.term-list[k]
7 else
8 COMPUTEKDOMINANTTERMS(D � k)
9 return D.term-list[k]

COMPUTEKDOMIANTTERMS(D � k)
1 if (D � 1)
2 return 1
3 while (D.term-list[k] not exists) do
4 for each 0-edge linked vertex V starting with D do
5 if (V � 1 and V � counter � 1)
6 continue
7 term = GETKDOMINANTTERMS(V � child1 � V � counter)
8 if (term exists)
9 new term = UPDATETERM(term,V)
10 term value = COMPUTETERMVALUE(new term)
11 if (term value is the largest)
12 new largest term � new term
13 vertex need update � V
14 if (new largest term exists)
15 D.term-list.push(new largest term)
16 vertex need update � counter++
17 else
18 break
19 return

Fig. 4. Dynamic programming based dominant term generation algorithm.

To find the k dominant terms at a 1-edge pointed vertex
D, we first check if such k terms already exist in the term-
list in GETKDOMINANTTERMS(D k). If they do not ex-
ist, they will be generated by invoking COMPUTEKDOM-
INANTTERM(D k). In COMPUTEKDOMINANTTERM(D k),
the largest term is computed and stored in the term-list of D
by visiting all the 0-edge linked DDD vertices. Each time a
largest term is computed, the corresponding vertex V � counter
will be increased by 1. UPDATETERM() adds a vertex (its sym-
bol) into a term represented by a DDD tree. COMPUTETER-
MVALUE() computes the numerical value of a given term.

We have to point out that the DP based algorithm does not
work for all the DDD graphs. It was shown in [13] that some

graphic properties of DDDs have to be held. The most im-
portant one is that the incoming edges of a non-terminal ver-
tex in a DDD graph are either all 0-edges or all 1-edges. In
other words, a 0-edge pointed vertex can only belong to one
minor and can not be shared by different minors (no incoming
1-edge). With this property, it is sufficient to keep all the gener-
ated dominant terms in the 1-edge pointed vertices as required
by the DP based algorithm.

We notice that cancellation-free s-expanded DDDs (whose
canceling terms are removed) do not satisfy required prop-
erty [13]. Verhaegen and Gielen [14] resolved this problem by
duplicating vertices. Their approach, however, will destroy the
DDD canonicity, a property crucial to the efficiency of many
DDD-based graph manipulations as DDD (also BDD) oper-
ations are based many caching techniques which require the
canonical property of DDDs to make caching operations ef-
fective [7]. In this paper, we apply the DP approach on the
s-expanded DDDs before de-cancellation.

The algorithm takes linear time in terms of the size of a
DDD, if UPDATETERM() and COMPUTETERMVALUE() are
implemented to use constant time each time when a vertex is
added to a term. This can be accomplished by using memory
caching. We also note that after the first dominant term, the
algorithm takes O

�
n � to get the next dominant term if the num-

bers of 0-edge linked vertices is bounded by a constant m and
m ��� n, where n is depth of the DDD graph or the size of
the circuit matrix. This typically is the case for a sparse ma-
trix. For a dense matrix, the numbers of 0-edge linked vertices
become proportional to O

�
n � , so the time complexity of find-

ing next a dominant term will become O
�
n2 � . In other words,

the time complexity of the DP based algorithm depends on the
topologies of circuits.

B. Incremental Shortest Path (SP) based Generation of Domi-
nant Terms

Tan and Shi proposed an elegant algorithm for finding k
dominant terms in [12]. The algorithm does not require DDDs
to satisfy aforementioned graphic property, and thus can be ap-
plicable to any DDD graph. The algorithm is based on the ob-
servation that the k dominant product terms can be transformed
to the k shortest paths in a DDD. In this manner, we can find
the k shortest paths in time

O
�
k 	 �DDD ��
 n

k
�
k � 1 ���

2
� (1)

where n is the depth of the DDD graph. In this paper, we intro-
duce a more efficient term generation algorithm based on the
work in [12]. The new algorithm is also based on searching the
shortest paths in the DDD graphs to find the dominant terms.
But unlike the previous method, the new algorithm does not
need to visit every vertex in a DDD graph to find the domi-
nant term as required by the shortest path search algorithm [1]
after the first dominant term. The new algorithm is based on
the observation that not all the vertices are needed to be re-
laxed (a operation that checks if a path from a vertex’s parent

is the shortest path seen so far and remember the parent if it is)
after the DDD tree is altered due to the subtraction of a dom-
inant term. We show that only the newly added DDD vertices
are needed to be relaxed and the number of newly added DDD
vertices is bounded by the depth of the DDD graph. In the
sequel, we first introduce the concept of reverse DDD graphs.

As shown in Fig. 2, a DDD graph is a direct graph with
two terminal vertices and one root vertex. Remember that the
1-path in a DDD graph is defined from the root vertex to the
1-terminal. In this paper, we define a new type DDD graph,
called reverse DDD graphs where all the edges have their di-
rections reversed and the root of the new graph are 1-terminal
and 0-terminal vertices and the root vertex of the original DDD
graph becomes the only terminal vertex in the reverse DDD
graph. The reverse DDD graph for the DDD graph in Fig. 2 is
shown in Fig. 5. But in the sequel, the root vertex and terminal
vertices are still referred to those in the original DDD graphs.

0 edge

1 0

1 edge

+

+ −

+

+

−

A

B

CD

F

E

G

Fig. 5. A reverse DDD graph.

With the concept of the reverse DDD graph, we further de-
fine 1-path and path weight in a reverse DDD graph.

Definition 1 A 1-path in a reverse DDD is defined as a path
from the 1-terminal to root vertex (A in our example) including
all symbolic symbols and signs of the vertices that the 1-edges
point to along the 1-path.

Definition 2 The cost of a path in a DDD is defined to be the
total cost of the edges along the path where each 0-edge costs
0 and each 1-edge costs � log � ai � , and � ai � denotes the numer-
ical value of the DDD vertex ai that the corresponding 1-edge
points to.

We can show the following result:

Lemma 1 The most significant product (dominant) term in
a symbolic determinant D corresponds to the minimum cost
(shortest) path in the corresponding reverse DDD between the
1-terminal and the root vertex.

The shortest path in a s-expanded DDD, which is a DAG
direct acyclic graph), can be found by depth-first search in time
O
�
V
 E � , where V is the number of DDD vertices �DDD � and

E is number of edges [1]. For DDDs, E 	 2 �DDD � , thus the
SP based algorithm takes time O

� �DDD � � .

Following the same strategy in [12], after we find the short-
est path from a DDD, we can subtract it from the DDD us-
ing subtract DDD operation [8], and then we can find the next
shortest path in the resulting DDD. Subtraction is a DDD graph
operation that generates a new DDD graph that does not con-
tain the path subtracted. Then we have following result:

Lemma 2 In a reverse DDD graph, after all the vertices have
been relaxed (after finding the first shortest path), the next
shortest path can be found by relaxing newly added vertices
created by the subtraction operation.

Proof: The proof of Lemma 2 lies in the canonical nature of
DDD graphs. A new DDD vertex is generated if and only if
the subgraph rooted at the new vertex is a new and unique sub-
graph for the existing DDD graph. In other words, there do
not exist two identical subgraphs in a DDD graph due to the
canonical nature of DDD graphs. On the other hand, if a exist-
ing DDD vertex becomes part of the new DDD graph, its corre-
sponding subgraph will remain the same. As a result, the short-
est path from 1-terminal to all vertices in the subgraph will re-
main the same. Hence, it is sufficient to relax the newly added
vertices to find the shortest paths from 1-terminal to those ver-
tices. The root vertex of the new DDD graph is one of those
newly added vertices. � .

It turns out that relaxation for the new vertices can be done
very efficiently when those new vertices get created. The re-
laxation can take a almost free ride during the subtraction oper-
ation. Suppose all the vertices in reverse D have been relaxed.
Then the pseudo code of the new algorithm for searching the
next dominant term is given in Fig. 6.

GETNEXTSHORTESTPATH(D)
1 if (D � 0)
2 return 0
3 P = EXTRACTPATH(D)
4 if (P exists and P not equal to 1)
5 D = SUBTRACTANDRELAX(D � P)
6 return P

SUBTRACTANDRELAX(D � P)
1 if (D � 0)
2 return 0
3 if (P � 0)
4 return D
5 if (D � P)
6 return 0
7 if (D � top � P� top)
8 V = GETVERTEX(D � top, D � child1, SUBTRACTANDRELAX(D � child0 � P))
9 if (D � top � P� top)
10 V = SUBTRACTANDRELAX(D � P� child0)
11 if (D � top � P� top)
12 T1 = SUBTRACTANDRELAX(D � child1 � P� child1))
13 T0 = SUBTRACTANDRELAX(D � child0 � P� child0)
14 V = GETVERTEX(D � top, T1, T0)
15 if (V not equal to D)
16 RELAX(V � child1, V)
17 RELAX(V � child0, V)
18 return V

Fig. 6. Incremental shortest path based dominant term generation algorithm.

In GETNEXTSHORTESTPATH(D), EXTRACTPATH(D) ob-
tains the found shortest path from D and returns the path in
a single DDD graph form. This is done by simply traversing
from the root vertex to 1-terminal as each vertex will remember
its immediate parent who is on the shortest path to the vertex
in a fully relaxed graph. Once the shortest path is found, we
subtract it from the existing DDD graph and relax the newly
created DDD graphs (line 15-17) at same time to find the short-
est paths to those vertices.

In function SUBTRACTANDRELAX(D P),
GETVERTEX(top D � child1 D � child0) is to generate (or copy)
a vertex for a symbol top and two subgraphs D � child1 (pointed
by 1-edge) and D � child0 (pointed by 0-edge). RELAX(P, Q)
performs the relaxation operation for vertices P and Q where
P is the immediate parent of Q in the reverse DDD graph. In
the reverse DDD graph, each vertex has only two incoming
edges (from its two children in the normal DDD graph), so the
relaxation with its two parents in line 16 and 17 is sufficient
for vertex V . Moreover, the relaxation for V happens after all
its parents have been relaxed due to the DFS-type traversal in
SUBTRACTANDRELAX(). This is consistent with the ordering
requirement of the shortest path search algorithm. So by re-
peatedly calling function GETNEXTSHORTESTPATH(D), we
can find all the dominant terms in a decreasing order.

Let n be the number of vertices in a path from 1-terminal to
the root vertex, given the fact that D is a DDD graph and P is
a path in DDD form, then we have the following Lemma

Lemma 3 The number of new DDD vertices created in func-
tion SUBTRACTANDRELAX(D, P) is bounded by n and the
time complexity of the function is O

�
n � .

Proof: As we know that DDD graph D contains the path
P. As P is a single path DDD graph, P� child0 is always 0-
terminal. So line 10 and 13 will immediately return D and
D � child0 respectively (actually, line 10 will never be reached
if D contains the path P). As a result, we will descend one
level down in graph D each time depending on which line we
choose to go for line 8 and 12. As a matter fact, function
SUBTRACTANDRELAX(D, P) actually will traverse the path
P in D until it hits a common subgraph in both D and P as
indicated in line 5. After this, m � 1 new vertices will be cre-
ated on its way back to the new root vertex, m is the number of
vertices visited in D in the whole operation and m � n. If the
common subgraph is 1-terminal, then m 	 n. �

Notice that both DP based algorithm and incremental SP
based algorithm have time complexity O

� �DDD � � to find a
dominant term in general, where �DDD � is the size of a DDD
graph. After the first dominant term, however, both algorithms
show better time complexities for generating next dominant
terms. But in contrast to DP based algorithm, the O

�
n � time

complexity of the incremental SP based algorithm does not de-
pends on the topologies of circuits.

Notice that this new term generation algorithm can be per-
formed on the any DDD graph, including cancellation-free s-
expanded DDD. We also note that since the variant of DDD
used by Verhaegen and Gielen in [14] does not satisfy the

canonicity, and thus cannot apply the SP based algorithm.

Following the same strategy in [15], our approach also han-
dles numerical cancellation. Since numerical canceling terms
are extracted one after another, they can be eliminated by ex-
amining two consecutive terms.

IV. EXPERIMENTAL RESULTS

The proposed approach has been implemented and tested on
a number of practical analog circuits. For each circuit, DC
analysis is first carried out using SPICE and our program reads
in small-signal element values from the SPICE output. The
algorithms described in [8, 10] are used to construct complex
DDDs and s-expanded DDDs.

Table I summarizes the comparison results in terms of CPU
time for the three algorithms. A total of 10000 dominant terms
are generated for a number of test circuits ranging from more
regularly structured ladder circuits to less regularly structured
such as Cascode and µA741 amplifiers. In Table I, column 1,
2 and 3 list for each circuit, respectively, its name Circuit, the
number of nodes #nodes, and the number of nonzero elements
#nonzero in its circuit MNA matrix. Columns 4 to 6 show, re-
spectively, the CPU time, in terms of seconds, for generating
10000 dominant terms by the DP based algorithm, Dyna Pro-
gramming, by the pure SP based algorithm, Shortest Path, and
by incremental SP based algorithm, Incr Shortest Path.

From Table I, we see that the incremental SP based algo-
rithm consistently outperforms the DP based algorithm for all
the circuits in CPU time. The difference becomes even more
significant for circuits with regular structures like ladder cir-
cuits. For less regularly structured circuits like µA741, the in-
cremental SP based method also shows impressive improve-
ments over the DP based algorithm.

As we know that for both DP based algorithm and incre-
mental SP based algorithm, the actual time to generate a new
path is close to O

�
n � , where n is the size of the circuit. But

for pure SP based algorithm, we have to visit all the vertices
every time to generate a new path. Such difference is clearly
demonstrated in circuits Cascode and µA741 where the sizes of
DDDs are significantly larger than the sizes of the circuits. So
the CPU time for pure SP based algorithm is quite lager than
two other algorithms.

Fig. 7 shows the CPU time for different ladder circuits. The
CPU time increases almost linearly with the size of ladder cir-
cuits for all three algorithms. So for ladder circuits, both the
SP algorithms consistently outperforms DP based algorithm in
terms of CPU time. The reason is that sizes of DDDs for repre-
senting ladder circuits grow linearly with the sizes of the ladder
circuits, that is n [8], so the time complexities of all three algo-
rithms, O

� �DDD � � , become O
�
n � . But the DP based algorithm

need to take extra efforts to loop through all 0-linked vertices to
compute the dominant terms and restore them at each 1-edged
pointed vertex. Those extra efforts will become significantly
when the graph become very deep as with the high section lad-
der circuits.

TABLE I
COMPARISON OF THREE TERM GENERATION ALGORITHMS.

Circuit #nodes #nonzero Dyna Programming Shortest Path Incr Shortest Path

rclad10 8 31 17.3 14.8 5.1
rclad21 22 64 105.1 21.5 15.4
rclad60 61 181 133.8 101.0 80.3

rclad100 101 301 369.6 172.8 132.9
rclad150 151 451 912.2 281.7 248.3
rclad200 201 601 1630.9 387.3 320.0
rclad250 251 751 2431.3 493.8 426.4
rclad300 301 901 3388.4 598.0 557.4
rctreeA 40 119 41.4 45.6 41.0
rctreeB 53 158 132.9 60.4 57.2
Cascode 14 76 21.3 620.1 15.3
µA741 23 90 50.6 1412.2 21.0
bigtst 32 112 91.7 144.1 32.7

dynamic programming
shortest path
incremental shortest path

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

number of ladder sections

C
P

U
 ti

m
e

in
 s

ec
on

ds

Comparison in CPU time for term generation algorithms

Fig. 7. CPU time vs number of ladder sections.

V. CONCLUSIONS

An efficient approach is proposed to generate dominant
terms for behavioral modeling of large linear analog circuits.
The new algorithm is based on the fact that only a small por-
tion of DDD vertices need to be updated to find a new short-
est path when the first one is found. Such incremental up-
dating scheme significantly improve efficiency of generating
dominant terms from DDD graphs. Experimental results have
demonstrated that the new symbolic term generation algorithm
consistently exceeds both pure shortest path based algorithm
and dynamic programming based algorithm, the fastest DDD-
based term generation algorithm reported so far.

REFERENCES

[1] T. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms,
The MIT Press, Cambridge, Massachusetts 1990.

[2] F. V. Fernández, P. Wambacq, G. Gielen, A. Rodrı́guez-Vázquez, and
W. Sansen, “Symbolic analysis of large analog integrated circuits by
approximation during expression generation,” in Proc. IEEE Int. Symp.
Circuits and Systems, pp. 25–28, 1994.

[3] G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of
Analog Integrated Circuits, Kluwer Academic Publishers, 1991.

[4] G. Gielen, P. Wambacq and W. Sansen, “Symbolic analysis methods
and applications for analog circuits: A tutorial overview”, Proc. IEEE,
vol. 82, no. 2, pp. 287–304, Feb. 1994.

[5] J.-J. Hsu and C. Sechen, “DC small signal symbolic analysis of large
analog integrated circuits”, IEEE Trans. Circuits and Systems-I: Funda-
mental, vol. 41, no. 12, pp. 817–828, Dec. 1994.

[6] P. M. Lin, Symbolic Network Analysis, Elsevier Science Publishers B.V.,
1991.

[7] S. Minato, Binary Decision Diagrams and Application for VLSI CAD
Kluwer Academic Publishers, Boston, 1996.

[8] C.-J. Shi and X.-D. Tan, “Canonical symbolic analysis of large analog
circuits with determinant decision diagrams”, IEEE Trans. Computer-
Aided Design, vol. 19, no. 1, pp. 1–18, Jan. 2000.

[9] C.-J. Shi and X.-D. Tan, “Efficient derivation of exact s-expanded sym-
bolic expressions for behavioral modeling of analog circuits”, in Proc.
IEEE Custom Integrated Circuits Conf. (CICC), pp. 463–466, 1998.

[10] C.-J. Shi and X.-D. Tan, “Compact representation and efficient genera-
tion of s-expanded symbolic network functions for computer-aided ana-
log circuit design”, IEEE Trans. Computer-Aided Design, vol. 20, No. 7,
pp. 813-827, July 2001.

[11] S. J. Seda, M. G. R. Degrauwe and W. Fichtner, “A symbolic analy-
sis tool for analog circuit design automation,” in Proc. IEEE Int. Conf.
Computer-Aided Design (ICCAD), pp. 488–491, 1988.

[12] X.-D. Tan and C.-J. Shi, “Interpretable symbolic small-signal character-
ization of large analog circuits using determinant decision diagrams”, in
Proc. Design, Automation and Test in Europe (DATE’99), pp. 448–453,
Munich, Germany, Mar. 10-13, 1999.

[13] X.-D. Tan and C.-J. Shi, “Parametric analog behavioral modeling based
on cancellation-free DDDs”, in Proc. IEEE International Workshop on
Behavioral Modeling and Simulation (BMAS’02), Santa Rosa, Califor-
nia, Oct. 2002.

[14] W. Verhaegen and G. Gielen, “Efficient DDD-based symbolic analysis of
large linear analog circuits”, in Proc. ACM/IEEE 38th Design Automa-
tion Conference (DAC), pp. 139–144, Las Vegas, June 2001.

[15] P. Wambacq, G. Gielen and W. Sansen, “A cancellation-free algorithm
for the symbolic simulation of large analog circuits”, in Proc. IEEE Int.
Symp. Circuits and Systems, pp. 1157–1160, May 1992.

[16] P. Wambacq, G. Gielen and W. Sansen, “A new reliable approximation
method for expanded symbolic network functions”, in Proc. IEEE Int.
Symp. Circuits and Systems, pp. 584–587, 1996.

[17] Q. Yu and C. Sechen, “A unified approach to the approximate symbolic
analysis of large analog integrated circuits”, IEEE Trans. Circuits and
Systems, vol. 43, no. 8, pp. 656–669, Aug. 1996.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

