
Using Red-Black Interval Trees
in Device-Level Analog Placement with Symmetry Constraints

�

Florin Balasa Sarat C. Maruvada Karthik Krishnamoorthy

Dept. of Computer Science, University of Illinois, Chicago, IL 60607

Abstract – The traditional way of approaching device-level
placement problems for analog layout is to explore a huge search
space of absolute placement representations, where cells are al-
lowed to illegally overlap during their moves [3, 10]. This pa-
per presents a novel exploration technique for analog placement,
operating on the set of tree representations of the layout [6, 2],
where the typical presence of an arbitrary number of symmetry
groups of devices is directly taken into account during the search
of the solution space. The efficiency of the novel approach is
due to the use of red-black interval trees [4], data structures em-
ployed to support operations on dynamic sets of intervals.

1 Introduction

Topological representations of block placements are encoding
systems of feasible placement configurations, encrypting the po-
sitioning (topologic) relations between blocks. They gained at-
tention as an alternative approach to the absolute representa-
tion (see, e.g., [3]) since they ensure the exploration of a solu-
tion space restricted to only feasible placements. While place-
ment techniques based on absolute representation trade-off a
larger number of moves in a combinatorial optimization frame-
work for easier- and quicker-to-build layout configurations not
always physically realizable, the techniques adopting topologi-
cal representations trade-off a smaller number of moves for more
complex-to-build, feasible layouts.

The first remarkable nonslicing encoding system named
sequence-pair was introduced by Murata et al. [9]. An O

�
n2 �

algorithm building the placement was used for the evaluation of
the codes consisting of pairs of sequences of block permutations.
More recently, a different approach – based on computing the
longest common subsequence in a pair of weighted sequences
– was proposed by Tang et al. [13]. This algorithm achieves
O

�
n loglogn � running time using an efficient implementation of

priority queues. Nakatake et al. devised a meta-grid structure
called bounded-sliceline grid to define ”left-right” and ”above-
below” positioning relations between blocks [11], but the redun-
dancy of this representation is very high. The corner block list,
proposed more recently [7], is a representation that can be used
to encode floorplans with zero dead-space (“mosaic” floorplans).

Different from the previous encoding systems, the tree -based
representations define the topologic relations between blocks de-
pendent on their dimensions. Guo et al. proposed the ordered
tree (O-tree) representation – a tree with n � 1 nodes, encoded
by

�
T � π � , where T is a 2n-bit string identifying the branching

structure of the tree relative to a traversal order and π is a per-
mutation of the blocks [6]. Chang et al. [2] suggested a repre-
sentation based on binary trees, this encoding being based on the

�
This research was partly sponsored by the Design Automation Conference

Graduate Scholarship Program.

one-to-one mapping between forests of rooted trees and binary
trees [4].

2 Analog placement and topological rep-
resentations

The traditional way of approaching device-level placement prob-
lems for analog layout is to explore a huge search space, where
the cells are represented by means of absolute coordinates, us-
ing typically the simulated annealing combinatorial optimization
algorithm. This exploration, which allows cell overlaps dur-
ing their moves (translations, changes of orientation) in the chip
plane, is used by placement tools in several software systems for
analog layout [3, 10]. Since this strategy often exhibits a slow
convergence, the alternative approach is to use nonslicing topo-
logical representations in order to explore only feasible place-
ment solutions. However, selecting an appropriate encoding is
not straightforward.

Many analog designs contain along an asymmetric compo-
nent an arbitrary number of symmetry groups of devices (that
is, groups having distinct symmetry axes), each group contain-
ing an arbitrary number of pairs of symmetric devices, as well as
self-symmetric devices – presenting a geometrical symmetry and
sharing the same axis with its group. The main reason of sym-
metric placement (and routing) is to match the layout-induced
parasitics in the two halves of a group of devices. Placement
symmetry can also be used to reduce the circuit sensitivity to
thermal gradients. Failure to adequately balance thermal cou-
plings in a differential circuit can introduce unwanted oscilla-
tions. In order to combat potentially-induced mismatches, the
thermally-sensitive device couples should be placed symmetri-
cally relative to the thermally-radiating devices.

Due to symmetry constraints, most of the codes of any topo-
logical representation would be infeasible in symmetry point of
view. Only a tiny fraction (typically under 1%) of the solu-
tion space of a topological representation contains symmetric-
feasible codes relative to a given set of constraints [1]. A topo-
logical representation is a good candidate for the exploration of
the solution space in analog placement only if it possesses a
well-defined property characterizing those codes able to generate
placements such that symmetry constraints are satisfied. Such a
property would allow to efficiently restrict the exploration only to
the subspace of those “symmetric-feasible” codes. Appropriate
properties could be formulated for sequence-pairs [1] and tree
representations [12, 1] (see Section 3), but whether the corner
block list [7] possesses one is still a research topic.

This paper presents a novel exploration technique for the so-
lution space of analog placement problems operating on a sub-
set of the binary tree representations [2], where the typical pres-



ence of an arbitrary number of symmetry groups of devices is
directly taken into account. Note that the paper focuses on the
efficiency of the exploration of the solution space; other impor-
tant aspects specific to analog placement like, for instance, elim-
inating systematically-induced mismatches for matching devices
identically specified, arranging devices such that critical struc-
tures are shared in common, handling thermal constraints, deal-
ing with noise coupling, are beyond the scope of the paper, al-
though the implementation (Section 4) takes into account part
of these aspects. The efficiency of the novel approach is due
to the use of red-black interval trees [4], data structures mainly
employed to support operations on dynamic sets of intervals.

This paper is organized as follows. Section 3 will present the
novel O

�
n logn � evaluation algorithm which complexity is better

than the one of any other existent topological algorithm support-
ing symmetry constraints.1 An illustrative example will show the
algorithm flow. Finally, Section 4 will present an overview of the
experimental results and Section 5 will summarize the conclu-
sions of this research.

3 Analog placement with symmetry us-
ing a red-black interval tree

The algorithm described below is executed in each inner-loop
iteration of the simulated annealing, evaluating the layout code
after each move. It assumes that the placement encoding is a
binary tree,2 like the one in Fig. 3(a), whose nodes correspond
to the devices. The binary tree representation imposes the fol-
lowing vertical and horizontal positioning constraints: (a) each
device in the left subtree is above its parent device; (b) if the
y- projections of two devices are overlapping, the device of the
node visited first in a preorder traversal of the tree (visit any node
before its left and right subtrees) is to the left of the device whose
node is visited the second. In addition, since not all the binary
trees can lead to a layout satisfying a given set of symmetry con-
straints, we shall consider only the trees having the following
“symmetric-feasibility” property: for any devices A and B in a
symmetry group, node A precedes B in the inorder traversal (visit
any node in between its left and right subtrees) of the binary tree
if and only if node sym

�
A � – corresponding to A’s symmetric pair

– succeeds node sym
�
B � in the preorder traversal. The tree in

Fig. 3(a) satisfies this property for the group of symmetric pairs
(F,G) and (C,J). It was proven [1] that this property is sufficient
to ensure the correctness of the layout in symmetry point of view.
Moreover, it ensures the correctness of the algorithm presented
in this paper. The absence of the proof here does not impede
understanding the algorithm flow.

The analog devices to be placed on the chip area are repre-
sented by rectangular blocks B1 � ����� � Bn, each block Bi having
the width wi and the height hi, and having

�
xi � yi

� as coordinates
of its left-bottom corner.

Algorithm: Computation of the y- coordinates of the devices

for each node Bi (visited in a preorder traversal)�
if node Bk is the closest ancestor of Bi
such that Bi is in the left subtree of Bk

1All the algorithms in the literature using topological representations and sup-
porting symmetry [12, 1] have quadratic complexity.

2Due to the correspondence between forests of trees and binary trees [4], it
can operate with minor modifications on O-trees [6], too.

then yi � max
�
yi � yk � hk � ; else yi � max

�
yi � 0 � ;

if devices
�
B j � Bi

� are symmetric
if node B j has been visited and y j � yi
then repeat this preorder traversal once again;
y j � yi;

�
The algorithm computes the coordinates yi since in the pre-

order traversal the nodes corresponding to the devices below are
visited before the nodes of the devices above due to the vertical
positioning constraints (a) (see the example in Section 3.2). In
the absence of symmetry constraints one traversal of the tree is
sufficient; however, a second traversal may be necessary in order
to satisfy the y- symmetry constraints of the type: yi � y j for two
symmetric devices (Bi,B j). As the traversal of the binary tree is
performed in linear time, the computation of yi’s is done in O

�
n �

time.

3.1 Using an interval tree for the evaluation of the
binary tree representation

After the computation of the y- coordinates, the abscissae of the
devices are determined inserting them in the layout while travers-
ing the binary tree representation and updating the contour of the
left or right border of the partial placement configuration. The
subtle part of the algorithm is the use of a red-black interval tree,
data structure efficiently supporting operations on dynamic sets
of intervals.

The interval tree is a binary search tree, each node having as-
sociated a closed interval whose interior is disjoint from the in-
tervals of the other nodes, but whose union is a closed interval
as well. In our case, the union of the node intervals will always
be � 0 � H � , where H is the chip height. In addition, the intervals
of the nodes in any left subtree are to the left (on the real line)
of the node interval, while the intervals in the right subtree are
to the right of the node interval. Moreover, the interval tree is
organized as a red-black tree [4] – a binary search tree with an
extra bit of storage per node: its color, which can be either red
or black.3 In addition, if a node is red its children must be black
(the Nil pointers are also considered black leafs), and every path
from a node to a descendant leaf contains the same number of
black nodes. An example of a red-black interval tree as described
above is displayed in Fig. 1. By constraining the way nodes can
be colored on any path from the root to a leaf, red-black trees
ensure that no such path is more than twice as long as any other
[4], so the tree is approximately balanced.

The general scheme of the algorithm computing the device ab-
scissae is given below. First, the root of the red-black interval
tree is created, the node having attached the interval � 0 � H � . Af-
terwards, the binary tree topological representation is walked in
preorder, such that the blocks to the left are visited before the
ones to the right (see the horizontal positioning constraints). The
red-black interval tree is iteratively updated as a result of the new
y- spanning interval � yi � yi � hi � of device Bi, which is inserted in
the tree.

In the absence of symmetry constraints, one preorder traversal
of the binary tree encoding would suffice. In most of the cases,
one single traversal cannot yield a feasible placement in symme-
try point of view. The fact that the binary tree code possesses the

3This color convention was introduced by Guibas and Sedgewick [5] who
studied the properties of red-black trees at length.



[0,10]

[10,15]

[15,20]

[20,30]

[30,40]

[40,50]

[50,55]

[55,60]

[60,65]

[65,70]

[70,80]

[80,85]

[85,90]

[90,95]

y y

y

a b a b

a b a b a b a b

v.I v.I

v.I v.I v.I v.I

(a) (b)

(c1) (c2) (c3) (c4)

I I I I
1 2 1 2

Figure 1: Example of red-black interval tree Figure 2: The interval trichotomy for the two closed intervals
(the red nodes are shaded, the black nodes are darkened) v � I and � a � b �

property of “symmetric-feasibility” [1] is crucial: as proven in
[1], it ensures that one additional traversal of the tree encoding in
inverse preorder is sufficient to fix all the x- symmetry constraints
of the form

�
xi � wi

� � x j � 2 � xsymAxis, where (Bi � B j) is a pair
of symmetric devices. For the sake of readability, the algorithm
was simplified assuming, for instance, that all the devices subject
to symmetry constraints belong to a single symmetry group. The
implementation is more refined though, able to deal with an ar-
bitrary number of symmetry groups; self-symmetric devices are
handled as well. Note that most of the circuits in Table 1 contain
several symmetry groups.

Algorithm: Computation of the x- coordinates of the devices

let H be the total height of the chip;
RedBlackTreeNode v0 � InsertNode

� � 0 � H � � 0 � black � ;
initialize xi � 0 and xsymAxis � 0;
preorder = True;
for each node/device Bi (visited in a preorder traversal)

U pdateRedBlackTree
�
v0 ��� yi � yi � hi � � ;

compute W � max
�
v � x � ; delete all the nodes v;

RedBlackTreeNode v0 � InsertNode
� � 0 � H � � W � black � ;

preorder = False;
for each node/device Bi (visited in inverse preorder)

U pdateRedBlackTree
�
v0 ��� yi � yi � hi � � ;

The procedures InsertNode and DeleteNode insert/ delete a
node from the red-black interval tree, preserving the properties of
this tree, which were stated at the beginning of this section. The
insertion and deletion techniques take O

�
logn � time each and

are fully discussed in [4]. In addition, the InsertNode procedure
contains the constructor of a “red-black” node v having attached
an interval denoted v � I (its low and high extremes being denoted
min

�
v � I � and max

�
v � I � ), an abscissa v � x for the computation of

the xi values, and the node color (red or black). In the preorder
traversal, v � x represent abscissae of vertical segments on the right
border of the chip; in the inverse traversal, they are abscissae of
the left border. Hence, v � x and xi are computed using (C-style)
conditional assignments.

The procedure U pdateRedBlackTree follows the cases of the
interval trichotomy of the two intervals v � I and � a � b � , that is, the
three cases: (a) max � a � b � � min

�
v � I � ;

(b) max
�
v � I � � min � a � b � ; (c) v � I and � a � b � overlap;

in this last case, there are four situations (see Fig. 2).

procedure U pdateRedBlackTree
�
v � � a � b � �

if b
�

min
�
v � I � // case (a) (Fig. 2)

then U pdateRedBlackTree
�
v � le f t ��� a � b � � ;

ef max
�
v � I � � a // case (b) (ef means else if)

then U pdateRedBlackTree
�
v � right � � a � b � � ;

else // case (c): 4 situations
xi � preorder ? max

�
xi � v � x � : min

�
xi � v � x � wi � ;

if a � min
�
v � I � && b � max

�
v � I �

then v � I � � b � max
�
v � I � � ; // case (c1)

U pdateRedBlackTree
�
v � le f t � � a � b � � ;

ef min
�
v � I � � a && max

�
v � I � � b

then v � I � � min
�
v � I � � a � ; // case (c2)

U pdateRedBlackTree
�
v � right � � a � b � � ;

ef min
�
v � I � � a && b

�
max

�
v � I �

then // case (c3): � a � b ��� v � I
if

�
I1 � � min

�
v � I � � a � ���� /0

then InsertNode
�
I1 � v � x � red � ;

if
�
I2 � � b � max

�
v � I � � ���� /0

then InsertNode
�
I2 � v � x � red � ;

else // case (c4): v � I � � a � b �
if

�
I1 � � a � min

�
v � I � � �	�� /0

then DeleteInterval
�
v � le f t � I1

� ;
if

�
I2 � � max

�
v � I � � b � ���� /0

then DeleteInterval
�
v � right � I2

� ;
if devices

�
Bi � B j

� are symmetric
if node B j has already been visited

then t � 2xsymAxis �
�
x j � w j

� ;
xi � preorder ? max

�
xi � t � : t;

else if (preorder) then
xsymAxis � max

�
xsymAxis � xi � wi � ;

v � I � � a � b � ; v � x � preorder ? xi � wi : xi;
MergeAd jacentIntervalsWithSameAbscissae

�
v � ;

end procedure

In the cases (a) and (b), the procedure UpdateRedBlackTree is
recursively called for the left and, respectively, right subtree. The
cases (c1) and (c2) are similarly handled; the only difference is
that the interval v � I is shortened by eliminating the overlap with
� a � b � since the intervals in the tree must be disjoint. The num-
ber of nodes in the interval tree can increase only in the situation
(c3) due to the fragmentation of the interval v � I in at most three
segments. On the other hand, the number of nodes in the inter-
val tree can decrease only in the case (c4), when all the nodes
(but one) having intervals completely overlapped by � a � b � will
be recursively deleted by the procedure DeleteInterval.

The procedure DeleteInterval eliminates (using DeleteNode)
the nodes with intervals entirely overlapped by � a � b � . Its pseudo-
code had to be skipped due to lack of space, but its behavior
should be clear from the illustrative example. The procedure



MergeAdjacentIntervalsWithSameAbscissae identifies the nodes
v1, v2 having the intervals adjacent to v � I . For instance, if v
is the root in Fig. 1 (v � I � � 30 � 40 � ), v1 is the node whose inter-
val is [20,30] and v2 is the node whose interval is [40,50] . If,
e.g., v1 � x � v � x, then the root would get its interval modified to
[20,40], while v1 would be removed since it is not necessary any
longer, the two segments of the contour being collinear. Finding
the successor and predecessor nodes in a binary search tree is
easy [4].

3.2 Illustrative example

Consider the binary tree in Fig. 3(a) representing a layout with
ten rectangular blocks having the widths and heights indicated:
A(14x3), B(3x1), C(4x2), D(5x2), E(4x3), F(2x6), G(2x6),
H(2x3), I(5x6), J(4x2). In the preorder traversal the nodes of
this binary tree are visited in the alphabetical order A,B, ����� ,J.

The computation of the y- coordinates yields successively
yA � 0 � yB � yA � hA � 3 � yC � yJ � yB � hB � 4 � yD � yC �
hC � 6 � yE � yD � hD � 8 � yF � yG � yH � yA � hA � 3 � yI �
yH � hH � 6 . Note that the computation of y’s could be done
in this case while walking only once the binary tree: the devices
G and J – from the symmetric pairs (F,G) and (C,J) – were not
pushed upper than F and, respectively, C, which had been visited
first.

The first root node v0 of the red-black interval tree (see Fig. 4,
the first tree) has associated the interval � 0 � H � � � 0 � 12 � since the
height of the chip is H � max

�
yi � hi � � 12. The y- spanning

interval � yA � yA � hA � � � 0 � 3 � of the first node visited in the pre-
order traversal of the binary tree in Fig. 3(a) is the argument of
U pdateRedBlackTree in the first iteration. Since in the interval
trichotomy the case is as in Fig. 2(c3), and I2 � � 3 � 12 � �� /0, the
root will get a new right child having attached the interval I2. The
abscissa of block A is xA � max

�
xA � v0 � x � � 0. The root interval

is modified to v0 � I � � 0 � 3 � and the abscissa of the root becomes
v0 � x � xA � wA � 14 (see Fig. 4, the second tree).

The processing of block B will insert a new node as a red right
child in the tree interval (case (b), then case (c3) – Fig. 2 – in the
recursive call). Since the red node � 3 � 4 � has a red child � 4 � 12 �
(red-black property violation!), a left rotation as well as a modi-
fication of the node coloring are performed in order to restore the
red-black property (see Fig. 4, the third tree).

The successive modifications of the red-black interval tree are
displayed in Fig. 4. After each iteration, the inorder walk of the
red-black interval tree describes exactly the contour of the right
border of the chip. Note that in the “block F”-iteration the case
is as in Fig. 2(c4), since � yF � yF � hF � � � 3 � 9 � covers the intervals
� 3 � 4 � , � 4 � 6 � , and � 6 � 8 � in the red-black tree. The interval of the
first node is modified and the other two corresponding nodes are
removed by the procedure DeleteInterval. The last tree in Fig. 4
corresponds to the placement in Fig. 3(b). The current width of
the layout is W � max

�
v � x � � 15.

Note that the x- symmetry constraint for the pair of cells
(C,J) is still not satisfied: indeed,

� �
xC � wC

� � xJ � 15 � �
�
2xsymAxis � 14 � . In the first traversal, the position of the symme-

try axis is determined and the rightmost devices in the symmetry
pairs are positioned attempting to meet the x � symmetry con-
straints

�
xi � wi

� � x j � 2xsymAxis. However, due to the topologic
constraints, some of these devices may be pushed further to the
right. A second traversal of the binary tree encoding (Fig. 3(a))
in the inverse order (that is, J,I, ����� ,B,A) will yield the final place-

ment in Fig. 3(c). The red-black interval tree restarts with only
one node v0 having v0 � I � � 0 � 12 � and the abscissa v0 � x � W � 15.
Afterwards, the red-black tree is evolving such that after each it-
eration it describes the left border of the chip.

3.3 Complexity analysis

The red-black tree can have at most n nodes since there are at
most n segments on the border contours determined by the y-
spanning intervals � yi � yi � hi � , hence the red-black tree has a max-
imum height of � 2log2

�
n ��� [4]. Since the node insertions and

deletions take O
�
logn � , we may be tempted to consider O

�
logn �

the worst-case time bound per iteration. However, this is not true
due to the case (c4): when the tree decreases in size, up to O

�
n �

nodes can be deleted.4

However, using the aggregate method of amortized analysis
[4], it can be shown that the amortized time bound is O

�
logn � per

iteration. In an amortized analysis, the time required to perform
a sequence of operations is averaged over all the operations per-
formed. Intuitively, the reason is that each node can be deleted
at most once for each time it is created. Since there are n it-
erations per binary tree traversal, the overall time complexity is
O

�
n logn � .
Note that a balanced search (AVL) tree [8] could be also used

to achieve the same time complexity. However, balance is main-
tained in AVL trees by as many as Θ

�
logn � rotations after a node

deletion,5 whereas at most two rotations are necessary to main-
tain the red-black tree after an insertion, and at most three ro-
tations after a deletion [4]. Such an approximately balanced tree
structure is sufficient to achieve a complexity of O

�
n logn � , at the

same time being more efficient in terms of practical computation
effort.

4 Experimental results

A placement tool for analog layout using selectable exploration
algorithms has been implemented in C++ on a SUN Blade 100
workstation. The tool can operate both with different topologi-
cal representations and different code evaluation algorithms. In
addition, a complementary placement algorithm based on the tra-
ditional absolute representation has been embedded in the tool as
well. The tool uses a simulated annealing optimizer with a com-
plex cost function comprising, along with the chip area and es-
timated wire length, different penalty terms like, e.g., modeling
device separation constraints. Besides symmetry constraints, the
tool handles systematically-induced device mismatches, align-
ment constraints, and performs shape optimizations.

Table 1 displays (part of) the results of our experiments. The
performance of the algorithm described in this paper has been
evaluated in comparison with the algorithm based on O-trees
from [12], and a simpler algorithm of quadratic complexity us-
ing binary trees [1]. Additional tests with a traditional algorithm

4Such a situation could occur if the red-black tree had O � n � nodes and in the
next iteration the block had the height of the whole chip; the red-black tree would
be reduced to a single node with v� I �	� 0 
 H � .

5The deletion of the rightmost node in a Fibonacci tree [8] is such an example.
Rebalancing after insertion never needs more than a single or a double rotation
though.



A

B

C

D

E

F

H

A

B

C

D

E

F

J

0 2 4 6 8

3

6

8

11

12

4

9

(a) (b)

G

I

G

H

y

x

10 12 14

A

B

C

D

E

F

J

1 3 5 7 9

G

H

x

11 13 15-1

I

J

I

(c)

Symmetry axis of the group

(F,G) (C,J)
symAxis
x =7

Figure 3: Illustrative example: (a) binary tree representation of a layout with a group of two pairs of symmetric devices (F,G) and
(C,J); (b) device placement after the preorder traversal, and (c) the final device placement

[0,12] [0,3]

[3,12]

[3,4]

[4,12][0,3]

[3,4]

[4,6][0,3]

[6,12]

[3,4]

[6,8][0,3]

[8,11][4,6]

[11,12]

[3,9]

[9,11][0,3]

[11,12]

[3,9]

[9,12][0,3]

[3,4]

[6,8]
[0,3]

[8,12][4,6]

x=0

x=14

x=0 x=14

x=3

x=0 x=14

x=3

x=4

x=0

x=5

x=4

x=14

x=3

x=0

x=14

x=11

x=14

x=14

x=7

x=4

x=0

x=14

x=3

x=4

x=5

x=4

x=0

A: [y ,y +h ]=[0,3] B: [3,4] C: [4,6]

D: [6,8]

I: [6,12]

F: [3,9]E: [8,11]

[3,9]

[9,11][0,3]

[11,12]

x=14

x=9

x=4

x=0

G: [3,9]

[3,6]

[9,11]
[0,3]

[11,12][6,9]

x=4

x=9

x=14

x=11

x=0

H: [3,6]

[4,6]

[6,12][3,4]

x=11

x=15

x=14

[0,3]

x=14

J: [4,6]

A A A

Figure 4: The red-black interval tree after each iteration in the first traversal. Each node v has attached an interval v � I and an abscissa
v � x. The last red-black tree corresponds to the layout in Fig. 3(b).



Design Nr. Symmmetry O-trees [12] B*-trees [1] Crt. alg.
cell groups Time/Area Time/Area Time/Area

dffrsdch 37 6/4 2.6 / 6.3 1.5 / 6.2 1.6 / 6.3
lpf2 b25b 52 23 4.4 / 36.2 3.2 / 36.9 2.4 / 36.4
dcservo cmfb 66 5/4 11.8 / 60.5 8.6 / 60.5 6.0 / 60.4
modbias 2p4g 87 16/12/6/6/6 32.7 / 59.0 17.8 / 56.9 10.0 / 55.1
div by 2or4 116 6/4/8/12/15 47.0 / 58.5 29.1 / 54.6 14.7 / 54.0

Table 1: Placement with symmetry constraints (Time [min], Area
[103 � µm2]). Column 3: devices in each sym. group.

based on the absolute representation, as well as an algorithm us-
ing sequence-pairs [1] have been performed as well.6 Actually,
all the known exploration techniques supporting symmetry con-
straints have been evaluated. The test benchmarks are analog
blocks containing symmetry groups of devices, components of a
spread spectrum transceiver used in wireless modems. Figure 5
displays the placement solution for one of these examples.

The experiments show that our current technique is better in
terms of computational effort than the algorithm [12]. The ad-
vantage of the novel approach is twofold: the search space has a
smaller size (since it explores only a subset of binary tree repre-
sentations), and the evaluation algorithm using a red-black inter-
val tree is more efficient. The algorithm described in this paper
usually outperforms the simpler algorithm [1] for more complex
designs, since when the input size gets larger, it begins to exploit
its O

�
n logn � running time characteristic. However, for smaller

examples (up to 30-40 blocks), the current algorithm can be out-
performed by the simpler algorithm [1] due to the overhead of
maintaining the red-black interval trees. In addition, the results
when using the absolute representation are much worse, both in
terms of time and quality.

The symmetry constraints affect significantly the running
times of all the algorithms based on topological representations.
Besides more complex evaluation algorithms, the moves within
the simulated annealing optimizer are more expensive since they
often involve whole symmetry groups.

5 Conclusions

This paper has presented a novel analog placement technique op-
erating on a subset of binary tree topological representations of
the layout, where symmetry constraints – very typical in ana-
log placement – are directly taken into account during the explo-
ration of the solution space. The novel evaluation approach, ex-
ecuted after each modification of the binary tree representation,
employs a contour modification algorithm. Its efficiency is due
to the use of a red-black interval tree, data structure supporting
operations on dynamic sets of intervals.

References

[1] F. Balasa, C.S. Maruvada, “Using non-slicing topological
representations for analog placement,” IEICE Trans. on
Fundamentals of Electr., Comm. & Comp. Sc., Vol. E84-A,
No. 11, pp. 2785-2792, Nov. 2001.

6Due to lack of space, these latter results could not be displayed.

Ccomp

RPH22

RPH16

RPH27

RPH13

RPH15a

RPH15b Q18a

Q18bQ19a

Q19b

PLAT13

PLAT11

PLAT9

Q36

Q21

PLAT12

PLAT10

RPH25

RPH29RPH24

RPH23

Q37

Q39

Q32Q34

RPH14
Q17

RPH30

RPH12

RPH32

Q20

Q35

Q22

Q7

RPH6

C3

C4

PLAT28

PLAT29

PLAT14

PLAT15

PLAT21

PLAT17

Q31

Q33

Q40

Q41

Q24

Q25

RPH17

RPH19

PLAT16

C2

Q1b

Q1a

RPH2a

RPH2b

PLAT18

PLAT19a

PLAT19b

RPH33

RPH34 RPH35

RPH51

RPH50

Figure 5: Placement of the analog block dcservo cmfb

[2] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, S.-W. Wu, “B*-
Trees: a new representation for non-slicing floorplans,”
Proc. 37th ACM/IEEE Design Automation Conf., pp. 458-
463, June 2000.

[3] J. Cohn, D. Garrod, R. Rutenbar, L. Carley, Analog Device-
Level Automation, Kluwer Acad. Publ., 1994.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, McGraw-Hill, 1990.

[5] L.J. Guibas, R. Sedgewick, “A diochromatic framework for
balanced trees,” Proc. 19th Annual Symposium on Founda-
tions of Computer Science, pp. 8-21, 1978.

[6] P.-N. Guo, C.-K. Cheng, T. Yoshimura, “An O-tree represen-
tation of non-slicing floorplan and its applications,” Proc.
36th ACM/IEEE Design Automation Conf., pp. 268-273,
June 1999.

[7] X. Hong et al., “Corner block list: an effective and efficient
topological representation of non-slicing floorplan,” Proc.
IEEE Int. Conf. on Comp.-Aided Design, pp. 8-12, Nov.
2000.

[8] D.E. Knuth, The Art of Computer Programming, Vol. 3,
Addison-Wesley, 1973.

[9] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, “VLSI
module placement based on rectangle-packing by the
sequence-pair,” IEEE Trans. CAD of IC’s and Systems, Vol.
15, No. 12, pp. 1518-1524, Dec. 1996.

[10] E. Malavasi, E. Charbon, E. Felt, A. Sangiovanni-
Vincentelli, “Automation of IC layout with analog con-
straints,” IEEE Trans. on Comp.-Aided Design of IC’s and
Systems, Vol. 15, No. 8, pp. 923-942, Aug. 1996.

[11] S. Nakatake et al., “Module packing based on the BSG-
structure and IC layout applications,” IEEE Trans. on CAD
of IC’s and Syst., Vol. 17, pp. 519-530, June 1998.

[12] Y.-X. Pang, F. Balasa, K. Lampaert, C.-K. Cheng, “Block
placement with symmetry constraints based on the O-tree
non-slicing representation,” Proc. 37th ACM/IEEE Des.
Aut. Conf., pp. 464-467, June 2000.

[13] X. Tang, D.F. Wong, “FAST-SP: A fast algorithm for block
placement based on sequence pair,” Proc. Asia-S. Pacific
Design Aut. Conf., pp. 521-526, Jan. 2001.


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




