
VLSI Module Placement with Pre-placed Modules and Considering Congestion
Using Solution Space Smoothing*

Sheqin Dong1 Xianlong Hong1 Xin Qi 1 Ruijie Wang 1 Song Chen1 Jun Gu2

1Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.C., 100084
Tel:+86-010-62785564 Fax:+86-010-62781489 Email:dongsq@mail.tsinghua.edu.cn

2Department of Computer Science, Science & Technology University of Hong Kong , Email: gu@cu.ust.hk

Abstract: Solution space smoothing allows a local search
heuristic to escape from a poor, local minimum. In this paper,
we propose a technique that can smooth the rugged terrain
surface of the solution space of a placement problem. We design
the solution space smoothing algorithms for VLSI placement
with pre-placed modules and placement with consideration of
congestion. Experiment results demonstrated that solution
space smoothing is very efficient for VLSI module placement,
and it can be applied to all floorplanning representations
proposed so far.

I. Introduction

 Due to the rugged terrain surface of the search space of a
placement, it often gets stuck at a locally optimum
configuration. In recent years, with the break through in
floorplanning representations, simulated annealing, which
can escape from a locally optimum configuration, were
widely used for VLSI module placement.
 To use a stochastic optimization algorithm to search an
optimal placement for a placement instance, the first thing is
to devise a proper coding scheme. For general placement or
floorplan[1], several coding schemes were recently proposed,
namely, Sequence-Pair (SP)[2], O-tree [3], Bound–Sliceline
-Grid (BSG)[4], Corner Block List(CBL)[5][6] .
 To make the coding scheme based placement algorithm
more efficient and to reduce the effect of local minimum
point, we introduce a solution space smoothing method for
placement in this paper. All conducted research works on
smoothing heuristics so far are on Travelling Salesman
Problem. As we know, there has been no similar work for
module placement so far. Solution space smoothing is a
special technique of multi-space search developed in recent
years [7][8]. In paper [7], Jun Gu and Xiaofei Huang had
applied this method to the classical NP-hard problem:
traveling salesman problem (TSP). Paper [8] investigates
this method for traveling salesman problem thoroughly.

The basic idea of the proposed method for VLSI
placement is simple. Initially, a simplified placement
instance with a smooth terrain surface is solved. Then, a
more complicated placement instance that has a rougher
terrain surface is generated. It takes the solution of the
previously solved placement as an initial placement and

further improves the placement. Eventually, the original
placement instance with the most complicated search space
structure is solved. The solutions of the simplified problem
instances are used to guide the search of more complicated
ones. Compared with simulated annealing algorithm,
solution space smoothing method needs few control
parameters and the parameters are easy to determine. For
placement including soft blocks, i.e. floorplanning, the time
complexity of our method are nearly the same as placement
including only hard blocks. Whereas a simulated annealing
based algorithm will increase greatly because of soft blocks

We test the performance of this method using the general
floorplan representation, Bounded Slice-line Grid (BSG) [4].
We use BSG only for it could be easily understood. Our
method can be applied to all floorplanning
representations proposed so far. We design algorithms for
placement with pre-placed modules and placement with
considering congestion. The MCNC benchmarks are used in
the test. Experiment results prove that it is a new efficient
optimization algorithm for VLSI module placement.
 The rest of the paper is composed as follows: Sec. II
describes the principle of placement with solution space
smoothing method, the placement algorithm and its
implementation is also presented. Sec. III gives the
experimental results. Sec.IV is the conclusions.

II. VLSI Placement Using Solution Space Smoothing

A. Problem
 Given a set of circuit building blocks, the placement
problem can be defined as follows. A set M={M1, M2, …, Mn}
of rectangular blocks lie parallel to the coordinate axes in the
first quadrant of the plane. A set of nets specifying the
interconnections between pins of blocks and a set of pads
(external pins) are also given. A placement P={Mi (xi, yi) 
1 < = i < = n} is an assignment of coordinates to the lower
left corners of n rectangular blocks such that there is no two
rectangular blocks overlapping. Each Mi is defined by a
tuple (hi , wi) , where hi and wi are the height and the width
of block Mi, respectively . The objective of the placement is
to find an assignment so that the chip area and
interconnection wire-length between blocks are minimized
while satisfying the given constraints, if any.
 When all circuit blocks have fixed area, fixed length and
width, the assignment process is called placement. When
some of the circuit blocks have fixed area while their width
and length can vary within a specific range, the assignment

* This work is supported by the National Natural Science Foundation of
China 60121120706 and National Natural Science Foundation of USA
CCR-0096383, the National Foundation Research(973) Program of
China G1998030403, the National Natural Science Foundation of
China 60076016 and 863 Hi-Tech Research & Development Program
of China 2002AA1Z1460

process is called floorplanning.

B. Solution Space Smoothing for A Placement Instance
 Based on the size changing, we can transform the original
placement instance into a series of placement instances. This
transformation process is the solution space smoothing
process of a placement instance. Assume Pi is the original
placement instance with n blocks, Pi0 is a placement instance
with n blocks and all blocks of Pi0 have the same size as the
smallest block in Pi. Pi1 is the instance with one block
chooses from Pi and (n-1) blocks choose from Pi0. So Pii

has i blocks from Pi and (n-i) blocks from Pi0. Therefore, Pi
= Pin . Instead of restore blocks sizes one by one from the
start point Pi0, we adopt another smoothing strategy: from
Pi0, we slightly change the sizes of all the blocks in Pi0

simultaneously and produce Pi1, in the same way, from Pi1

we produce Pi2 , and so on. This also can produce a
smoothed sequence Pi0, Pi1 , Pi2 , Pi3 ,Pi4 …. in the sense of
size.

So the assignment process of circuit building blocks using
solution space smoothing method can be used not only for
placement but also for floorplanning because of the size
changing in the sequence Pi0, Pi1 , Pi2 , Pi3 ,Pi4 ….
 A simple placement instance, without considering the nets
among blocks, is that all the circuit building blocks to be
placed on a chip have the same size. In this case, the solution
space is flattened since there are much less local minimum
points in the solution space. We can use it as an initial
smoothed solution space for a placement instance that has
the same number of circuit blocks. In practice, we set the
initial placement instance with all circuit blocks have the
same size as formula (1) and (2). Every pin on the blocks
will have its new position. Assume that, on block Mi, the jth
original pin position is (PinX j, PinY j), after the smooth
operation that all blocks were reduced to the same size, the
new pin position can be calculated by formula (3).

 A series of simplified placement instances can be created
by a specified smoothing factor, α. To keep the similarity
between instances in the series, we require the sizes of
blocks changed in a slightly, gradually and monotonously
increasing mode. After apply a smoothing function S(α),
The size of ith block can be derived by applying formula (4),
the new pin position can be calculated by formula (5).

 To guarantee the sizes of blocks changed in a slightly,
gradually and monotonously increasing mode, we normalize
items in formula S(α) to the range (0, 1).
 When α is decreased from a large number to 1, a series of
simplified placement instances are generated according to
formula S(α). A solution space generated from a larger α

exhibits a smoother terrain surface, and a solution space
generated from a smaller α exhibits a more rugged terrain
surface. When α>>1, each block size will be reduced to the
initial one; when α = 1, each block will be of its original
size.

C. Algorithm
 We use BSG coding scheme and its neighborhood
solution producing strategies to search an optimal or
nearly optimal solution under certain α value using the
cost function (area+λ*total_wirelength). Where area is
the area of the smallest rectangle enclosing the placement,
total_wirelength is the sum of all the net length using the
half perimeter model, while λ is the weight. Start from
the initial placement instance that has a fairly “flat”
solution space, and find the solution to this simplified
problem using local search algorithm. A BSG based local
search algorithm, BSG_local_search, could be easily
derived.
 We summarize the placement process based on solution
space smoothing as the algorithm VP_SSS(). We combine
clustering, incremental optimization, placement with empty
rooms[6] and solution space smoothing into one process to
search the optimal solution.

Algorithm: VP_SSS ()
STEP 1: create the initial placement instance according to

the smoothing function.
STEP 2: use BSG_local_search to search the optimal

solution for the initial placement instance. The result
is a starting solution of the next smoothing instance.

STEP 3: α := f(α); apply the smoothing function to the
previous solution to produce a new placement
instance.

STEP 4: use BSG_local_search to search the solution for the
new placement instance. The result is the current
solution.

STEP 5: if α=1, stop. The current solution is the final
solution. Otherwise, using the current solution as the
next instance starting solution, go to STEP 3.

 In VP_SSS(), an initial value of α is chosen properly, in
our experiments, we often set α0 = 6. At the end of each
iteration loop, α reduced by a function f(α). f(α) may simply
equal to (α - 1), or it can be another decrease strategy to fine
tune the shape of the smoothed solution space. For example,
in our experiments we adopt the function f(α) as this:
 f(α) = { (α - 1; when α > 2); (α - 0.20; when α > 1.5);
 (α - 0.10; when α > 1.1); (α - 0.02; when α > 1)}

The time complexity of algorithm VP_SSS() can be
estimated as follows. From a BSG assignment on BSG p*q to
its corresponding placement, it needs O(p*q) to fulfill the
evaluation. Assume that in the BSG_local_search, UNS is
the uncertain number of searches before the search process
reach the solution, Ne is the number of searches used to
ensure an optimal or nearly optimal solution was reached,
Nn is the total number of the nets of the placement, so the
local search process will need (O(UNS + Ne) * O(p*q)) +

()hw, (2)

(5)(4)() () ()
() ()





−+=

−+=
α

α

α

αα
hhhh
wwwwS

ii

ii:
()()
()()ii

j
ii

j

hhPinY
wwPinX

/
/

α

α

∗

∗

(3)(1)
{ }
{ }ni

ni

hhhh

wwww

,...,,...,min

,...,,...,min

1

1

=

= ()
()i

j

i
j

hhPinY

wwPinX

/

/

∗

∗

O(Nn). Assume that each building block has an average
number, say Pn, of pins, so the process to produce the initial
placement instance will need O(n * Pn), this is the same as
O(Nn). When f(α) = (α - 1), the loop will need α0((O(UNS
+ Ne) * O(p*q)) + O(Nn)).
 In our experiments, we set: Ne = 60000;

III. Experimental Results

 We have implemented the algorithm VP_SSS() using C
programming Language. For area and wire length
optimization, the performance of our algorithm is superior to
other algorithms proposed so far, the experimental results is
not presented here because of page limitation. Here, We
apply VP_SSS to placement with pre-placed modules and
placement with considering congestion.

A. Placement with Pre-placed Modules
 For placement with pre-placed modules[9], we test
VP_SSS() as follows. If the calculated coordinates of the
pre-placed module are less than the pre-placed coordinates
assigned to the module, the pre-placed coordinates will be
force-assigned to the pre-placed module. Otherwise, the
calculated coordinates will be assigned to the pre-placed
module. In object function, modules whose coordinates are
more than pre-placed coordinate receive penalty without fail.
 No loss of generality, we only use x-coordinate to
illustrate our approach. The processing of y-coordinate is
similar. The follow penalty item is added to the objective
function: ω*∑ (xi

a- xi
p)

 In which ω is weight of penalty. xi
a is the actual

coordinate of a pre-placed module and xi
p is the pre-placed

coordinate of the module. The item calculates the
differences between the actual coordinate and pre-placed
coordinate of all pre-placed modules.
 Fig.2 is a placement example of ami33 with four blocks
pre-placed, its area is 1.25(mm2), area usage is 92.47%, CPU
time is 114 sec.. Fig.3 is a placement example of ami49 with
5 blocks pre-placed, its area is 37.40(mm2), area usage is
94.76%, CPU time is 261 sec.. (on Sun Spark 20 station).

B. Placement with consideration of Congestion
 As the technology advances, routability has become
more and more important. So we must take into account
the congestion factor, which is closely related to
routability, during the placement stage. The congestion
cost is often defined based on the rectangular global bins,
into which the chip is divided. Assuming all the pins
within a bin are located at the center of the bin, we can
route all the nets along the global edges, which connect
every pair of nearby centers of bins.
 Given the routing supply Se for each edge e, which is
decided by technology parameters, size of bins, etc, we
could use some model to estimate the routing demand De of
that edge. The overflow of that edge equals to De – Se , if it
is congested, that is De > Se, and zero otherwise, thus the
total congestion is given by the summation of overflow for

all the edges.
 We adopt a probability model of routing estimation. Star
model is used for every net. The probability model is used
for each edge of the net. Suppose a net from s to t in Fig.1.

n

m
k h

Fig.1 the route probability of a net

s

a

t

b
c

s’

t’

The net will probably route within the bound box of ss’tt’.
The probability of the route along the edge ac and ab. are:








 +









−−

−−+−







 +

=








 +









−

−+−−







 +

=

n
nm

hm
hmkn

h
kh

ab

n
nm

hm
hmkn

h
kh

ac
1

11

where the point a leaves h edges from s in vertical direction
and k edges from s in horizontal direction. Then the route
demand of every edge of the chip is gotten and the overflow
edges are found.
 Other than lots of previous efforts on congestion reduction,
which optimize area, wirelength, and congestion step by step,
we use an all-in-one cost function to deal with all these
objectives together.
 Some researchers[10] have observed that congestion cost,
together with area and wirelength, is ill behaved, in another
word, the associated solution space is quite rugged, and
therefore it is hard to use it directly. However, as for our SSS
algorithm, the rugged terrain could be smoothed gradually,
thus the difficulty is overcome. The algorithm is basically
the same as the VP_SSS stated before: we only add a
congestion item to the equation:

congestiontotal
wirelengthtotalareaf

_*
_*

µ
λ

+
+=

where total_congestion is the summation of overflow of all
the congested global edges.
 Since different circuits have different wiring demands,
and therefore different congestion situation, the weight of
congestion factor should be different. To make the cost
function sensitive to congestion without deteriorating area
and wirelength too much, we recommend to choose that
the production of and total_congestion is proximately
1~10 percents of area.
 We list the experimental results in Table1 and compared
its results with that of the algorithm, which only optimizes
area and wirelength. We perform our tests on MCNC
benchmarks, and the results are encouraging: in most of the
cases, the total congestion has been significantly reduced.
Fig.4 and Fig.5 are two examples before and after

considering congestion during placement .

IV. Conclusion

 An effective solution space smoothing algorithm for VLSI
module placement was designed in this paper. Compared
with the placement algorithm based on simulated annealing,
it uses only one parameter; say α0, to control the search
process. And α0 is easy to determine for a placement
instance, whereas, a cooling schedule of a simulated
annealing process for a placement instance involve four
parameters. Experimental results on placement with pre-
placed modules and placement with considering congestion
show that VLSI module placement algorithm based on
solution space smoothing is an efficient and steadier
placement algorithm. It is not common to consider
congestion in BBL layout, the result shows the
adaptability of Solution Space Smoothing algorithm.

References
[1] D.F.Wong, C.L. Liu, A new algorithm for floorplan design,

Proc. of 23rd ACM/IEEE DAC’86, 101-107, 1986
[2] H.Murata, K.Fujyoshi, S.Nakatake, and Y.Kajitani,

Rectangular-packing-based module placement, ICCAD’95,
472-479, 1995

[3] P. -N.Guo, C.-K.Cheng, T.Yoshimura, An O-tree representation
of non-slicing floorplan and its applications , DAC’99, 1999

[4] S.Nakatake, K.Fujiyoshi, H.Murata, and Y.Kajitani, Module
placement on BSG-structure and IC layout applications,
ICCAD’96, 484-491, 1996

[5] Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu, Sheqin
Dong, C, -K Cheng, Jun Gu, Corner Block List: An Efficient
and Effective Topological Representation of Non-Slicing
Floorplan, ICCAD’00, 8-12.

[6] Shuo Zhou, Sheqin Dong, Xianlong Hong, Yici Cai, Chung-
Kuan Cheng and Jun Gu, ECBL: An extended corner block list
with solution space including optimum placement, ISPD’2001,
150-155.

[7] Jun Gu, Xiaofei Huang, Efficient Local Search with Search
Space Smoothing: A Case Study of the Travelling Salesman
Problem (TSP), IEEE Trans. On Systems. Man. and
Cybernetics, Vol.24, No.5, 728-735, 1994

[8] Johannes Schneider, Markus Dankesreiter, Werner Fettes, Ingo
Morgenstern, Martin Schmid, Johannes Maria Singer, Search-
space smoothing for combinatorial optimization problems,
Physica A 243(1997) 77-112.

[9] H.Murata, K.Fujiyoshi, M.Kaneko: “VLSI/PCB placement
with obstacles based on sequence-pair, IEEE Trans. On CAD,
Vol.17, No.1, pp60-68, 1998

[10] Maogang Wang, Majid Sarrafzadeh, Behavior of congestion
minimization during placement. ISPD’99

Fig.4 ami49 without considering congestion Fig.5 ami49 with considering congestion

Fig.2 Ami33 placement with 4 pre-placed modules: the
module number and its coordinates are: 10(700,800),
25(700,200), 27(0,0), 29(200,800),

Fig.3 Ami49 placement with 5 pre-placed modules: 6(4000,1000),
7(1000,4000), 11(3000,3000), 46(0,0), 44(4000,4000)

Table1 Experimental results on VLSI module placement w ith considering congestion
without considering congestion with considering congestion improvement
Area Wire Congestion Area Wire Congestion Congestion

Xerox 20.59/21.32 564.3/710.9 140.9/288.7 20.42/21.35 424.9/660.6 96.2/154.8 31.7% /46.4%
Hp 9.34/9.84 153/175 7.06/38.5 9.40/10.1 149/196 0/5.53 100% /85.6%
A mi33 1.21/1.24 45.1/50.6 102.3/158.4 1.23/1.27 41.8/52.5 20.4/43.4 80.1% /66.9%
A mi49 37.25/37.65 936/1138 29.18/68.19 37.72/38.41 976/1123 0.0/2.70 100% /96.0%

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

