
Scan-chain Based Watch-points for Efficient Run-Time Debugging and
Verification of FPGA Designs

Anurag Tiwari and Karen A. Tomko

Department of Electrical and Computer Engineering and Computer Science

University of Cincinnati
Cincinnati, OH 45221

E-mail: {atiwari, ktomko}@ececs.uc.edu

Abstract-- This paper describes a structured and area efficient
approach for in-situ debugging of application for FPGA based
reconfigurable systems. A scan chain is inserted into the
hardware design running on the FPGA, which helps in debugging
and verification by providing watch-point capability. The scan
chain technique proposed is easy to use and has very low
overhead. The scan-chain based implementation capitalizes on
the capability of newer FPGAs to connect several LUTs serially
and configure them as shift registers. The hardware debugging
procedure proposed using the shift register LUTs does not
require any recompilation of the design to change the watch-
point conditions and thus, is very fast. In this paper the area
overhead resulting from addition of a scan-chain based watch-
point logic is discussed and is compared with other proposed
debugging techniques. We observed that this technique has an
average area overhead of 46% for the ITC benchmark circuits
with varying widths of watch-point signals.

1 Introduction

A typical reconfigurable computing application is made up of
the hardware mapped on the FPGA device(s) present on a co-
processor board and the software, which runs on the general-
purpose processor. Debugging of these applications involves
debugging of both the hardware and software components.
Hardware simulation is one of the most widely used
techniques for hardware debugging and validation. It allows
the designer to examine the circuit in detail, but can be
prohibitively slow. Large designs can take anywhere between
a few hours to a few days for the complete simulation.

The problem of lengthy hardware debugging time can be
mitigated by debugging the circuitry directly on the target
platform. Debugging of reconfigurable computing applications
on the target platform is possible, since the target platform is
available before the application is completed. Some runtime
debugging environments for FPGA are described in [1] [2] [3].
The key features behind these debugging efforts are the
readback capability provided in some FPGAs [4] [5] along
with the ability to stop and step the clock signal. A readback
operation can acquire internal state of FPGA memory elements
such as the LUTs, flip-flop and IOBs, which is then matched
to the symbolic name in the original design. By stepping the
clock to a cycle of interest before initiating readback, the user
can analyze the values of the signals during execution. The

drawback of readback is that the software overhead of a
readback API call makes it a slow operation.

To overcome the slow speed of the readback operation, an
additional watch-point circuit can be added into the design to
reduce the frequency of readback. The added logic provides a
designer with controllability, while the design executes at or
close to the normal speed. The design running on the FPGA is
executed until the watch-point condition occurs. The
additional debugging circuit is removed from the design, when
debugging and validation is completed. Thus, the final design
has the same area and speed as the original design. The
hardware watch-points therefore, enable a controlled execution
of the hardware design and speed up the debugging procedure.

When the watch-point logic is added at the top most level in
the design flow (i.e. in the VHDL design or in the netlist), it
requires complete recompilation of the design for any change
to a watch-point condition. Recompilation, which consists of
synthesis, mapping and place and route of the design, is a time
consuming procedure. The debugging process may require
several iterations of watch-point logic modification while the
error is being discovered and corrected in the circuit.
However, the large recompilation time slows debugging. The
addition of the watch-point logic mitigates debug time at the
expense of area overhead; if this area overhead is large then
the watch-point logic may not fit into the chip, as the capacity
of an FPGA is fixed. In this paper, we have proposed a scan
based watch-point logic technique which allows run-time
change of the watch-point condition and is highly area
efficient.

2 Related work

Addition of debugging logic in FPGA designs for debugging
and validation purposes has been considered by other
researchers in [6][7]. In [6] a traditional design level scan
chain is proposed for debugging. However, average area
overhead of this design chain is 84% and can reach up to
100%, which may restrict this technique to less congested
designs. In our work a scan-chain is used to implement the
watch condition logic. In [7], a technique to modify debugging
logic is proposed using a java based design environment. This

technique limits designers to a java based structural design
environment, which is less familiar than a behavioral
HDL/Schematic environment. The technique proposed in [7]
allows instrumenting the debugging logic at bitstream-level,
but if modification is frequent, time to make the new bitstream
and time to load the bitstream into the target FPGA may slow
the debugging process. With support for partial
reconfiguration the method in [7] will have similar overheads
to the method presented in this paper which allows the user to
change the watch condition without reconfiguring the FPGA.

There are a few commercial tools which provide automated
and powerful features to add and modify the debugging logic
in the design. Xilinx has a tool named Chipscope[8], which
allows the designers to put embedded logic analyzer(ELA)
cores into their designs. These ELAs can monitor design
signals during design execution and can produce a trigger if
the signals meet some predefined condition. The trigger
conditions and signals monitored can be changed without any
design recompilation. Chipscope needs a logic analyzer to
view the signal status and a port on the reconfigurable
computing board to connect it. In addition, the area overhead
of the ELA is fixed, i.e. even if designer needs only a few
signals to be monitored and requires only simple trigger
conditions, the area overhead will still be large as a wide
variety of capabilities are provided in the core. Altera also has
a product named SignalTap[9], which is a logic analyzer
embedded into the design running on the FPGA. SignalTap is
similar to Chipscope in operation; however, any modification
in the debugging logic except for changing the trigger
condition requires complete recompilation of the design.

Validation and debugging of the design by adding debugging
logic is not limited to FPGAs. For example, the Triscend E5
configurable system on chip platform [10] has on-chip
debugging support using an additional breakpoint logic unit
kept on the chip. This breakpoint unit monitors the user
specified combinations of address and data control. The MCU
freezes at the end of the current condition, whenever a
breakpoint condition occurs. The breakpoint unit, though it
aids the user in debugging, is limited to only the data, control
and DMA signals. SIDSA also has a system on chip known as
FIPSOC [11], which also has the hardware breakpoint
capability [12]. The breakpoint mechanism in the FIPSOC is
similar to that in Triscend E5, i.e. a breakpoint can be set only
on user specified data and address values.

In [3], a software watch-point facility is presented in which the
comparison between a user specified condition and the actual
signal value is performed in software. This operation entails
readback of the design signals at every clock cycle (single-
stepping) or after a fixed number of clock cycles (multi-
stepping). Single stepping the clock makes the debugging
procedure very slow, as the software overhead of a readback

operation is on the order of a second. On the other hand multi-
stepping the clock may completely miss a user-desired event.

3 Reconfigurable Hardware Watch-points

As with hardware simulation, the addition of watch point
logic allows any signal in the FPGA design to be watched for
a particular value and condition. On every clock cycle, the user
chosen design signals can be monitored for a specific
condition. If there is a match between the signal value and the
user specified watch-point condition, the design running on the
FPGA stops executing and an interrupt is given to the
application program running on a general-purpose computer
(host). Upon getting an interrupt from the FPGA co-processor
board, the software running on the host may initiate a readback
operation to obtain the internal state of the circuit. The
hardware execution cessation is achieved by disconnecting the
clock used in the design. To provide the similar watch-point
capability as software debugging tools, the design should be
able to restart from the same point after the watch-point
condition is reached. This requires control over the system
clock, which should be disconnected from the design
whenever a watch-point condition occurs, and should be
connected back to design after the readback operation. This
clock control is implemented using two Finite State Machines
(FSMs) and a controllable clock buffer. An FSM takes input
from watch-point logic implemented using the scan chain,
when a watch-point condition is reached the FSM outputs an
interrupt and stops the design clock. There is another control
FSM which controls serial data shifting into the scan chain.
Once the interrupt has been acknowledged by the software
running on the general-purpose computer, the control FSM can
enable the design clock. This operation is illustrated in figure
1.

Clock

watch-point
logic using
scan chain

Clock control
FSM Scan chain data in

Interrupt
FSM to shift data
into scan chain clock enable

In
 Fig 1: Diagram of clock control operation

We utilize Xilinx Virtex-II series of FPGAs in this research.
Virtex-II FPGAs have low skew global clock buffers, which
can be enabled by a control signal. We have used these
controllable global clock buffers to stop the clock supply
whenever there is an interrupt. The user can also use a gated
clock methodology without such buffers to control the clock
whenever there is a watch-point condition. Gated clock control
methods are described in [13][14].

4 Watch-point logic implementation using scan chain

The hardware watch-points can be implemented by keeping a
scan chain of LUTs in the design. There are some recently
released FPGAs which allow the user to configure any LUT or
RAM block as a shift register without using the flip-flops. The
look-up table shift registers (srlut) has dual functionality, when
in shift register mode it shifts the data into each of its memory
locations. After the data is shifted into the srlut, it behaves as a
normal LUT, i.e. producing an output based upon its memory
location contents and its input address. Thus, if there is a 4
input LUT in the FPGA device, it can be configured as a 16 bit
shift register without using any other logic. Altera’s Stratix
FPGA[15] and Xilinx’s Virtex-II FPGAs[16] have the
capability to configure any LUT as a shift register.
Furthermore, individual shift register formed by LUTs can be
combined together to form a bigger shift register. We call this
shift register chain a scan chain of LUTs, since the appropriate
data can be shifted into each and every bit of the shift register.
This idea is analogous to the flip-flop scan chain in VLSI
testing [17]. We take advantage of this concept for
implementing hardware watch-points.

A variety of watch-point conditions can be set for monitoring
a signal. Multiple watch-point conditions for a signal can be
combined logically with “AND” or “Or” depending upon the
users requirement. Similarly, if there are multiple signals with
different trigger conditions, they can be combined similarly to
make one interrupt output. Table 1 shows the flexible set of
watch-point conditions implemented in our work.

Watch-point Condition Description
Greater than signal value is greater than the watch-

point value
Greater than equal to signal value is greater than or equal to

the watch-point value
Less than signal value is less than the watch-point

value
Less than equal signal value is less than or equal to the

watch-point value
Not equal to signal value is not equal to the watch-

point value
Equal to signal value is equal to the watch-point

value
Rising edge only signal makes rising edge transition
Falling edge only signal makes falling edge transition
rising edge or falling
edge

signal makes either a falling or rising
edge transition

Table 1: Watch-point trigger conditions.

To implement hardware watch-points using srluts the design
signals to be monitored are connected at the input address
lines of LUTs. The srlut are programmed such that whenever a
user desired condition on the signals connected at the input
occurs, the output is asserted. In figure 2 there are three srluts

connected serially, the input lines of which are connected to
some design signals being monitored. The output lines of these
three srluts are connected to the input lines of a fourth srlut,
which can implement function such as “OR” or “And” etc
depending upon the requirement. Furthermore, output of the
fourth srlut is connected to the interrupt line to notify the host
that watch-point condition has occurred.

The temporary register shown in figure 2 gets a watch-point
condition specification from the host, and then transfers that
data into the srluts. The maximum width of this register may
be limited, for example it may be limited to 64 bits in a given
co-processor board design, such as Annapolis Micro System’s
Wildstar. The watch-point data can either be transferred to it in
parallel with 64 bits together or can be shifted from the host
serially. If the data is transferred in parallel, and if there are
more than 64 bits of watch-point signals in the design, the
temporary register has to be loaded multiple times. When the
watch-point data is transferred to the FPGA in parallel, a
control state machine is kept in the design to sequence the
parallel load and serial shift of data into the srluts. In addition,
the temporary register in this case will be a parallel-in and
serial-out shift register. It takes 16*Nsrlut clock cycles to shift
the data into all the srluts, where Nsrlut is equal to number of
srluts used to implement watch-point logic. The area overhead
of the control state machine and the shift register can be
reduced by transferring watch-point data serially into the
FPGA. The serial shifting of watch-point data requires clock
suspension and clock stepping support in the co-processors.

 clk

 4 4 4 interrupt

Temporary holding register

D Q
CLK
In out

D Q
CLK
In out

D Q
CLK
In out

User defined logic
running inside the fpga

Control logic for shifting
the data into srlut

D Q
CLK
In out

Fig 2: watch-point implementation using scan chain

Figure 3 shows the pseudo code for transferring watch-point
data serially from the host using the co-processor board
Application Programming Interface (API).

Procedure change_watch_point_values()
{
1. ClkSuspend(BOOLEAN enable);

2.
3.
4.
5. }
6.

for(int I=0;I<=number_of_watch_point_bits;i++)
{ WritePeReg(int PeNum, data watch_point_bit);
 ClkStep();

ClkFreeRun();
}
Fig 3: Software controlled serial watch-point data shifting

4.1 Initialization and data shift into srluts

The srluts memory locations are initialized by the setting their
attribute values in the VHDL file. This is helpful when there
are only a few srluts in the design and only a few signal
connected to them. For example, if there are only three signals
connected to an srlut, only eight bits of data need to be shifted
into it assuming that it is the last or the only srlut in the scan
chain. Whenever a user wants to change the watch point
condition, a control signal “start_shift “ is asserted to the
design and appropriate condition specification is given at the
register input port. The start_shift signal can be a single bit of
the register kept in the design. A control FSM is added into the
design to synchronize the operation of shifting of data and
then enabling the global clock control buffers. Upon receiving
the start_shift signal, the controller starts shifting the data
serially across the register chain. The advantage of this
methodology of scan chain is that user can change the watch
point signal at run-time simply by asserting the start_shift
signal, which can be asserted using software API calls. Most
importantly chip configuration and the time consuming
synthesis, place and route process is bypassed completely
using this technique.

5 Programming the SRLUT chain

The srluts can have their 4 bit input address lines connected to
upto four different signals. Thus, any function made up of the
four different design signals can be implemented inside the
srlut. Consider a 4 bit signal A(0 to 3). If we implement a
watch-point condition which produces an interrupt anytime the
signal lines A(0 to 3) have a value that is greater than “1100”
then depending upon how the A(0) to A(3) lines are connected
to the address lines of the srlut, we implement this condition
by programming the memory locations of the srlut. All the
memory location addressable by signal A=”1100” to
A=”1111” are programmed with a ‘1’ and all other memory
locations with a ‘0’. Now, whenever there is a condition with
A>”1100” the srlut output will be logic ‘1’ and an active high
interrupt will be asserted. Similarly, for a watch condition
where A=”1100”, only the memory location which
corresponds to address “1100” will be programmed with logic
value ‘1’ and all other memory locations store logic value ‘0’.
This process is applied to implement the all of the watch-point
conditions mentioned earlier in table 1.

The binary stream, which is shifted into the srluts can be
generated using a ‘C’ program developed as part of this
research. The program takes as input the watch condition
implemented by the srluts, and the order in which the signal
lines to monitor are connected to the LUT inputs and generates
a srlut bit-stream. When there are multiple srluts connected in
series, the order in which the srluts are chained is also given to
this ‘C’ program to generate the concatenated stream of bits
for all of the srluts in the scan chain.

6 Interactive SRLUT Chain Programming

The scan chain technique can be easily integrated with an
interactive GUI-based hardware/software co-debugging utility,
such as developed in [3]. The reason behind quick integration
of this technique with co-debugging is that the user only has to
provide an expression for the watch condition. The values
stored by different srluts in the scan chain are then shifted into
the FPGA using the utility; No partial or complete
recompilation of design is necessary. The scan chain, while it
permits changing the watch condition and its value, does not
allow changing the signals to be monitored on-line. To change
the signals connected to the srluts, methods such as guided
place and route[18], Xilinx FPGA editor[19] or JBits[20] can
be used. Only the routing in the design has to changed,
because the condition specification for the new signal can be
calculated and a new stream of bits can be shifted into the
srluts.

7 Design flow for the scan chain

The scan chain can be added either into the VHDL design or in
the edif netlist. In this paper we have added it into the VHDL
design. The srluts are instantiated as a component in the
VHDL design flow, where they are assigned some
initialization attributes. One or more instance of an srlut may
be present in the design depending upon the number of signals
to be monitored. In the VHDL code the design signals are
directly connected to the input lines of an srlut, whereas the
variables declared in a process are first stored in a signal
which is then connected to the input of the srluts. The srlut
inputs must be of type std_logic, thus the signals of type ‘bit’
or ‘integers‘ have to be converted into std_logic. The pseudo
code below illustrates the steps involved in the design flow.

1. Add srluts into VHDL description and attach watch-point

signals into the address lines of srluts.
2. Save the serial order information of different instance of srlut

and corresponding signals (to be monitored) connected to them
3. Synthesize, place and route the design
4. To change the watch-point condition or watch value, input new

condition and value along with the serial order information of
srlut into the C program

5. Obtain the new bit sequence for the memory location of srluts in
scan chain and download it to the FPGA

6. If a change in watch-point logic required then goto 4.

8 Experiments and Results

To analyze the area overhead incurred by the scan chain, we
used the Politecnico di Torino’s ITC benchmarks
(http://www.cad.polito.it/tools/#bench). These designs allowed
us to insert scan-chain based watch-point logic both at VHDL
and at the netlist level. Furthermore, these designs are of
varying complexity, allowing us to analyze the watch-point
logic insertion approach for a range of design sizes. The ITC
benchmark suite consists of 22 different VHDL descriptions.
We have used 14 of the 22 circuits in the ITC suite. Designs
b01, b02, b03, b06, b09 and b13 are pure finite-state machines
(FSMs). Design b14 is a complex VHDL description of a
finite state machine. Designs b05, b07, b08 and b12 are
examples of architectures combining FSMs data paths, and
memory blocks. We have modified these benchmarks slightly,
to accommodate the ports: interrupt, interrupt acknowledge,
and input data. The interrupt and interrupt acknowledge ports
are necessary to notify the host that the watch-point condition
has occurred, the input data port is used to shift the user
desired watch-condition into the srluts.

The target device in our experiments is Xilinx’s XC2V250
chip. Design b14 did not fit into an XC2V250, and thus we
have used an XC2V1500 for it. Table 2 shows the number of
signals monitored in each of the benchmark circuits, the FPGA
resource utilization by the original circuit and the resource
utilization with the scan-chain based watch-point logic. Fig 4
shows the percentage increase in the slice count in scan-chain
based implementation. The average area overhead of all of the
benchmark circuits is 46% of the original area. During our
experiments, we observed that the area overhead due to watch-
point logic depends upon the following factors:

• Number of signals monitored
• Clock control or interrupt state machine
• State machine to shift data into srluts
• Shift mechanism (serial or parallel)
• Number of variables monitored
• Design congestion resulting in route through LUTs
• State machine encoding

The total number of srluts to connect N bits of watch-point
signals is N/4. However, more srluts may be required, to
connect output signals from all of the srluts together. For
example, if N is 8 bits then three 4 input srluts are required,
two for the watch-point signals and one for connecting the
outputs of other two srluts. In general, there are log4(N) levels
of LUT logic needed, for values of N which are powers of 4,
there are N/4i, luts needed at each level, i. In Virtex-II FPGA
each slice has two luts which can be configured as srluts.
Thus, with the increase of every two srluts a slice is increased.

 Original design Design with scan chain bench- #
FF LUT Slice

count
FF LUT Slice

count

B01 8 15 17 11 18 28 16
B02 7 12 13 8 16 25 14
B03 18 38 66 42 43 96 59
B04 76 70 242 125 90 286 153
B05 67 26 259 144 50 366 203
B06 3 15 28 15 19 39 22
B07 50 52 127 72 68 179 105
B08 40 27 51 34 58 113 68
B09 27 37 69 35 44 114 61
B10 14 27 51 33 34 82 49
B11 30 37 218 120 50 254 141
B12 46 145 408 268 154 464 277
B13 42 67 69 55 70 132 81
B14 122 218 8,168 4092 261 8,280 4,160
Avg. 39 56 699 361 70 747 386
Table 2: Area overhead due to watch-point logic

0

20

40

60

80

100

120

b0
1

b0
2

b0
3

b0
4

b0
5

b0
6

b0
7

b0
8

b0
9

b1
0

b1
1

b1
2

b1
3

b1
4

%

 s

li
c

e

Fig 4: percentage of slice area overhead for watch-point logic

The clock control state machine has a fixed area overhead; it is
a simple state machine with three states. The clock to the
design is disconnected, whenever this state machine is in the
interrupt state and if the interrupt is asserted due to watch-
point logic. Most of the reconfigurable computing applications
have such an interrupt state machine, which they use to assert
an interrupt to the host when done computing. With this
assumption, that the design has such state machine, we have
calculated the area overhead without it. If there is any
application which does not use an interrupt, the area overhead
due to clock control machine has to be added to the overall
area overhead. The area overhead of this clock control state
machine is shown in table 3.

FF LUT Slice count Clock control
state machine 4 6 4

Table 3: Area overhead due to clock control state machine

If the signals representing states of a finite state machine are to
be monitored, the choice of state encoding method has a direct
affect on the area overhead. One-hot encoding, in which
setting a bit in the bit_vector represents the state increases the
area overhead, as there are more signals to be monitored. In
the ITC benchmarks circuits, FSM states are encoded as
integers and the state signal is a bounded integer of size
log2(Nstates) bits. To monitor these signals, we converted them
into std_logic_vector. To monitor the variables in a process,
they were first stored in a signal, which is then connected to
the srluts. We have observed that the signals kept to store the
values of variables are synthesized as latches, thus, the number
of variables monitored in the design increases the flip-flop
utilization of the FPGA.

When the condition specification is serially supplied by the
host, the state machine which shifts the data into srluts is a
simple counter. When the condition specification is transferred
in parallel to the FPGA, the state machine is more complex
and has more area overhead. In both cases the area overhead
increases as the number of srlut increases. The number of bits
to be shifted equals 16*Nsrlut, the counter size required is
log2(16*Nluts) for serial input of the condition spec. Nsrlut is
number of srluts in the design. Figure 5 shows the comparison
of area for the original design without watch-point logic, to the
area of the design with serial watch-point data input and the
area of the design having parallel watch-point value input.

Routing congestion also may increase the area overhead when
watch-point logic is added. Due to limited routing resource
some of the neighboring LUTs of the monitored signals are
used as route though LUTs and are left unused. For example,
in the design b09 adding a signal to monitor a two-bit variable
increases the flip-flop count by 2 and the LUT count by 4.
Ideally, there should be an increase of two flip-flops with no
change in the LUT count.

We have compared the area overhead of the scan-chain based
watch-point logic to the area overhead of chipscope. Table 4
and 5 show the area overhead of chipscope and scan-chain
watch-point logic respectively. It can be observed that scan-
chain watch-point logic has significantly lower area overhead
than chipscope for the same data width. This is in part due to
the compact run-time modifiable comparison logic in our
scheme which alleviates the need for a more general purpose
comparator.

We have observed that in the scan-chain based technique, the
srlut consumption increases more quickly than the flip-flop
consumption when the watch-point width increases. This
leaves many slices with unused flip-flops. These unused flip-
flops can be used to latch the process variables and to
implement edge-triggered watch-point conditions to catch
events such as the rising edge or falling edge of a signal.

watch-point logic area
overhead

0

50

100

150

200

250

300

350

b01 b02 b03 b04 b05 b06 b07 b08 b09 b10 b11 b12 b13

design

Vi
rte

x-
II

sl
ic

e
co

un
t

Original design
serial watch-point value
watch-point value in parallel

Fig 5: cost of original benchmark, benchmark with watch-point logic
data coming serially and in parallel.

Watch-point
data width

Flip-
Flops

LUTs Slices Percentage of
XC2V250 slice

2 125 143 72 4.6
4 128 151 84 5.4
8 134 167 84 5.4
16 146 199 100 6.5
32 173 265 133 8.6
64 222 395 198 12.8

Table 4: Chipscope area overhead

Watch-point
data width

Flip-
Flops

LUTs Slices Percentage of
XC2V250 slice

2 7 10 7 0.45
4 9 18 12 0.78
8 11 24 15 0.97
16 12 31 19 1.27
32 13 39 23 1.49
64 14 56 32 2.08

Table 5: Scan chain area overhead

8.1 Trace buffer

Debugging of certain applications can be facilitated if in
addition to watch-point capability, a history of the monitored
signal’s value is available to the user. This helps a user in
determining how a signal has changed during the clock cycles
prior to the occurrence of the condition. To maintain the
history of a signal’s values a trace buffer can be added into the
design in conjunction with the watch-point logic.

To implement the trace buffer we use block RAMs provided in
the Xilinx Virtex-II series of FPGAs. Block RAMs are high-
speed SRAM modules available inside an FPGA. They can be
configured in different width and depth combination, for
example in the Virtex-II series of FPGA from Xilinx the
following combinations are available: 1x16384, 2x8192,
4x4096, 9x2048, 18x1024, and 36x512. Connecting multiple
Block RAMs together can create wider and/or deeper Block

RAMs. A FIFO can be constructed by connecting a counter at
the address lines of the Block RAMs. This FIFO is used as a
trace buffer, signals to be traced are connected at the data lines
of the Block RAM and the address counter is incremented on
every clock cycle. The counter used in the FIFO should be
able to address all the locations in the Block RAM, thus the
counter size depends on the depth of a FIFO. Table 6 shows
the area overhead of implementing a FIFO using a single
Block RAM with varying width and depth. It is observed that
it is the depth of FIFO which causes change in the area
overhead (LUT, FF and slices), increasing the width of a
traced signal merely increases the Block RAM count. For
example, if 512 traces of a signal are required, signals with 36,
72 and 144 bits will use 1, 2 and 4 Block RAM respectively,
but will have the same slice count for the FIFO control logic.
This is due to the fact that the same counter and control logic
can be used to address multiple Block RAMs.

Trace buffer depth Flip-

Flops
LUTs Slices

256 31 34 22
512 31 34 22
1024 34 35 22
2048 38 38 26
4096 41 40 27
8192 44 43 30
16384 47 45 30
Table 6: Area overhead of trace buffer control logic

9 Conclusions

In this paper we have proposed a structured, fast and area
efficient technique to implement hardware watch-points. This
technique enables run-time modification of watch-point
condition and its value without any design recompilation or
reconfiguration. The watch-points implemented using this
technique provide software style interactive debugging and
make the debugging process many times faster than hardware
simulation. The debugging speedup is the result of running
and debugging the design directly on the target hardware
platform. The limitation of this technique is that the signals,
which are monitored, cannot be changed at run-time, some
degree of design recompilation is necessary to achieve that.
Future work can be done to automate the process of inserting
multiple instances of srluts into the vhdl design.

References:
[1] B.L. Hutchings et. al. A CAD suite for high performance
FPGA design, proceedings of IEEE symposium on Field-
Programmable Custom Computing Machines, April 1999.

[2] B.L. Hutchings et.al. Unifying Simulation and Execution in
a Design enivornment for FPGA Systems IEEE trans on VLSI,
Feb’00
[3] K. A. Tomko and A. Tiwari. Hardware/Software Co-
debugging for Reconfigurable Computing IEEE International
High Level Design Validation and Test workshop, Oakland
CA, Nov. 2000
[4] Virtex FPGA series configuration and readback.
Application Note XAPP138, Xilinx San Jose CA, October
2000
[5] Lucent Technologies, ORCA Series 4 FPGAs, Dec 2000
[6]T.Wheeler et. al. Using design-level scan to improve FPGA
design observability and controllability for functional
verification FPL’01
[7] Paul Graham et. al. Instrumenting Bitstreams for
Debugging FPGA Circuits, proceedings of the IEEE
Symposium on Field-Programmable Custom Computing
Machines, April 2001
[8] Xilinx, San Jose CA. ChipScope software and ILA Cores
User Manual, v. 1.1. June 2000
[9]Altera, San Jose CA. SignalTap Embedded Logic Analyzer
Megafunction, April 2001 ver.2.0
[10] Triscend Inc. E5 Configurable System-on-Chip Platform
data sheet, July 2001 (ver. 1.06)
[11] SIDSA Inc, SF CA, FIPSOCTM Mixed Signal System-on-
Chip.
[12]FIPSOC user manual chapter 7, SIDSA Inc.
[13] P. Graham, Logical Hardware Debuggers for FPGA-
Based Systems, PhD Thesis, Brigham Young University,
Electrical and Computer Engineering Department, Dec. 2001
 [14] K. A. Tomko, A. Tiwari, Design Techniques to
Implement Reconfigurable Hardware Watch-Points for
Hardware/Software Co-Debugging, Proceeding of the
Conference on Engineering of Reconfigurable Systems and
Algorithms, June 2001.
[15] Altera corp, Stratix Programmable Logic Device Family
Data Sheet, version 2.0 April 2002
[16] Xilinx Inc, Virtex-II Platform FPGA Handbook, ver. 1.3
Dec’ 01
[17] M. Abramovici, M.A. Breuer, A.D. Friedman. Digital
Systems testing and testable design pp. 358 IEEE press 1990
[18] Using Xilinx and Synplify for Incremental Designs
(ECO), Xilinx application note XAPP164, Xilinx San Jose,
CA 1994
[19]Xilinx Inc, Xilinx 4 Software Manuals.
[20] S. A. Guccione, D. Levi, and P. Sundararajan, JBits: A
Java-based interface for reconfigurable computing,
Proceedings of the 2nd Annual conference on Military and
Aerospace Applications of Programmable Devices and
Technologies (MAPLD), September 1999.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

