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Abstract-- This paper describes a structured and area efficient 
approach for in-situ debugging of application for FPGA based 
reconfigurable systems. A scan chain is inserted into the 
hardware design running on the FPGA, which helps in debugging 
and verification by providing watch-point capability. The scan 
chain technique proposed is easy to use and has very low 
overhead. The scan-chain based implementation capitalizes on 
the capability of newer FPGAs to connect several LUTs serially 
and configure them as shift registers. The hardware debugging 
procedure proposed using the shift register LUTs does not 
require any recompilation of the design to change the watch-
point conditions and thus, is very fast. In this paper the area 
overhead resulting from addition of a scan-chain based watch-
point logic is discussed and is compared with other proposed 
debugging techniques. We observed that this technique has an 
average area overhead of 46% for the ITC benchmark circuits 
with varying widths of watch-point signals.  
 
1 Introduction 
 
A typical reconfigurable computing application is made up of 
the hardware mapped on the FPGA device(s) present on a co-
processor board and the software, which runs on the general-
purpose processor. Debugging of these applications involves 
debugging of both the hardware and software components. 
Hardware simulation is one of the most widely used 
techniques for hardware debugging and validation. It allows 
the designer to examine the circuit in detail, but can be 
prohibitively slow. Large designs can take anywhere between 
a few hours to a few days for the complete simulation.  
 
The problem of lengthy hardware debugging time can be 
mitigated by debugging the circuitry directly on the target 
platform. Debugging of reconfigurable computing applications 
on the target platform is possible, since the target platform is 
available before the application is completed. Some runtime 
debugging environments for FPGA are described in [1] [2] [3]. 
The key features behind these debugging efforts are the 
readback capability provided in some FPGAs [4] [5] along 
with the ability to stop and step the clock signal. A readback 
operation can acquire internal state of FPGA memory elements 
such as the LUTs, flip-flop and IOBs, which is then matched 
to the symbolic name in the original design. By stepping the 
clock to a cycle of interest before initiating readback, the user 
can analyze the values of the signals during execution. The 

drawback of readback is that the software overhead of a 
readback API call makes it a slow operation. 
 
To overcome the slow speed of the readback operation, an 
additional watch-point circuit can be added into the design to 
reduce the frequency of readback. The added logic provides a 
designer with controllability, while the design executes at or 
close to the normal speed. The design running on the FPGA is 
executed until the watch-point condition occurs. The 
additional debugging circuit is removed from the design, when 
debugging and validation is completed. Thus, the final design 
has the same area and speed as the original design. The 
hardware watch-points therefore, enable a controlled execution 
of the hardware design and speed up the debugging procedure. 
 
When the watch-point logic is added at the top most level in 
the design flow (i.e. in the VHDL design or in the netlist), it 
requires complete recompilation of the design for any change 
to a watch-point condition. Recompilation, which consists of 
synthesis, mapping and place and route of the design, is a time 
consuming procedure. The debugging process may require 
several iterations of watch-point logic modification while the 
error is being discovered and corrected in the circuit. 
However, the large recompilation time slows debugging. The 
addition of the watch-point logic mitigates debug time at the 
expense of area overhead; if this area overhead is large then 
the watch-point logic may not fit into the chip, as the capacity 
of an FPGA is fixed. In this paper, we have proposed a scan 
based watch-point logic technique which allows run-time 
change of the watch-point condition and is highly area 
efficient. 
 
2 Related work 
 
Addition of debugging logic in FPGA designs for debugging 
and validation purposes has been considered by other 
researchers in [6][7]. In [6] a traditional design level scan 
chain is proposed for debugging. However, average area 
overhead of this design chain is 84% and can reach up to 
100%, which may restrict this technique to less congested 
designs. In our work a scan-chain is used to implement the 
watch condition logic. In [7], a technique to modify debugging 
logic is proposed using a java based design environment. This 



technique limits designers to a java based structural design 
environment, which is less familiar than a behavioral 
HDL/Schematic environment. The technique proposed in [7] 
allows instrumenting the debugging logic at bitstream-level, 
but if modification is frequent, time to make the new bitstream 
and time to load the bitstream into the target FPGA may slow 
the debugging process. With support for partial 
reconfiguration the method in [7] will have similar overheads 
to the method presented in this paper which allows the user to 
change the watch condition without reconfiguring the FPGA. 
 
There are a few commercial tools which provide automated 
and powerful features to add and modify the debugging logic 
in the design. Xilinx has a tool named Chipscope[8], which 
allows the designers to put embedded logic analyzer(ELA) 
cores into their designs. These ELAs can monitor design 
signals during design execution and can produce a trigger if 
the signals meet some predefined condition. The trigger 
conditions and signals monitored can be changed without any 
design recompilation. Chipscope needs a logic analyzer to 
view the signal status and a port on the reconfigurable 
computing board to connect it. In addition, the area overhead 
of the ELA is fixed, i.e. even if designer needs only a few 
signals to be monitored and requires only simple trigger 
conditions, the area overhead will still be large as a wide 
variety of capabilities are provided in the core.  Altera also has 
a product named SignalTap[9], which is a logic analyzer 
embedded into the design running on the FPGA. SignalTap is 
similar to Chipscope in operation; however, any modification 
in the debugging logic except for changing the trigger 
condition requires complete recompilation of the design.  
 
Validation and debugging of the design by adding debugging 
logic is not limited to FPGAs. For example, the Triscend E5 
configurable system on chip platform [10] has on-chip 
debugging support using an additional breakpoint logic unit 
kept on the chip. This breakpoint unit monitors the user 
specified combinations of address and data control. The MCU 
freezes at the end of the current condition, whenever a 
breakpoint condition occurs. The breakpoint unit, though it 
aids the user in debugging, is limited to only the data, control 
and DMA signals. SIDSA also has a system on chip known as 
FIPSOC [11], which also has the hardware breakpoint 
capability [12]. The breakpoint mechanism in the FIPSOC is 
similar to that in Triscend E5, i.e. a breakpoint can be set only 
on user specified data and address values. 
 
In [3], a software watch-point facility is presented in which the 
comparison between a user specified condition and the actual 
signal value is performed in software. This operation entails 
readback of the design signals at every clock cycle (single-
stepping) or after a fixed number of clock cycles (multi-
stepping). Single stepping the clock makes the debugging 
procedure very slow, as the software overhead of a readback 

operation is on the order of a second. On the other hand multi-
stepping the clock may completely miss a user-desired event.  
 
3 Reconfigurable Hardware Watch-points 
 
As  with hardware simulation, the addition of watch point 
logic allows any signal in the FPGA design to be watched for 
a particular value and condition. On every clock cycle, the user 
chosen design signals can be monitored for a specific 
condition. If there is a match between the signal value and the 
user specified watch-point condition, the design running on the 
FPGA stops executing and an interrupt is given to the 
application program running on a general-purpose computer 
(host). Upon getting an interrupt from the FPGA co-processor 
board, the software running on the host may initiate a readback 
operation to obtain the internal state of the circuit. The 
hardware execution cessation is achieved by disconnecting the 
clock used in the design. To provide the similar watch-point 
capability as software debugging tools, the design should be 
able to restart from the same point after the watch-point 
condition is reached. This requires control over the system 
clock, which should be disconnected from the design 
whenever a watch-point condition occurs, and should be 
connected back to design after the readback operation. This 
clock control is implemented using two Finite State Machines 
(FSMs) and a controllable clock buffer. An FSM takes input 
from watch-point logic implemented using the scan chain, 
when a watch-point condition is reached the FSM outputs an 
interrupt and stops the design clock.  There is another control 
FSM which controls serial data shifting into the scan chain. 
Once the interrupt has been acknowledged by the software 
running on the general-purpose computer, the control FSM can 
enable the design clock. This operation is illustrated in figure 
1. 
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       Fig 1: Diagram of clock control operation     
                                                                                                                                  
We utilize Xilinx Virtex-II series of FPGAs in this research. 
Virtex-II FPGAs have low skew global clock buffers, which 
can be enabled by a control signal. We have used these 
controllable global clock buffers to stop the clock supply 
whenever there is an interrupt. The user can also use a gated 
clock methodology without such buffers to control the clock 
whenever there is a watch-point condition. Gated clock control 
methods are described in [13][14]. 
 



4 Watch-point logic implementation using scan chain  
 
The hardware watch-points can be implemented by keeping a 
scan chain of LUTs in the design. There are some recently 
released FPGAs which allow the user to configure any LUT or 
RAM block as a shift register without using the flip-flops. The 
look-up table shift registers (srlut) has dual functionality, when 
in shift register mode it shifts the data into each of its memory 
locations. After the data is shifted into the srlut, it behaves as a 
normal LUT, i.e. producing an output based upon its memory 
location contents and its input address. Thus, if there is a 4 
input LUT in the FPGA device, it can be configured as a 16 bit 
shift register without using any other logic. Altera’s Stratix 
FPGA[15] and Xilinx’s Virtex-II FPGAs[16] have the 
capability to configure any LUT as a shift register. 
Furthermore, individual shift register formed by LUTs can be 
combined together to form a bigger shift register. We call this 
shift register chain a scan chain of LUTs, since the appropriate 
data can be shifted into each and every bit of the shift register. 
This idea is analogous to the flip-flop scan chain in VLSI 
testing [17]. We take advantage of this concept for 
implementing hardware watch-points.  
 
A variety of watch-point conditions can be set for monitoring 
a signal. Multiple watch-point conditions for a signal can be 
combined logically with “AND” or “Or” depending upon the 
users requirement. Similarly, if there are multiple signals with 
different trigger conditions, they can be combined similarly to 
make one interrupt output. Table 1 shows the flexible set of 
watch-point conditions implemented in our work.  
 

Watch-point Condition Description 
Greater than signal value is greater than the watch-

point value 
Greater than equal to signal value is greater than or equal to 

the watch-point value 
Less than signal value is less than the watch-point 

value 
Less than equal signal value is less than or equal to the 

watch-point value 
Not equal to signal value is not equal to the watch-

point value 
Equal to signal value is equal to the watch-point 

value 
Rising edge only signal makes rising edge transition  
Falling edge only signal makes falling edge transition 
rising edge or falling 
edge 

signal makes either a falling or rising 
edge transition 

Table 1: Watch-point trigger conditions. 
 
To implement hardware watch-points using srluts the design 
signals to be monitored are connected at the input address 
lines of LUTs. The srlut are programmed such that whenever a 
user desired condition on the signals connected at the input 
occurs, the output is asserted. In figure 2 there are three srluts 

connected serially, the input lines of which are connected to 
some design signals being monitored. The output lines of these 
three srluts are connected to the input lines of a fourth srlut, 
which can implement function such as “OR” or “And” etc 
depending upon the requirement. Furthermore, output of the 
fourth srlut is connected to the interrupt line to notify the host 
that watch-point condition has occurred.   
 
The temporary register shown in figure 2 gets a watch-point 
condition specification from the host, and then transfers that 
data into the srluts. The maximum width of this register may 
be limited, for example it may be limited to 64 bits in a given 
co-processor board design, such as Annapolis Micro System’s 
Wildstar. The watch-point data can either be transferred to it in 
parallel with 64 bits together or can be shifted from the host 
serially. If the data is transferred in parallel, and if there are 
more than 64 bits of watch-point signals in the design, the 
temporary register has to be loaded multiple times. When the 
watch-point data is transferred to the FPGA in parallel, a 
control state machine is kept in the design to sequence the 
parallel load and serial shift of data into the srluts. In addition, 
the temporary register in this case will be a parallel-in and 
serial-out shift register. It takes 16*Nsrlut clock cycles to shift 
the data into all the srluts, where Nsrlut is equal to number of 
srluts used to implement watch-point logic. The area overhead 
of the control state machine and the shift register can be 
reduced by transferring watch-point data serially into the 
FPGA. The serial shifting of watch-point data requires clock 
suspension and clock stepping support in the co-processors.  
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Fig 2: watch-point implementation using scan chain 
 
Figure 3 shows the pseudo code for transferring watch-point 
data serially from the host using the co-processor board 
Application Programming Interface (API). 
 
Procedure change_watch_point_values( ) 
{ 
1. ClkSuspend(BOOLEAN enable); 



2. 
3. 
4. 
5. } 
6. 

for(int I=0;I<=number_of_watch_point_bits;i++) 
{  WritePeReg(int PeNum, data watch_point_bit); 
   ClkStep( ); 

ClkFreeRun( ); 
} 
Fig 3: Software controlled serial watch-point data shifting 
 
4.1 Initialization and data shift into srluts 
 
The srluts memory locations are initialized by the setting their 
attribute values in the VHDL file. This is helpful when there 
are only a few srluts in the design and only a few signal 
connected to them. For example, if there are only three signals 
connected to an srlut, only eight bits of data need to be shifted 
into it assuming that it is the last or the only srlut in the scan 
chain. Whenever a user wants to change the watch point 
condition, a control signal “start_shift “ is asserted to the 
design and appropriate condition specification is given at the 
register input port. The start_shift signal can be a single bit of 
the register kept in the design. A control FSM is added into the 
design to synchronize the operation of shifting of data and 
then enabling the global clock control buffers. Upon receiving 
the start_shift signal, the controller starts shifting the data 
serially across the register chain. The advantage of this 
methodology of scan chain is that user can change the watch 
point signal at run-time simply by asserting the start_shift 
signal, which can be asserted using software API calls. Most 
importantly chip configuration and the time consuming 
synthesis, place and route process is bypassed completely 
using this technique. 
 
5 Programming the SRLUT chain 
 
The srluts can have their 4 bit input address lines connected to 
upto four different signals. Thus, any function made up of the 
four different design signals can be implemented inside the 
srlut. Consider a 4 bit signal A(0 to 3). If we implement a 
watch-point condition which produces an interrupt anytime the 
signal lines A(0 to 3) have a value that is greater than “1100” 
then depending upon how the A(0) to A(3) lines are connected 
to the address lines of the srlut, we implement this condition 
by programming the memory locations of the srlut. All the 
memory location addressable by signal A=”1100” to 
A=”1111” are programmed with a ‘1’ and all other memory 
locations with a ‘0’. Now, whenever there is a condition with 
A>”1100” the srlut output will be logic ‘1’ and an active high 
interrupt will be asserted. Similarly, for a watch condition 
where A=”1100”, only the memory location which 
corresponds to address “1100” will be programmed with logic 
value ‘1’ and all other memory locations store logic value ‘0’.  
This process is applied to implement the all of the watch-point 
conditions mentioned earlier in table 1.   
 

The binary stream, which is shifted into the srluts can be 
generated using a ‘C’ program developed as part of this 
research. The program takes as input the watch condition 
implemented by the srluts, and the order in which the signal 
lines to monitor are connected to the LUT inputs and generates 
a srlut bit-stream. When there are multiple srluts connected in 
series, the order in which the srluts are chained is also given to 
this ‘C’ program to generate the concatenated stream of bits 
for all of  the srluts in the scan chain.  
 
6 Interactive SRLUT Chain Programming 
 
The scan chain technique can be easily integrated with an 
interactive GUI-based hardware/software co-debugging utility, 
such as developed in [3]. The reason behind quick integration 
of this technique with co-debugging is that the user only has to 
provide an expression for the watch condition. The values 
stored by different srluts in the scan chain are then shifted into 
the FPGA using the utility; No partial or complete 
recompilation of design is necessary. The scan chain, while it 
permits changing the watch condition and its value, does not 
allow changing the signals to be monitored on-line. To change 
the signals connected to the srluts, methods such as guided 
place and route[18], Xilinx FPGA editor[19] or JBits[20] can 
be used. Only the routing in the design has to changed, 
because the condition specification for the new signal can be 
calculated and a new stream of bits can be shifted into the 
srluts.  
 
7 Design flow for the scan chain  
 
The scan chain can be added either into the VHDL design or in 
the edif netlist. In this paper we have added it into the VHDL 
design. The srluts are instantiated as a component in the 
VHDL design flow, where they are assigned some 
initialization attributes. One or more instance of an srlut may 
be present in the design depending upon the number of signals 
to be monitored. In the VHDL code the design signals are 
directly connected to the input lines of an srlut, whereas the 
variables declared in a process are first stored in a signal 
which is then connected to the input of the srluts. The srlut 
inputs must be of type std_logic, thus the signals of type ‘bit’ 
or ‘integers‘ have to be converted into std_logic. The pseudo 
code below illustrates the steps involved in the design flow. 
 
1. Add srluts into VHDL description and attach watch-point 

signals into the address lines of srluts.  
2. Save the serial order information of different instance of srlut 

and corresponding signals (to be monitored) connected to them 
3. Synthesize, place and route the design 
4. To change the watch-point condition or watch value, input new 

condition and value along with the serial order information of 
srlut into the C program 

5. Obtain the new bit sequence for the memory location of srluts in 
scan chain and download it to the FPGA 



6. If a change in watch-point logic required then goto 4. 
 
8 Experiments and Results 
 
To analyze the area overhead incurred by the scan chain, we 
used the Politecnico di Torino’s ITC benchmarks 
(http://www.cad.polito.it/tools/#bench). These designs allowed 
us to insert scan-chain based watch-point logic both at VHDL 
and at the netlist level. Furthermore, these designs are of 
varying complexity, allowing us to analyze the watch-point 
logic insertion approach for a range of design sizes. The ITC 
benchmark suite consists of 22 different VHDL descriptions. 
We have used 14 of the 22 circuits in the ITC suite. Designs 
b01, b02, b03, b06, b09 and b13 are pure finite-state machines 
(FSMs). Design b14 is a complex VHDL description of a 
finite state machine. Designs b05, b07, b08 and b12 are 
examples of architectures combining FSMs data paths, and 
memory blocks. We have modified these benchmarks slightly, 
to accommodate the ports: interrupt, interrupt acknowledge, 
and input data. The interrupt and interrupt acknowledge ports 
are necessary to notify the host that the watch-point condition 
has occurred, the input data port is used to shift the user 
desired watch-condition into the srluts. 
 
The target device in our experiments is Xilinx’s XC2V250 
chip. Design b14 did not fit into an XC2V250, and thus we 
have used an XC2V1500 for it. Table 2 shows the number of 
signals monitored in each of the benchmark circuits, the FPGA 
resource utilization by the original circuit and the resource 
utilization with the scan-chain based watch-point logic. Fig 4 
shows the percentage increase in the slice count in scan-chain 
based implementation. The average area overhead of all of the 
benchmark circuits is 46% of the original area. During our 
experiments, we observed that the area overhead due to watch-
point logic depends upon the following factors: 

• Number of signals monitored 
• Clock control or interrupt state machine 
• State machine to shift data into srluts 
• Shift mechanism (serial or parallel) 
• Number of variables monitored 
• Design congestion resulting in route through LUTs 
• State machine encoding 
 

The total number of srluts to connect N bits of watch-point 
signals is N/4. However, more srluts may be required, to 
connect output signals from all of the srluts together. For 
example, if N is 8 bits then three 4 input srluts are required, 
two for the watch-point signals and one for connecting the 
outputs of other two srluts. In general, there are log4(N) levels 
of LUT logic needed, for values of N which are powers of 4, 
there are N/4i, luts needed at each level, i. In Virtex-II FPGA 
each slice has two luts which can be configured as srluts. 
Thus, with the increase of every two srluts a slice is increased.    
 

     Original design Design with scan chain bench- # 
FF LUT Slice 

count 
FF LUT Slice 

count 

B01 8 15 17 11 18 28 16 
B02 7 12 13 8 16 25 14 
B03 18 38 66 42 43 96 59 
B04 76 70 242 125 90 286 153 
B05 67 26 259 144 50 366 203 
B06 3 15 28 15 19 39 22 
B07 50 52 127 72 68 179 105 
B08 40 27 51 34 58 113 68 
B09 27 37 69 35 44 114 61 
B10 14 27 51 33 34 82 49 
B11 30 37 218 120 50 254 141 
B12 46 145 408 268 154 464 277 
B13 42 67 69 55 70 132 81 
B14 122 218 8,168 4092 261 8,280 4,160 
Avg. 39 56 699 361 70 747 386 
Table 2: Area overhead due to watch-point logic 
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Fig 4: percentage of slice area overhead for watch-point logic 
 
The clock control state machine has a fixed area overhead; it is 
a simple state machine with three states. The clock to the 
design is disconnected, whenever this state machine is in the 
interrupt state and if the interrupt is asserted due to watch-
point logic. Most of the reconfigurable computing applications 
have such an interrupt state machine, which they use to assert 
an interrupt to the host when done computing. With this 
assumption, that the design has such state machine, we have 
calculated the area overhead without it. If there is any 
application which does not use an interrupt, the area overhead 
due to clock control machine has to be added to the overall 
area overhead. The area overhead of this clock control state 
machine is shown in table 3. 
 

FF LUT Slice count Clock control 
state machine  4 6 4 

Table 3: Area overhead due to clock control state machine 
 



If the signals representing states of a finite state machine are to 
be monitored, the choice of state encoding method has a direct 
affect on the area overhead. One-hot encoding, in which 
setting a bit in the bit_vector represents the state increases the 
area overhead, as there are more signals to be monitored. In 
the ITC benchmarks circuits, FSM states are encoded as 
integers and the state signal is a bounded integer of size 
log2(Nstates) bits. To monitor these signals, we converted them 
into std_logic_vector. To monitor the variables in a process, 
they were first stored in a signal, which is then connected to 
the srluts. We have observed that the signals kept to store the 
values of variables are synthesized as latches, thus, the number 
of variables monitored in the design increases the flip-flop 
utilization of the FPGA.  
 
When the condition specification is serially supplied by the 
host, the state machine which shifts the data into srluts is a 
simple counter. When the condition specification is transferred 
in parallel to the FPGA, the state machine is more complex 
and has more area overhead. In both cases the area overhead 
increases as the number of srlut increases. The number of bits 
to be shifted equals 16*Nsrlut, the counter size required is 
log2(16*Nluts) for serial input of the condition spec. Nsrlut is 
number of srluts in the design. Figure 5 shows the comparison 
of area for the original design without watch-point logic, to the 
area of the design with serial watch-point data input and the 
area of the design having parallel watch-point value input. 
 
Routing congestion also may increase the area overhead when 
watch-point logic is added. Due to limited routing resource 
some of the neighboring LUTs of the monitored signals are 
used as route though LUTs and are left unused. For example, 
in the design b09 adding a signal to monitor a two-bit variable 
increases the flip-flop count by 2 and the LUT count by 4. 
Ideally, there should be an increase of two flip-flops with no 
change in the LUT count. 
 
We have compared the area overhead of the scan-chain based 
watch-point logic to the area overhead of chipscope. Table 4 
and 5 show the area overhead of chipscope and scan-chain 
watch-point logic respectively. It can be observed that scan-
chain watch-point logic has significantly lower area overhead 
than chipscope for the same data width.  This is in part due to 
the compact run-time modifiable comparison logic in our 
scheme which alleviates the need for a more general purpose 
comparator.  
 
We have observed that in the scan-chain based technique, the 
srlut consumption increases more quickly than the flip-flop 
consumption when the watch-point width increases. This 
leaves many slices with unused flip-flops. These unused flip-
flops can be used to latch the process variables and to 
implement edge-triggered watch-point conditions to catch   
events such as the rising edge or falling edge of a signal.  
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Fig 5: cost of original benchmark, benchmark with watch-point logic 
data coming serially and in parallel.  
 

Watch-point 
data width 

Flip-
Flops 

LUTs Slices Percentage of 
XC2V250 slice 

2 125 143 72 4.6 
4 128 151 84 5.4 
8 134 167 84 5.4 
16 146 199 100 6.5 
32 173 265 133 8.6 
64 222 395 198 12.8 

Table 4: Chipscope area overhead 
 

Watch-point 
data width 

Flip-
Flops 

LUTs Slices Percentage of 
XC2V250 slice 

2 7 10 7 0.45 
4 9 18 12 0.78 
8 11 24 15 0.97 
16 12 31 19 1.27 
32 13 39 23 1.49 
64 14 56 32 2.08 

Table 5: Scan chain area overhead  
 
8.1 Trace buffer 
 
Debugging of certain applications can be facilitated if in 
addition to watch-point capability, a history of the monitored 
signal’s value is available to the user. This helps a user in 
determining how a signal has changed during the clock cycles 
prior to the occurrence of the condition. To maintain the 
history of a signal’s values a trace buffer can be added into the 
design in conjunction with the watch-point logic.   
 
To implement the trace buffer we use block RAMs provided in 
the Xilinx Virtex-II series of FPGAs.  Block RAMs are high-
speed SRAM modules available inside an FPGA. They can be 
configured in different width and depth combination, for 
example in the Virtex-II series of FPGA from Xilinx the 
following combinations are available: 1x16384, 2x8192, 
4x4096, 9x2048, 18x1024, and 36x512. Connecting multiple 
Block RAMs together can create wider and/or deeper Block 



RAMs. A FIFO can be constructed by connecting a counter at 
the address lines of the Block RAMs. This FIFO is used as a 
trace buffer, signals to be traced are connected at the data lines 
of the Block RAM and the address counter is incremented on 
every clock cycle. The counter used in the FIFO should be 
able to address all the locations in the Block RAM, thus the 
counter size depends on the depth of a FIFO. Table 6 shows 
the area overhead of implementing a FIFO using a single 
Block RAM with varying width and depth. It is observed that 
it is the depth of FIFO which causes change in the area 
overhead (LUT, FF and slices), increasing the width of a 
traced signal merely increases the Block RAM count. For 
example, if 512 traces of a signal are required, signals with 36, 
72 and 144 bits will use 1, 2 and 4 Block RAM respectively, 
but will have the same slice count for the FIFO control logic. 
This is due to the fact that the same counter and control logic 
can be used to address multiple Block RAMs. 
 
Trace buffer depth Flip-

Flops 
LUTs Slices 

256 31 34 22 
512 31 34 22 
1024 34 35 22 
2048 38 38 26 
4096 41 40 27 
8192 44 43 30 
16384 47 45 30 
Table 6: Area overhead of trace buffer control logic  
 
9 Conclusions  
 
In this paper we have proposed a structured, fast and area 
efficient technique to implement hardware watch-points. This 
technique enables run-time modification of watch-point 
condition and its value without any design recompilation or 
reconfiguration. The watch-points implemented using this 
technique provide software style interactive debugging and 
make the debugging process many times faster than hardware 
simulation. The debugging speedup is the result of running 
and debugging the design directly on the target hardware 
platform. The limitation of this technique is that the signals, 
which are monitored, cannot be changed at run-time, some 
degree of design recompilation is necessary to achieve that. 
Future work can be done to automate the process of inserting 
multiple instances of srluts into the vhdl design. 
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