
Semi-Formal Test Generation and Resolving a Temporal Abstraction Problem in
Practice: Industrial Application

Julia Dushina MikeBenjamin DanielGeist

STMicroelectronics STMicroelectronics IBM Corp
1000 Aztec West, 1000 Aztec West MATAM, Haifa

Bristol BS32 4SQ, UK Bristol BS32 4SQ, UK ISRAEL
Julia.Dushina@st.com Mike.Benjamin@st.com geist@st.com

Abstract This document describes a successful application of a
semi-formal test generation technique to the verification of
Direct Memory Access Controller (DMAC) of ST50, a new gen-
eral purpose RISC microprocessor developed by STMicroelec-
tronics and Hitachi. Like other memory-related devices, the
DMA controller challenges formal techniques because of the
state explosion problem. To cope with the challenge, abstraction
mechanism is applied during test generation: several abstract
models are created in order to verify different functional aspects
of the design. We also propose a practical solution to overcome a
temporal abstraction problem that arises when tests issued from
an abstract model have to be applied during real design simula-
tion.

I. INTRODUCTION

This work continues the series of experiments with Genevieve
test generation methodology. While the previous work ([1])
deals with a sophisticated environment interface where it is
very difficult “to drive” the unit under test to a desired state,
this experiment challenges a complex, potentially state explo-
sive internal structure. We describe a methodological solution
we found to overcome this difficulty. In particular, we show
how multiple abstraction models are applied to generate tests
and how we resolved a temporal abstraction problem that
arises when tests issued from an abstract model have to be
applied during real design simulation.

II. GENEVIEVE TEST GENERATION METHODOLOGY

The Genevieve methodology ([2]) relies on formal methods (
[3]) to generate test suites for specific behaviour of the design
under test. A specific behaviour, often called as corner case, is
a composition of border behaviours for different design parts
or blocks. In this documents we use “corner cases” to specify
particular design states we want to test.

To cope with state explosion, we describe the design under
test in a simplified manner. This process, called abstraction, is
shown in Figure 1. While there exist different kinds of
abstract mechanism ([4]), in this work we are concerned with
three of them:
1. functional abstraction to reveal the main functionality of

the design and to hide cumbersome details; the purpose
of the testing becomes clear;

2. data abstraction to group irrelevant data into classes or
ignore them;

3. temporal abstraction to consider the events order, rather
than precise timing.

We use the M ALT (Modelling micro-Architecture Lan-

guage for Traversal) language for abstract description of the

design under test (see [5]). M ALT is a VHDL based lan-

guage with the usual VHDL facilities. In addition, it is possi-
ble to define test coverage models and test constraints for test
generation process.

The coverage model is determined by adding special
attributes to “interesting” signals or variables which are called

coverage variables. Thus, the combinations of all possible
values of coverage variables constitute the first rough set of
interesting corner cases or coverage model. Each combination
corresponds to a state when the abstract description is trans-
lated to an FSM model. Later in this document we use the
term “state” to refer to a combination of variable values and
we say that coverage model consists of coverage states. The
coverage model can be further refined by means of special
functions. Thus, the designer might be interested to test the
circuit only with some specific values of coverage variables or
signals.

The test constraints restrict the way targeted coverage
states are reached. First of all, initial and final state of the test
sequence can be defined. Some states or transitions can be for-
bidden to appear in the test sequence. It is also possible to

µ

µ

Fig. 1. Genevieve test generation methodology

SAME RESULTS ?

State 1
In_AU0 = SAQ_X

DRQ = 0

A−SDQY = 0
D−SDQX = 0
D−SDQY = 0

A−SDQX = 0

In_AU1 = DRQ_X

. . .

State 2
In_AU0 = DRQ_Y
In_AU1 = DRQ_Y
DRQ = 1
A−SDQX = 1
A−SDQY = 0

D−SDQY = 0
D−SDQX = 0

State 3

S2

S3

S5

S6

S4 S7

S8

. . .A
−S

D
Q

X

. . .A
−S

D
Q

Y

. . .D
−S

D
Q

X

. . .D
−S

D
Q

Y

. . .

. . .

CORRECT DESIGN !

Block A5 Block A5 Block A5

Block A5Block A5Block A5

Block A5 Block A5

Block A5

B
ig

 R
eg

is
te

r
B

ig
 R

eg
is

te
r

Block A5

block1 block1

block1

block1 block1 block1

block1

block1

block1

block1block1 block1

block1

block1

block1block1

block1

block1

block1

block1

bl
oc

k1
bl

oc
k1

bl
oc

k1

bl
oc

k1

bl
oc

k1

block1

INPUT[31:0]
INPUT[31:0]
INPUT[31:0]

INPUT[31:0]

INPUT[31:0]
INPUT[31:0]

INPUT[31:0]

INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]

INPUT[31:0]
INPUT[31:0]

INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]
INPUT[31:0]

INPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]

OUTPUT[31:0]
OUTPUT[31:0]
OUTPUT[31:0]

block1

INPUT[31:0]

SDW_[Pn_pp_u5] R15, P6, 0x08
SDW_[Pn_pp_u5] R15, P6, 0x08

SDW_[Pn_pp_u5] R15, P6

Barrier

SAW_[Pn] R15, R11, 0x00 = modif
SDW_[Pn_u5] P2, P6, 0x08 = PP
SDW_[Pn_u5] P2, P6, 0x08 = PP
SAW_[Pn] R15, R11, 0x00 = modif
SAW_[Pn] R15, R11, 0x00 = modif

SDW_[Pn_u5] P2, P6, 0x08 = PP
SAW_[Pn] R15, R11, 0x00 = modif
SDW_[Pn_u5] P2, P6, 0x08 = PP

TEST 1

SDW_[Pn_pp_u5] R15, P6

. . .
TEST 2

In_AU0

In_AU1

S1

− coverage state

TEST 1

Concretization bug

DRQ

Yes

Simplified Design

Translation

Test Generation
Abstract Tests

FSM

No : Abstraction /

Concrete Tests

Real Design

C
on

cr
et

iz
at

io
n

No : Implementation bug

A
bs

tr
ac

tio
n

force a state to be obligatory between other two states in a test
suite.

Finally, the M ALT allows non-deterministic expressions.

It is especially useful for input assignments: the designer can
assign a set of values to a signal or variable. One of the values
will be randomly chosen during test generation. Some other
facilities, like the possibility to define the test length or the
number of tests required for each coverage task, are provided

by the M ALT special constructions.

When the abstract description is ready, it is translated to a
state machine representation used by the GOTCHA test gen-
eration tool (Figure 1). The intended coverage model is also

extracted during this translation from supplementary M ALT

constructions. GOTCHA (Generator of Test Cases for Hard-
ware Architecture) is a prototype coverage driven test genera-
tor, written specifically for the Genevieve project ([6] , [7]).

The GOTCHA compiler builds a C++ file containing both
the test generation algorithm and the embodiment of the finite
state machine. The state machine is explored via a depth first
search or a breadth first search algorithm from each of the
start states.

On completion of the enumeration of the entire reachable
state space, a random coverage task is chosen from amongst
those that have not yet been covered or proved to be uncover-
able. A test is generated by constructing an execution path to
the coverage task (state) then continuing on to a final state. If
the test length recommendation has been exceeded at this
point, then the test is output, else an extension path to a further
final state is sought, and appended to the test. This process
continues until either the test length recommendation is
exceeded or final state reached has no path to a further final
state. If the randomly chosen coverage task cannot reach a
final state then no test is generated.

Thus, GOTCHA results in a set of abstract tests, each
abstract test containing a sequence of states. Figure 1 shows
this process. A state is determined by concrete values of all
state variables (coverage or not). The design state variables
contain both state variables in a proper sense (it means vari-
ables or signals that represent design registers) as well as
input state variables. This is because the behaviour of the
environment, and therefore the inputs of FSM, depends on
reaction of the design under test. It is then necessary to model
the environment as one or more FSMs that provide legal input
to the design.

The environment behaviour is integrated into the design
model, thus extending the state set of the corresponding FSM
and eliminating its input set. This situation is similar to that
during testing with testbenches. The outmost testbench circuit
contains no inputs. If every variable, signal or register is con-
sidered as a state variable, the FSM corresponding to the out-
most testbench contains no input but only state set.

Abstract tests give sequence of states to reach a coverage
task. However, they can not be directly applied to the real
design. In order to obtain real or concrete tests, we have to
make concretization of abstract tests. The concretization con-
sists in translating of abstract tests into the tests suitable for a
simulation or emulation environment. In general, the trans-
lated tests have to provide intended abstract values to real
design inputs. For this reason the concretization can be con-
sidered as related to the input state variables: only these vari-
ables are taken into account during translation process.

The level and structure of concrete tests depend on test
objectives. It may be simulator commands supplying values to
the design inputs or microcontroller instructions if the design
is tested at functional level. In addition, a prologue and epi-
logue test suites are required in order to reset the real design
before test and correctly finish the test.

After simulation of the real design, obtained real test
results have to be compared with expected abstract ones. The
comparison can be seen as opposite to the concretization: it is
related to the state variables in a proper sense. Only these
abstract variables are compared against concrete test results.
As abstract and real design descriptions can differ consider-
ably, the relation between abstract and real state variables
must be established.

The comparison itself is done for each state of the abstract
test. In general, the comparison is successful if every abstract
state variable has the same value as corresponding signal/vari-
able of the real design. It is however possible that not all
abstract state variables need to be compared or else a match-
ing function is required for comparison.

If temporal abstraction is not used in abstract design
description, then successive states of abstract test correspond
to successive states of the real design. Otherwise, supplemen-
tary states may exist between real design states that match
abstract design states. We say in this case that abstract and
real design descriptions have different time scale.

If the results of abstract and concrete tests match, then the
design implementation is correct and satisfies intended behav-
iour expressed by the abstract description. If not, then three
scenarios are possible. First, the implementation is not correct
and has to be modified. Second, the abstract model is wrong
or too diverted from the original device.Third, the concretiza-
tion does not supply intended abstract inputs to the real
design. In each case necessary modifications must be made
and the whole process has to be repeated.

III. DESCRIPTION OF THE VERIFIED DMA CONTROLLER

The ST50 belongs to a series of products conjointly developed
by STMicroelectronics and Hitachi. This is a new architecture
that enables a family of low-cost, small, high-performance
microprocessors. It has simple and efficient hardware imple-
mentation specifically designed to be an excellent target for
compilers.

The ST50 integrates an on-chip direct memory access con-
troller (DMAC) that has been chosen as an application exam-
ple of the Genevieve test generation methodology. The
DMAC can be used in place of the CPU to perform high-
speed data transfers between memory and/or memory-mapped
internal devices.

The DMAC architecture is shown in Figure 2. It consists of
two common registers and four channels, each channel being
able to perform independent memory transfer.

The memory transfer associated with a channel is defined
by the channel configuration which is composed of the fol-
lowing elements:
• counter register defines the number of transactions within

one memory transfer;

µ

µ

µ

Fig. 2. The DMAC architecture

Ctrl

Ctrl

Ctrl

Ctrl

Common

DAR CountSAR

SAR

SAR

DAR

DAR

DAR

SAR Count

Count

Count

VCR

CPU

MEMORY

Common
control & status

Channel 0

Channel 1

Channel 2

Channel 3

request

request response

response

NMI

P
E

R
IP

H

• source address register andsource address incrementing
mode are used as the address from which the next trans-
action unit will be fetched; the source address will be
incremented or decremented as DMA channel proceeds
in accordance with the source address incrementing
mode;

• destination address register anddestination address
incrementing mode are used as the address at which the
next transaction unit will be stored; the destination
address will be incremented or decremented as DMA
channel proceeds in accordance with the destination
address incrementing mode;

• transfer size defines the size of one transaction that can
be 1, 2, 4, 8, 16 or 32 bytes; if the transfer size is 16 bytes
and the counter register is set to 10, then 16*10 bytes will
be transferred within the memory transfer associated with
the channel;

• resource selection defines the memory transfer source
and can be either inauto request mode or in on-chip
peripheral request mode; in the auto request mode the
source of memory transfer is the main memory and trans-
fer request signal for each memory transaction is gener-
ated by the DMAC automatically; in on-chip peripheral
request mode the source of memory transfer is one of six
peripheral devices and transfer request signal for each
memory transaction is generated by the DMAC only if
the associated peripheral device is ready to provide data.

In addition, each channel can be individually suspended by
resetting corresponding transfer enable [0 ... 3] bit. This bit is
also used to start a channel transfer when the channel pro-
gramming is finished.

The common registers are used for general DMAC config-
uration (the register “common”) and for stroring the DMAC
status after transfer completion (the register “vcr”). The mas-
ter enable bit of the register “common” allows to simulta-
neously enable or disable all four channels. The DMAC total
suspension also occurs if the NMI (Not Maskable Interrupt)
signal is set. The channel priority ordering is defined by the
priority bit of the register “common”. The DMAC can transfer
data in two priority modes:
• fixed priority mode: the relative channels priority remains

fixed: channel 0 -> channel 1 -> channel 2 -> channel 3,
channel 0 being the highest priority channel; all channels
operate in a steal mode meaning that the lower priority
channel can steal control form the higher priority channel
if the channel is idle; the higher priority channel regains
or loses control depending on the speed at which the ser-
viced unit requests the DMAC. Thus, if channel 0 is pro-
grammed to service in auto request mode then channel 1
gets control only when the transfer on channel 0 is com-
pleted;

• round robin mode: in this mode each time the transfer of
one transfer unit (1, 2, 4, 8, 16 or 32 bytes) ends on a
given channel, that channel is assigned the lowest priority
level; if a channel is programmed in on-chip peripheral
mode and the associated peripheral is not ready for trans-
action, then the priority moves to the next channel.

IV. HOW ABSTRACTION IS APPLIED TO GENERATE TESTS

Because the DMAC is a complex device and it is impossible
to check all possible transfer combinations, its abstract model
has to be carefully chosen in order to hide irrelevant details
and at the same time to catch the main DMAC properties. As
the Genevieve methodology employs a “model checking”
based tool, it is essential to eliminate a potential source of
state explosion in the abstract model. From this point of view

the most challenging DMAC parts are, of course, the address
and data buses.

That is why we chose not to check the memory transfer
itself (i.e. whether the intended data is written at the intended
address) by the tests generated with Genevieve. To ensure,
however, that the main purpose of the memory transfer is
achieved, we compare the memory contents obtained after
RTL and C simulation with the Genevieve tests. If the memo-
ries are identical, the main transfer mechanism of the DMAC
is considered correct. This process is schematically shown in
Figure 3.

After the elimination of “state explosive” address and data,
the DMAC behaviour is still very complex: the possibility to
separately program each channel results in a huge number of
different DMAC configuration, each of them leading to differ-
ent DMAC behaviour. In the abstract model we decided to
concentrate on the correct order of memory transactions
according to the priority mode, channels resource selection,
and the presence of peripheral requests if channels are pro-
grammed in on-chip peripheral mode. The equally important
issue for the DMAC verification is whether suspension and
resumption of one or several channels affects correct memory
transfers.

Thus, the coverage model in the abstract DMAC descrip-
tion was defined as all possible combinations of the DMAC
priority mode, each channel resource selection mode and each
channel suspension/resumption mode defined by the transfer
enable[0 ..3] signal. Other DMAC registers such as channels
transfer size were defined randomly during the translation step
from abstract tests to concrete ones.

However, even if the coverage model is restricted to most
important cases, the corresponding abstract model is still very
big for GOTCHA if we try to cover all coverage tasks at once.
A solution consists in splitting the overall coverage model
into several sub-models. In other words, we wrote different
abstract DMAC models, each abstract model describing a par-
ticular aspect of the DMAC functionality and resulting in
abstract tests for that particular functionality. This method-
ological decision is illustrated by Figure 4.

The initial coverage model is schematically shown as a
multiplication of interesting DMAC modes, thus giving 2^9 =
512 different coverage tasks (we consider that each channel
can be either in auto request or on-chip peripheral mode; a
concrete peripheral associated with the channel will be ran-
domly chosen during the translation step of abstract tests into
real ones).

To generate tests for the defined coverage tasks, two big
abstract submodels were created corresponding to two well-
distinguished different behaviours of the DMAC for each of
its priority modes. Each submodel was then further refined
into abstract models that correspond to the DMAC behaviour
with particular combination of resource selection modes. For
example, the abstract model for the AAPA resource selection
mode (Figure 4) correspond to the DMAC behaviour when the

IDENTICAL ?

RTL Simulation C Simulation

TESTS

Memory Content Memory Content

Fig. 3. Memory comparison

channels 0, 2 and 3 are programmed to transfer in auto request
mode, and the channel 1 is programmed to transfer in on-chip
peripheral mode (with any available peripheral device). While
the two submodels corresponding to the priority modes distin-
guish naturally, the difference between abstract models corre-
sponding to various combinations of resource selection modes
is minimum and basically consists in commenting fragments
of the common code. So, it did not cost considerable efforts to
create 16 abstract models for each priority mode.

The final 32 abstract models are reasonably small. More-
over, the coverage model for every final abstract model is also
small and contains only 16 combinations of suspension/
resumption state of four channels. Thus, abstract tests were
easily created by GOTCHA for the final abstract models.

Another challenge we had to confront while generating
abstract tests is the complex pipeline mechanism that imple-
ments DMAC memory transfers. Each memory transaction is
divided into two parts: firstly, a data has to be read from the
source address and, secondly, it has to be written at the desti-
nation address. As the DMAC uses the same bus for read and
write procedures, a well-established order does exist to con-
trol access to the bus. Very roughly, a two-depth pipeline cor-
responds to each read and write procedure. The read pipeline
is filled first. Then, the write pipeline is filled in the same
order of transactions as the read pipeline. When a write proce-
dure ends one memory transaction, a place is liberated in the
read pipeline. A new read request of the next memory transac-
tion can enter the read pipeline. A simplified version of this
mechanism is shown in Figure 5. The transactions 1, 2, 3, etc.
can belong to any DMAC channel.

In addition to the complex pipeline implementation, the
actual impact of some signals such as peripheral transfer
request is not immediate but delayed by several clock cycles.
For example, in Figure 5, the read procedure of the transaction
3 will belong to the channel 2 (assuming channel 2 has the
highest priority at the beginning of the read procedure). How-
ever the read procedure of the transaction 4 will not belong to

the channel 2 due to a small delay between the peripheral
request signal and the transaction 4.

To cope with this problem, we have chosen a fixed test sce-
nario in which the order of read procedures is predictable.
This order of read procedures is the subject of the verification:
each read procedure in a sequence of memory transactions
must belong to a specific channel according to the current
DMAC configuration (priority mode, resource selection, etc.).

According to the scenario, the tests start with the program-
ming of counter registers. Then all channels are simulta-
neously resumed by enabling the common master enable
signal. After the channels complete more than half of intended
memory transactions, they are randomly suspended by dis-
abling corresponding transfer enable [0..3] signal, thus trying
to cover the coverage tasks. The tests end by resuming chan-
nels one by one until all memory transactions on all four
channels are completed. An example of abstract test is shown
in Figure 6. This particular test covers 8 coverage tasks, i.e. 8
combinations of suspension/resumption channels mode.

The test scenario (including initialisation stage, random
signal assignments and final state definition) is integrated in
the final abstract models of Figure 4. These models resulted in
generation of 273 abstract tests, 126 tests for the fixed priority
mode and 147 for the round robin priority mode. The intended
coverage tasks were covered for each particular abstract
model. The next section will discuss the problem encountered
while translating abstract tests into concrete ones, suitable for
real simulation.

Ch0 resource selection mode *
Ch1 resource selection mode *
Ch2 resource selection mode *
Ch3 resource selection mode *

Channel 0 suspension mode * Channel 1 suspension mode *
Channel 2 suspension mode * Channel 3 suspension mode

A
bs

tr
ac

t M
od

el
 fo

r
A

A
A

A
re

so
ur

ce
 s

el
ec

tio
n

m
od

e

re
so

ur
ce

 s
el

ec
tio

n
m

od
e

A
bs

tr
ac

t M
od

el
 fo

r
A

A
A

P

A
bs

tr
ac

t M
od

el
 fo

r
A

A
P

A
re

so
ur

ce
 s

el
ec

tio
n

m
od

e

A
bs

tr
ac

t M
od

el
 fo

r
P

P
P

P
re

so
ur

ce
 s

el
ec

tio
n

m
od

e

A
bs

tr
ac

t M
od

el
 fo

r
A

A
A

A
re

so
ur

ce
 s

el
ec

tio
n

m
od

e

A
bs

tr
ac

t M
od

el
 fo

r
A

A
A

P
re

so
ur

ce
 s

el
ec

tio
n

m
od

e

A
bs

tr
ac

t M
od

el
 fo

r
A

A
P

A
re

so
ur

ce
 s

el
ec

tio
n

m
od

e

A
bs

tr
ac

t M
od

el
 fo

r
P

P
P

P
re

so
ur

ce
 s

el
ec

tio
n

m
od

e

ABSTRACT DMAC MODEL

Ch0 suspension/resumption mode *
Ch1 suspension/resumption mode *
Ch2 suspension/resumption mode *
Ch3 suspension/resumption mode

FIXED PRIORITY ROUND ROBIN PRIORITY

COVERAGE MODEL =

COVERAGE MODEL =
DMAC Priority Mode *

... ...

Fig. 4. Splitting DMAC into abstract models

Clock

READ WRITE READ WRITE READ WRITE

Dmac read/write bus

Trans 1 Trans 2 Trans 1 Trans 3 Trans 2 Trans 4 Trans 3. . .READ

Peripheral request
for the channel 2 . . .

Signal effect delay Signal effect delay

Fig. 5. Pipeline mechanism

������������
������������
������������

������������
������������
������������

Ch 0

����
����
����
����

Ch 3

������
������
������
������

��������
��������
��������
��������

��
��
��
��
��������
��������
��������

��������
��������
��������

���
���
���
���

������
������
������

������
������
������

�����
�����
�����
�����

����������
����������
����������

����������
����������
����������

rrrs

����
����
����
����

���
���
���
���

��
��
��
��

��
��
��

��
��
��

rrrrInit

T
es

t S
ta

rt

Ch 1

tr
an

sf
er

 e
nb

al
e

[0
]

Ch 2

=
 e

na
bl

ed
tr

an
sf

er
 e

nb
al

e
[0

]

rsrs rsss ssss sssr

=
 d

is
ab

le
d

=
 e

na
bl

ed

=
 e

na
bl

ed
m

as
te

r
en

ab
le

=
 d

is
ab

le
d

tr
an

sf
er

 e
nb

al
e

[2
]

=
 d

is
ab

le
d

tr
an

sf
er

 e
nb

al
e

[1
]

=
 d

is
ab

le
d

tr
an

sf
er

 e
nb

al
e

[3
]

=
 e

na
bl

ed

srrr

channels 1, 2, 3 in resumption

tr
an

sf
er

 e
nb

al
e

[1
]

tr
an

sf
er

 e
nb

al
e

[2
]

=
 e

na
bl

ed
tr

an
sf

er
 e

nb
al

e
[3

]

ssrr

− Suspension

rrrr

T
es

t E
nd

− Resumption rrrs − channel 0 in suspension

Fig. 6. Example of abstract test

V. TRANSLATION OF ABSTRACT TEST: SOLVING THE

TEMPORAL ABSTRACTION PROBLEM

The abstract DMAC models make the full use of abstraction
mechanisms: functional as well as temporal. While the func-
tional abstraction is not difficult to deal with during transla-
tion process of abstract tests (a simple matching function is
required), the temporal abstraction changes the time scale of
the abstract model with respect to original design. The supply-
ing of inputs in concrete tests becomes problematic.

Indeed, abstract tests contain abstract variables that corre-
spond to the design inputs and that have to provide intended
design inputs during actual simulation. As the abstract model
is not cycle accurate, it is not clear when the abstract inputs
must be supplied during concrete tests because an unpredict-
able number of additional real states can be inserted between
initial abstract states. Such a situation is shown in Figure 7:
we consider that a state corresponds to a clock cycle.

To resolve the problem, a simulation system is needed that
dynamically monitors the internal DMAC behaviour and once
a concrete state that corresponds to the desired abstract state is
reached, generates required concrete inputs. However, to
make the exact matching between abstract and concrete states
is a very difficult, if not impossible, task. Moreover, known
simulation tools require static simulation input file. How to
avoid all these difficulties?

Bergamachi and Raje ([8], [9]) address a similar problem
that appears when RTL-level implementation obtained after
behavioural synthesis has to be compared against algorithmic
specification. The problem is solved by using so-called
Observable Time Windows - the instants where the compari-
son between high-level specification and RTL implementation
is appropriate. The Observable Time Windows are identified
during simulation with the help of additional hardware.

We propose a different, software based approach. The
translation of abstract tests is realized as follows: each
abstract input supply is replaced with a fragment of simula-
tion language code that provides intended input values during
actual simulation. Each abstract output observation is
replaced with a fragment of simulation language code that
compares actual concrete outputs with the expected ones. In
addition, the output code fragment is waiting (in terms of used
simulation language) for the expected event to happen and is
blocking further simulation process. For example, the inputs
of the abstract state 4 will not be supplied during the concrete
test until the expected outputs of the abstract state 3 are
observed during the simulation (Figure 7).

The proposed concept consistently continues the Genev-
ieve idea of integrating the environment stimulus (device
inputs) into the device model: the inputs are assigned depend-
ing on the reaction of the device during test generation, simu-

lation and comparison process. It has to be noticed, that the
concretization and comparison steps are merged together thus
simplifying the whole verification process: if all expected
results of an abstract test match with the results obtained dur-
ing simulation, then the actual simulation corresponding to
the abstract test terminates normally, else abnormally.

The chosen translation approach also allows the simulation
input file to be created before the simulation starts. Even if the
device inputs are supplied “on the fly”, the procedures supply-
ing the inputs are written in the terms of simulation language
and translated in advance from abstract tests. It makes the
simulation possible because current simulation tools require
complete input simulation file before the simulation itself.

A QuickBench simulation environment provides all the
facilities necessary to implement the translation and compari-
son step of the verification process. QuickBench is a conven-
tional simulator (vcs) with additional capacities to model the
device environment by the means of the rave language spe-
cific to QuickBench. This feature is achieved by compiling
together the rave interpreter with the Synopsys Verilog.

The crucial property we need for Genevieve is imple-
mented by so-called rendez-vous construction. A rendez-vous
is similar to a synchronization point of two processes: a pro-
cess suspends when achieving the synchronization point and
can only resume when the counterpart process achieves the
same synchronization point. Similarly, in a test suite we use
the rendez-vous commands in order to wait for expected
results: further simulation process is frozen until the expected
results are received. During the simulation a special rave pro-
cedure is monitoring the DMAC outputs and when an
expected event happens, it provides the counterpart rendez-
vous construction necessary to unfreeze the simulation pro-
cess. As we mentioned earlier, the expected events are read
requests that DMAC sends to memory or peripherals as the
beginnings of memory transactions.

An example of pseudo-concrete simulation file translated
from the abstract test of Figure 7 is shown in Figure 8. The
test prologue and epilogue are required to reset the design
before the test and successfully finish the simulation after the
test. If an abstract state contains both input supplies and out-
put observation, then firstly, the expected outputs are observed
and, secondly, the intended inputs are supplied (as for the
abstract state 6 in Figure 8). This is the logical events order
because inputs cause the design to move from current state to
its next state and we need to check whether the design
achieved the current state before new inputs are supplied.

If the simulation of QuickBench test is successful (i.e. it
ends with the message “Test finished successfully” in Figure
8), this indicates that the design satisfies the functionality ver-
ified by the corresponding abstract test. All 273 abstract tests
generated for the DMA controller were successfully translated
and simulated, thus proving the correct RTL implementation
of the DMAC device. However, we found a bug in its C-
model: while ultimate memory transfers were correct, the
order of memory transactions was not always consistent with
the order of memory transactions in RTL implementation.

VI. CONCLUSION

This work resulted in successful verification of the Direct
Memory Access Controller traditionally considered very diffi-
cult to check by both conventional simulation and formal
methods due to the state explosion problem. The application
of the Genevieve methodology allowed us to avoid usual diffi-
culties and generate tests for this complex device.

By taking a real-life industrial design we showed the feasi-
bility of test generation using formal methods. We also dem-
onstrated how abstraction mechanism can be applied in

co
rr

es
po

nd
en

ce

S1: Inputs supply

S2

S3

S5

S6: Outputs observation

S4

S8: Inputs supply

S7

. . .

S1: Inputs supply

S5

S2

S4: Inputs supply

S3: Outputs observation

. . .
S8: Outputs observation

S6: I supply / O observation

S7

Abstract Test Concrete Test

Fig. 7. Temporal abstraction problem

practice to generate tests: we created several abstract models
(instead of only one), each of them specifying a particular
sub-functionality of the device and resulting in the test gener-
ation for that particular sub-functionality. Such an approach
reduces the complexity of the test generation process while
still dealing with various aspects of the design behaviour.

An abstract model, while still complex for test generation,
can hide too many details and result in abstract tests not
matching concrete design. A methodological solution we pro-
pose consists in a specific test scenario implying the same
event order for both abstract model and real design. The test
scenario is integrated in the abstract model thus guiding the
test generation towards abstract tests consistent with the real
implementation.

Another important result of this work is the solution pro-
posed for the temporal abstraction problem. The temporal
abstraction changes the time scale of the real design and loses
the exact time of input supply during abstract test generation.
If, however, the input supply is alternated with the expected
output observation, then the event order intended in abstract
tests is maintained. Among existing simulation tools, the
QuickBench simulation environment allows to implement
such an alternation. It has to be noticed though, that this simu-
lation tool is quite complex and more user-friendly simulators
providing the same features are required.

During this work we created 32 abstract models of the
DMA controller that generated 273 abstract tests. The abstract
tests covered all 512 coverage tasks defined by the coverage
model. The abstract tests were translated into concrete Quick-
Bench tests and successfully simulated. A bug in the DMAC
C-model was found as a result of the verification process.

To estimate the quality of the generated tests we compared
them with the tests created manually for the same device. The
results are given in the table below.

From several thousands manual tests (3000), only 156
were devoted to the verification of the “dynamic” behaviour
of the DMAC, i.e. when channels are alternatively switched
on and off during data transfer. All the other tests were written
to check the correct DMAC programming (notably possible
configurations of different transfer size associated with each
particular channel) and would not improve the overall cover-
age.

We can see that more significant numbers of manual tests
covered only 41 corner cases. This is because the manual tests
did not even attempt to check the behaviour we were inter-
ested in during the verification with Genevieve. It is incon-
ceivable to create the same quality manual tests as we created
with Genevieve because of the huge number of functional
modes of the DMAC device. Genevieve, on the contrary, auto-
matically generates tests for the coverage model defined by
simple enumeration of coverage variables.

Even if the measurement results given above are more than
satisfactory, we wanted nevertheless to compare Genevieve
and Manual tests using some “neutral” metrics. In fact, it is
very difficult to determine the advantage of manual tests with
respect to Genevieve ones: manual tests could cover corner
cases that Genevieve tests did not cover. We chose VHDL
coverage model as this neutral metrics: the number of VHDL
statements or VHDL conditional branches covered by tests
during simulation is used for the test comparison. The VHDL
coverage was done using Verification Navigator from
TransEda.

The results are reported in Table II: given the number of
Genevieve tests that order of magnitude less than the number
of manual tests, the Genevieve tests still show the VHDL cov-
erage competitive with manual tests. This fact is very encour-
aging and indicates the quality of Genevieve tests.

VII. REFERENCES

[1]. J.Dushina, M.Benjamin and D. Geist Semi-Formal Test Generation
with Genevieve, in DAC 01

[2]. M.Benjamin and all. A Study in Coverage-Driven Test Generation, in
DAC 99

[3]. K. L. McMillan Symbolic Model Checking Kluwer Academic Press,
Norwell, MA, 1993

[4]. T. Melham Abstraction Mechanisms for Hardware Verification in VLSI
Specification, Verification and Synthesis, Kluwer Academic Publish-
eres, January 1987

[5]. Genevieve: ESPIRIT Project 25314. Modelling Language Specification,
February 1999.

[6]. D. Geist and all. Coverage-Directed Test Generation Using Symbolic
Techniques, in FMCAD 96, Palo Alto, November 1996

[7]. A. Aharon and all. Test program generation for functional verification
of PowerPC processors in IBM in DAC 95, pages 279–285, 1995.

[8]. Reinaldo A. Bergamaschi and Salil Raje Observable Time Windows:
Verifying the Results of High-Level Synthesis in ED&TC’96, pages 350-
356, 1996

[9]. Reinaldo A. Bergamaschi and Salil Raje Observable Time Windows:
Verifying High-Level Synthesis Results in IEEE Design & Test on Com-
puters, pages 40-50, April-June of 1997

TABLE I COMPARISON: GENEVIEVE COVERAGE MODEL

Genevieve Manual

Test number 273 156 (from 3000)

Covered corner cases 512 41

S1 Inputs supply

S5

S2

S4 Inputs supply

S3 Outputs observation

S6 Inputs supply /
Outputs observation

S7

S8 Outputs observation
. . .

nop ();

Test prologue
common_register := 0;
pc_register := 0;. . .

if (outputs != expected_outputs)
rendez−vous (outputs);

then print ("Test failed"); end if;

write_input (data, address);

write_input (data, address);

nop ();

if (outputs != expected_outputs)
then print ("Test failed"); end if;

write_input (data, address);

nop ();

. . .

rendez−vous (outputs);

rendez−vous (outputs);

Abstract Test

tr
an

sl
at

io
n

Concrete QuickBench Test

Test epilogue
print ("Test finished successfully")

Fig. 8. Concretization of abstract tests

TABLE II COMPARISON: VHDL COVERAGE MODEL

Genevieve Manual

Total number of tests 273 3000

Covered VHDL Statements (%) 86.8 92.1

Covered VHDL Branches (%) 75.0 85.5

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

