
Topology Selection for Energy Minimization in Embedded Networks∗

Dexin Li, Pai H. Chou, and Nader Bagherzadeh
Dept. of ECE, University of California, Irvine, CA 92697-2625 USA

{dli,chou,nader}@ece.uci.edu

ABSTRACT

The trend towards distributed, networked embedded systems is
changing the way power should be managed. Power consumed by
bus and network interfaces now matches if not surpasses that of the
CPU and is thus becoming a prime candidate for reduction. This pa-
per explores energy-efficient bus topologies as a new technique for
global power optimization of embedded systems that are intercon-
nected by high-speed serial network-like busses such as FireWire and
a new generation of SoC buses. Our grammar-based representation
for these networks enables selection of energy-efficient bus topolo-
gies. Experimental results show 15–20% energy saving on the net-
work interfaces without sacrificing system performance.

I. I NTRODUCTION

A recent trend in power-aware designs iscommunication
centric power management. Bus and network interfaces in
embedded systems are consuming a significant amount of
power. System-on-chip architectures will also face similar is-
sues, as IP components are increasingly being integrated us-
ing on-chip networks for power and modularity advantages.
Communication-centric power management schemes can be
divided intocustom protocolsvs.standard protocols. This pa-
per does not attempt to propose a new standard but is intended
to demonstrate how an existing standard can incorporate en-
ergy efficient optimizations. More specifically, we investigate
topology selection for FireWire busses.

FireWire (IEEE1394) [1] is a high-speed serial bus archi-
tecture, supporting two data transfer types: asynchronous and
isochronous. It is hot-pluggable and a single bus can connect
up to 63 devices. The packets transferred can take up to 16
hops for a maximum total distance of 72 meters. When a new
node is attached to the bus, or an existing node is unplugged,
the bus will go through a bus reset and automatically reconfig-
ure itself.

In spite of the abundant bus management features, current
FireWire busses have implemented very limited power man-
agement schemes. We believe that the rich bus management
features open up new opportunities in high-level power man-
agement. We envision that a centralized bus manager that is
aware of the bus topology can optimize for energy reduction
based on workload and the speeds of transactions on the bus.

FireWire imposes a number of restrictions. First, the net-
work must be acyclic. Second, all intermediate nodes on the

∗This research was sponsored by DARPA under contract F33615-00-1-
1719

b c

a

c

a

b

c d

b

f

e

QQ
a

Fig. 1. Examples of tree strings:a(
b)(c) , b(a(c)) , anda(b(c)(d
))(e(f)) , respectively.

S→ E
E→ u|EB
B→(E) B|ε

Fig. 2. The production set for the tree
grammar G.

routing path must be powered on (at least the physical layer
controller) to act as repeaters. Third, all the intermediate nodes
must support the transfer speed of the communicating nodes,
Fourth, the fan-out of each node is constrained by the num-
ber of ports available on the physical interface. Our approach
works with the constraints imposed by the bus standard on the
topology, the port count, and the transfer speed. To accomplish
this, we model the legal topologies using a tree grammar, and
use the constraints to prune the search space. Our experimen-
tal results show up to 15% to 20% energy savings for network
interfaces without sacrificing system performance.

II. PROBLEM FORMULATION

We generate tree topologies by incrementally attaching new
nodes to existing trees. We have developed a formal represen-
tation for modeling trees and generating tree topologies. In
this section we give several definitions, followed by the cost
function and our problem statement.

A. Definitions

Definition 1 (Node u∈U) A node u is a component in the
system that has an interface consisting of one or more ports
ready to connect to other components.pu is the number of
ports available foru. Su is a finite set of speeds at which node
u can operate.

Definition 2 (Tree) A tree is a connected componentC ⊆ U
with exactly|C|−1 undirected edges.

Definition 3 (Transaction τ ∈ Γ) A transactionτ = (u1,u2,s,
w) is a data transfer process between two nodesu1 andu2 at the
transfer speedswith non-zero workloadw, wheres∈Su1∩Su2

andw is the amount of data (in bytes) transfered.1

1We assume all the transactions are peer-to-peer. Multicast or broadcast
transactions are not allowed.

Definition 4 (Tree string t) A tree string is a string represen-
tation of a tree. It is obtained by in-order traversal of the tree.
For example, the stringa(b)(c) in Fig. 1 represents a tree
of three nodes, witha being the root node andb andc being
leaf nodes. A matching pair of parentheses with the substring
inside represents a subtree.

Definition 5 (Tree grammar G) Let Σ be an alphabetΣ =
{u|u∈U}∪{(,) }, and a nodeu is denoted by a lower-case
Roman letter. A tree is represented by a tree stringt that can be
generated from grammarG = (V,Σ,P,S), whereV = {B,E} is
a set ofvariables, S is a start symbol,P is a set of productions
V →V ∪Σ shown in Fig. 2, whereε is an empty string, and if
a nodeu appears int, it appears exactly once.

Definition 6 (Tree languageL) A languageL(Σ) = {t|t is in
Σ∗ andS⇒ t} is a set of tree strings generated by grammarG.
We useL(v) = {t|t ∈Σ∗, v⇒ t} to denote the set of strings gen-
erated with the start symbolv ∈ V, andL(v∗) = {t∗|t is in Σ∗
andv⇒ t} to denote the set of strings that have zero or one or
more concatenated substrings, each of which is generated with
the start symbolv∈V.

A tree topology can be represented by multiple tree strings.
For example,a(b)(c) andb(a(c)) represent the identical
topology with different roots. Even with the same root, tree
stringa(b)(c) anda(c)(b) represent the same tree. Since
any node (capable of bus management) on a FireWire bus can
be the root, we pick one node as the root and order the rest so
that we are able to obtain a canonical form of a tree string.

Definition 7 (CanonicalizerH) A CanonicalizerH converts
a tree string to its canonical form by the means of in-order
traversal with sorting of labels. The canonical form of a tree
string t is: ∀u in t, u and its all children are sorted in lexico-
graphical order. Tree stringt1=a(b (c)(d))(e(f)) is in its
canonical form. Tree stringt2=a(e(f)) (b(c)(d)) is not
sincea and its childrene andb are not sorted. Hence we have
t1 = H(t2).

New trees are formed by adding a nodex to an existing tree.
The node can be either attached as a leaf node or inserted as
an internal node. We define a growing functionF(t,x) to help
generate larger trees from smaller ones.

Definition 8 (Growing function F) L(Σ ∪ {x}) = F(t,x) ·
L(Σ) , for all t ∈ L(Σ). Tree strings inL(Σ∪{x}) are derived
from trees inL(Σ) by the following rules:

F(t,x) =


d(x) if t =d,
d(x)(β) γ∪d(x(β)) γ∪
d(F(β,x)) γ∪d(β) F ′(γ,x) if t =d(β) γ.

(1)

F ′(α,x) =
{

/0 if α = ε,
(F(β,x)) γ ∪ (β) F ′(γ,x) if α =(β) γ. (2)

whered∈U is the root of treet, β ∈ L(E) andγ ∈ L(B∗).

We are interested in a specific setT of tree strings: each tree
string in T contains all nodes inU ; all the tree strings have
the same root node; no two tree strings inT have the same
canonical representations.T represents a complete set of all
the different tree topologies for the node setU .

Lemma 1 (Tree generation) Given a setT of tree strings for
a node setU , a new setT ′ for the node set ofU ∪{x} is de-
rived without producing redundant topologies by applying the
growing functionF to every tree inT: T ′ = T ·F(t,x), for all
t ∈ T.

Due to the paper length limitation, the proof of Lemma 1 is
omitted. Please refer to [3] for details.

Each node has a limited number of ports available. The root
noded can have up topd children, whereas a non-root nodeu
can have up topu−1 children (one link to the parent) where
px is the port count for the nodex. This is the port count con-
straint. A tree islegal if every node satisfies the port count
constraint.

B. Cost Function

Given a transactionτ = (uτ,vτ,sτ,wτ), all the nodesu ∈U
are categorized into three sets:Mt , Mr , andMi . Mt = {uτ}∪
{vτ} consists of two communicating nodes, whereuτ andvτ
are the sender and the receiver, respectively.Mr consists of
all the nodes that repeat the transactionτ on the routing path.
Mi consists of the nodes not involved in the transactionτ. We
say the power modemu of the nodeu in each above sets are
transferring, repeating, and idle, respectively.

For a given nodeu, the power functionP is a function of the
port countpu and modemu, denoted asP(pu,mu). The power
function can be a lookup table whose data entries come from
manufacturer’s data sheets [4].

We define the power function of a treet as:

P(τ, t) = ∑
u∈Mt

P(pu,mu)+ ∑
u∈Mr

P(pu,mu)+ ∑
u∈Mi

P(pu,mu)

(3)
The power functionP(τ, t) represents the total bus power of
the network during the transactionτ, including power of trans-
action nodes (both transferring and repeating) and idle nodes.

For a transactionτ, the effective transaction time(ETT) is
defined asDτ = w/s, wherew is the workload, ands is the
transmission speed. During a given time periodD, we suppose
there arek transaction instances{τi |i = 1, . . . ,k}. The total
ETT for the transactionτ is: Dτ = ∑i Dτi . We defineutilization
of the transactionτ as: λτ = Dτ/D. Finally for a given tree
stringt, we define our cost function as:

C = ∑
τ∈Γ

P(τ, t)λτ (4)

CostC represents the average energy consumption on the bus
in unit time. However it does not include the energy consump-
tion when the bus is completely idle (no transaction occurs).

TreeGen(V, Γ, h)
1 # Input: node set U, transaction setΓ, hub type h
2 #Output: tree set T
3 #Preprocess:sort nodes in decreasing order by their pu.
4 U ′← preprocess(U,h), # Add hub nodes if necessary
5 for eachu in U ′ { p[u]← pu } # p[u]: port count of U.
6 v← pop up the first node inU ′; T←{u}
7 whileU ′ not empty
8 u← pop up the first node inU ′; T ′← T
9 for each treet in T
10 for each nodev in t
11 Tl ← AddAsLeaf(t,u,Γ)
12 Tb← AddAsBranch(t,u,Γ)
13 T ′← Tl ∪Tb
14 T← T ′

15 returnT

Fig. 3. The tree enumeration algorithm.

C. Problem Statement

Given a legal treet and a set of transactionsΓ, t is afeasible
tree if it satisfies the speed constraint:

∀ τ(uτ,vτ,sτ,wτ) ∈ Γ and∀ x∈Mr , sτ ∈ Sx. (5)

That is, for a transaction, all the intermediate nodes on a rout-
ing path should support the transfer speed. We aim to find trees
that have the minimum cost defined by (4). The input to the
problem is the node setU and the transaction setΓ. The output
of the problem is a tree (or a set of trees) with the minimum
cost.

We addhubsto the node set in case it cannot form a single
tree (i.e., the total port count is less than 2|U | − 2). A hub
repeats transactions but cannot be a peer node. Several types
of hubs are available, differentiated by their port counts and
power consumption. We are interested in finding out which
hub type is energy-optimal in connecting the node devices.

III. A LGORITHM

Our algorithm (shown in Fig. 3) incrementally generates tree
topologies using the grammar-based growing functionF . We
useF to add a node to an existing tree either as a leaf node or
as an internal node. At each step, a tree topology is dropped
if it fails to satisfy constraints. The while loop (line 7–14)
generates new trees and expands the tree set. Two main steps,
ADDASLEAF() and ADDASBRANCH(), add a new node to
the existing tree as a leaf node and as an internal node, re-
spectively. Fig. 4 shows the procedure ADDASLEAF(). When
adding a new nodex to an existing treet as a leaf node, we
attachx to each node if it has an available port. We iden-
tify the routing path between two communicating nodes, and
check speed constraints. If the tree satisfies speed constraints
for all transactions, we append it to the tree set. The other step
ADDASBRANCH() (not shown) to addx as an internal node is

AddAsLeaf(t, x, Θ)
1 # Input : tree t, node x, transaction setΓ
2 #Output: tree set Tl
3 Tl ← /0; ptr← 0
4 while ptr < len(t)
5 while t[ptr] /∈U { ptr← ptr +1} # Find next node id
6 if p[t[ptr]] > 0 # If port available
7 Tsub← Subtree(t[ptr]) # Tsub: a set of subtrees of t[ptr]
8 insertx(Tsub,

′ (x)′) # Keep elements in Tsub sorted
9 t ′← join(Tsub) #Concatenate elements in Tsub into a string
10 t ′′← insertSub(t, t ′) # Substitute t[ptr]’s subtrees for t′

11 updatePort(p) # Update port count information
12 tag← 1
13 for eachτ in Γ
14 if checkSpeed(t ′′,τ) == FALSE
15 tag← 0; break
16 if tag== 1{ Tl ← Tl ∪{t ′′} }
17 ptr← ptr +1
18 returnTl

Fig. 4. The AddAsLeaf routine.

similarly implemented as string manipulation. A global search
procedure enumerates all feasible trees, calculates the cost for
every tree, and finds tree(s) with the minimum cost.

Here we briefly discuss the algorithm complexity. An ex-
haustive approach will generaten!2n−1 trees forn nodes (see
[3] for details), some of which are either redundant or in-
feasible. On the other hand, our algorithm generates tree
strings in their canonical form only. In ADDASLEAF(), the if-
branch (line 6–16) produces at mostk strings (k is the number
of nodes). The ADDASBRANCH() routine produces at most
(k−1) strings. Thus we have at most(2k−1) tree strings for
a tree of(k+1) nodes. Theoretically, our algorithm produces
at most∏n−2

i=0 (2n−3−2i) strings forn nodes. It is already
asymptotically smaller than the exhaustive approach. In real-
ity, our algorithm generates much fewer trees since we apply
constraints in each step, significantly reducing the number of
trees generated in that step and in the following steps.

IV. EXPERIMENTAL RESULTS

We apply our algorithm to two FireWire bus examples. We
use Firebug [2], a software bus snooping tool, to monitor the
bus traffic and obtain the workload information. Our algorithm
generates optimal tree sets efficiently. Potential energy saving
is achieved by choose the trees with the minimum cost.

Example I

We have eight devices (two Mac computers, a PC, a hard
drive, a camcorder, two web cameras, and a hub) connected
with FireWire bus interfaces, as listed in Table I(a). We first
arbitrarily interconnect all the devices and turn on FireBug to

Device s(Mb/s) p
Mac1 400 2
Mac2 400 2
PC1 400 2
HD1 200 2
Cam 100 1
iBot1 200 1
ibot2 200 1
Hub 400 3/4/6

(a)

τ u1 u2 s(Mb/s) w(Gb)
1 Mac1 HD1 200 13
2 Mac1 PC1 400 25
3 Mac1 Cam 100 80
4 Mac1 iBot1 200 46
5 Mac2 HD1 200 5
6 PC1 iBot2 200 46

(b)

TABLE I
(A) A LIST OF FIREWIRE DEVICES; (B) A LIST OF TRANSACTIONS

Example I Example II
Hub type p = 3 p = 4 p = 6 p = 3 p = 4 p = 6
of nodes 8 8 8 13 12 11
of trees 90 269 376 45761 17001 2013
MaxCost 270.6 306.2 338.9 332.8 304.4 270.4
MinCost 243.2 267.5 290.8 300.9 268.8 236.7
diff(%) 12.2 14.5 16.6 10.1 13.3 14.2

of solutions 4 1 1 3 2 1

TABLE II
EXPERIMENT RESULTS: EIGHT NODES FOR EXAMPLEI AND ELEVEN OR

MORE NODES FOR EXAMPLEII.

monitor the traffic on the bus, and then extract transaction-
related information, and obtain the transaction table shown in
Table I(b).

Table II shows the experimental results. Exhaustive enumer-
ation will produce 5,160,960 trees (see the previous section),
while our algorithm shrinks the tree set sizes down to 90–376.
MaxCostandMinCost are the maximum and minimum cost
value for all feasible trees. In three cases (fn = 3,4,6), the dif-
ferences betweenMinCostandMaxCostrange from 12.2% to
16.6%, representing the potential energy savings by selecting
the trees withMinCost.

Note that the more ports the hub has, the more energy the
tree consumes. The reason is that the hub with more ports
consumes more energy to repeat packets. Therefore for this
example, a three-port hub is the optimal solution. Four trees
with the minimum cost are found when using a three-port hub
(see Fig. 5).

Cam

Mac1

iBot2

PC1

iBot1

Mac2

HD1

#
#

l
l

HUB

Cam

Mac1

iBot2

PC1

Mac2

iBot1

HD1

#
#

l
l

HUB

Cam

Mac1

iBot1

HD1

Mac2

iBot2

PC1

#
#

l
l

HUB

Cam

Mac1

iBot2

Mac2

HD1

PC1 iBot1

#
#

l
l

HUB

Fig. 5. Example I: four optimal trees found.

Example II

We use three Mac computers, four FireWire hard drives, a
printer, a scanner and a camcorder, totaling ten devices. To
satisfy the connectivity condition, we add three, two, and one
hub when using three-port, four-port, and six-port hubs, re-
spectively. For the exhaustive approach, the problem of up to
thirteen nodes becomes intractable in practice. Our algorithm
generates highly compact tree sets. Potential energy savings
range from 10.1% to 14.2%.

Note that we only consider the time periods with traffic on
the bus. When the bus is completely idle, some or all of the
bus nodes can be disabled. In the implementation of FireWire
bus drivers, the link layer and above layers can be disabled for
power reduction. In our examples, we assume all the layers
are on all the time. Even for the physical layer controllers, dy-
namic power management techniques can be applied to disable
them when there is no traffic passing through them. The above
conditions are orthogonal to our techniques. This means that
additive energy saving could be achieved by combining our
technique together with other power management techniques.

V. CONCLUSION

This paper presents a method for optimizing peer-to-peer
bus topology for energy reduction. We represent trees with
a canonical string form, which is both concise and easy to ma-
nipulate. We purpose an incremental approach to enumerate
tree topologies. By applying a number of constraints to tree
growing steps, we are able to obtain both compact and com-
plete tree sets without producing redundant trees. We capture
the bus workload information by monitoring the bus traffic and
factor it into the cost function. The current topology optimiza-
tion is static, requiring the bus to reconfigure at least once to
form an optimal topology. It is possible to construct a bus
topology with redundant physical links while dynamically con-
figuring it to form logic trees for performance, energy-saving,
and fault-tolerance reasons.

REFERENCES

[1] D. Anderson. FireWire System Architecture. MindShare Inc.,
Reading, Massachusetts, second edition, 1999.

[2] Apple Inc. Apple’s FireWire SDK 2.8.1. In
ftp://ftp.apple.com/developer/DevelopmentKits/, 2000.

[3] D. Li. Topology selection for energy minimization in em-
bedded networks. InTechnical report, IMPACCT-TR-09-01-
02, University of California at Irvine, http://www.ece.uci.edu/
˜dli/research02/impacct-tr-09-01-02.pdf, September 2002.

[4] Texas Instruments. IEEE 1394 products: Integrated de-
vices, link layer controllers and physical layer controllers. In
http://www.ti.com/sc/1394, 2002.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

