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Abstract - It has been attracting attention to reco
GPOS for application-specific domain. Linux is curr
of the popular candidate GPOSs. Although Linux has
kernel’s reconfiguration by letting users add/remov
function modules, we still lack of good schemes of reco
Linux according to a specific embedded system. In th
we are going to propose an approach to custo
application-specific Linux. This approach derives fro
graph” based on reengineering. By analyzing a graph-
representation of the target system, we could find the
removing the unnecessary codes of Linux.  
 
 

I. Introduction 
 

Recently, there existed many distributions of e
Linux, such as IBM Linux watch [1]. Linux
industries’ attention due to the following attributes 
z The source code is free. 
z Linux is able to provide enough function

extracting and reusing.  
z Linux is robust, reliable, modularize

configurable in nature. 
However, Linux has some difficulties to be an e

system. 
z Linux is a monolithic GPOS and has diverse 

Realizing this kind of huge OS is com
Therefore, we still lack of a formal and usefu
to cope with it. After all, manually custom
Linux is hard and costly. 

z It is hard to guarantee the customized 
completeness. 

z Although Linux also provides the ways for 
dynamically add/remove modules, the code
method still occupies space of storage.  

In this article, we propose a call graph [2,3,4,5] app
customize Linux as an application-specific OS. Call
commonly employed to represent the interrela
among the procedures in a program. According 
graph, it might be able to extract the reusable com
from a software system [6]. Hence, call graph is usu
for the purposes of software reengineering or 
maintenance. Our approach is to use the call graph
to represent three parts of a Linux system. They are 
applications, system libraries, and Linux kernel. O
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it would be a good approach that a Linux engineer firstly 
adopts a traditional Linux tool - “make config” to remove 
the most likely unused functions. Then, by tracing the 
calling relations based on the various requirements, 
including hardware and software configuration, of an 
embedded system, it could be able to discover the unused 
code more precisely. And then we could remove them from 
Linux. Finally, a smaller and an application-specific Linux 
would be obtained. 

In this study, we adopt a popular audio tool, ACDC [7], 
that is a CD player application in Linux, as the target system 
for demonstration. Because this CD player box is a headless 
system, that is a system without a display and keyboard, its 
user interface should be removed at the first step. Then 
according to ACDC software and target device, we remove 
the unused code, such as the unnecessary hardware drivers. 
Based on this experiment, we will list the related statistics to 
verify the feasibility and correctness of our approach. 
Finally, a complete and smaller customized Linux would 
thus be obtained. 
 
 
II. A graph-based approach for customizing Linux kernel 
 

Linux kernel and other Unix-like systems are monolithic 
operating systems. Linux consists of a number of procedures 
and these procedures cooperatively perform jobs by calling 
each other. However, Linux kernel is a non-fixed structure. 
This kind of property is different from the typical program 
that has a fixed hierarchy. Hence, it is more complicated to 
predict Linux kernel. The first challenge of customizing 
Linux kernel is to precisely understand its structure. 

Call graph is a solution to cope with this challenge, 
because it has well ability to depict a program’s calling 
structure. The notion of a call graph is to extract the calling 
relations of the invoked procedures. Recently, call graph has 
been applied on the fields of software reengineering and 
software maintenance. Our study adopts call graph technique 
to abstract a Linux kernel. The basic concept is to construct 
a kernel’ calling structure and to remove the unnecessary 
codes according to specific application. Finally, our result 
tries to reconstruct an application-specific Linux kernel and 
to be ported onto the target device. 

However, there might be several issues coming with 



customizing Linux kernel: 
z Although kernel is the main role of Linux, it is not the 

only one participant. Almost modern OSs are 
constructed as layer structure and Linux is also one of 
them. Kernel is the medium layer of Linux. Other 
layers such as application, library and device drivers 
should also be reusable. 

z You can’t find a rooted procedure (a rooted procedure 
is similar to the main(), which is a root of a C 
program) of Linux kernel. Hence, the calling relations 
among kernel’s procedures are intricate. 

Our stepwise approach has 7 steps including constructing 
Linux application’s call graph and library’s call graph. This 
approach’s advantage is to reuse each layer’s asset. The rest 
parts of this section will indicate each step’s details. 
 
Step 1. Construct an application’s call graph from the 
application source code 
 

Linux is an open-resource OS and supports diverse 
valuable applications, packages and device drivers. 
Moreover, you can acquire the source code easily, especially 
from Internet. This attracts many embedded system 
companies’ attention, because they strongly believe that it 
would be an efficient way to manufacture distributions from 
Linux. 

main()

a() c()b()

d()

main()
{  a();    b();    c(); }
a()
{ ... }
b()
{  d(); }
c()
{  d(); }
d()
{  ... }
e()
{  f(); }
f()
{  ... }

e()

f()

(a) Application source code (b) Application call graph  
 

Fig.1. Generating a call graph from the application source code 
 
The first step of the approach is to construct an 

application’s call graph, as the source code is available. 
Recently, almost applications running on Linux are written 
in C language. Based on the concept of call graph, we can 
easily construct this application’s call structure. 

Definition. A call graph is a directed graph, A call 
graph of a program is formally defined as a graph 
CG=(P, E, s), where P s is the set of nodes (the 
nodes represent the procedures of this program), and 
the set of E is defined by the call relations on (sU P) 
× P, i.e., a directed edge (p1, p2) ∈  E exist iff p1 
calls p2 one or more times. 

U

According to the definition, a call graph represents a 
program’s static structure. Take a C program as the example, 
you can find the path composed by a number of invoked 
procedures and main () is the starting node of this path 
(figure 1(b)). SUCC(main) should contain the necessary 
procedures. Hence, if there existed a procedure P ∉  
SUCC(main), P is the unused procedure of this program. 

Consequently, it is better to remove P from this program. 
This is an interesting question: why did there exist an 
unnecessary procedure? This situation usually appears due 
to the programmer’s mistake, especially in a huge program 
like Linux. Although the procedure P has not caused any 
fault within Linux, we can’t make sure it is safe when 
porting it onto the embedded system. In this case of figure 1, 
two procedures, e() and f(), have to be removed. 

 
Step 2. Construct a Library’s call graph from the library’s 
source code 
 

Linux is also a layer-based OS. Application is on the top 
layer and sends request to the next layer. Typically, a Linux 
application, which is written in C, requests OS’s services 
through library calls (figure 2(a)). In Linux, libraries such as 
I/O functions, mathematics functions, and string functions, 
etc, usually occupy a lot of space. Almost embedded Linux 
companies prefer to develop a new library from scratch. 
However, based on the concept of software reuse, we believe 
there are many reusable library calls. If we can reuse them 
by an efficient way, that would reduce development time. 

Therefore, the second step of this approach is to construct 
a library call graph. This graph also represents the library’s 
calling structure, but it doesn’t have a root. In the other 
words, it provides a number of entries for application written 
in C (figure 2(b)). The purpose of analyzing a library’s 
calling structure is to realize which library call may be 
reusable. Of course, we may be able to predict the 
unnecessary ones. 
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Fig. 2(a) Call a system service by library call 

 

open read write lseek fsync mmap ioctl select

call from applcation

invoke system call  
Fig. 2(b) Simplified library call graph 

 
Step 3. Construct a kernel’s call graph from the source code 
 

Library’s next layer is kernel, which is the central part of 
Linux. It controls and coordinates operations. Because 
kernel is an important and big building block, almost 
embedded Linux distributions prefer to reserve kernel 
instead of adapting it. Their basic consideration is to 
guarantee kernel’s correct execution. Therefore, many 
unnecessary codes still reside within kernel. 

The third step of this approach is to analyze kernel’s 
calling structure. This step is similar to step 2. Kernel’s 
calling structure supports several entries for last layer. 
Almost modern OSs are interrupt-driven systems. The 
events request the services of CPU with interrupt or 



exception. Whenever an interrupt or exception occurs, kernel 
starts the relative handlers to cope with it. Therefore, in 
order to abstract Linux kernel, we firstly have to understand 
when kernel will be executed. We list the following 
occasions: 
z An application invokes system calls. 
z The occurrence of any exception. 
z The occurrence of interrupt. 

The first and second conditions are for application, and 
the third condition is for hardware device or platform. 
Therefore, in order to look for the unnecessary procedures of 
kernel, we can observe kernel’s call graph according to the 
above conditions. For application, we could combine 
application’s call graph, library’s call graph, and kernel’ call 
graph. This combination would generate a SUCC(main). 
Any procedure not in this set may be able to be removed. 
 
Step 4. Identify which hardware device embedded system 
have and needs 
 

Linux supports many hardware devices, such as disk, 
keyboard, mouse, and so on. However, an embedded system 
is also a specific-hardware platform. For example, a 
keyboard or a mouse may be not standard equipment for 
PDA. Therefore, to adapt Linux into an embedded OS, we 
have a sense that there existed too many unused device 
drivers or related code in Linux. These parts might occupy 
the embedded system’s resources. Therefore, the fourth step 
is to seek these unused parts possibly. 
 
Step 5. Combine application’s call graph, library’s call 
graph, and kernel’s graph to extract which system calls that 
an application needs 
 

From step 5 to step 7, we want to find a set of 
SUCC(main). This set describes a number of procedures that 
we are able to reuse them for a specific application. As we 
discuss above, a library’s call graph lacks of a root. 
Therefore, we incorporate application’s call graph into 
library’s call graph. Now the main(), which is the root of the 
application’s call graph, represents the unique entry of this 
combined call graph. Moreover, according to the 
SUCC(main), we could extract the unused library’s calls.  

As we discussed above, a library call is a channel to 
connect application and Linux kernel. By combining 
kernel’s call graph and library’s call graph, we can find out 
which system calls interact with library’s calls. Hence, the 
invoked system calls are added into the SUCC(main). 
Consequently, we can extract the unnecessary system calls. 
 
Step 6. Identify which exception handlers the kernel needs 
 
In step 6, we try to remove the unemployed code that 
handles exceptions. As we know, some exception handlers 
are not needed. There have been about 18 handlers within 
Linux 1.2.3 including divide_error, debug, nmi, int3, 
overflow, bounds, invalid_op, device_not_available, 
double_fault, coprocessor_segment_overrun, invalid_TSS, 

segment_not_present, stack_segment, general_protection, 
page_fault, coprocessor_error, and alignment_check. These 
exceptions are also the entries provided by kernel. 
 
Step 7. Remove the unused procedures and test the new 
kernel 
 
After identifying the unnecessary procedures, we remove 
them from kernel in step 7. However, we must validate this 
new generated kernel’s correction. If the new kernel has 
faults, we have to verify its call graph and to generate the 
correct graph. 
 
 

III. A case study: ACDC player 
 

In this section, we apply call graph approach on a case 
study called ACDC player. ACDC is a media application 
running on Linux. In order to demonstrate our approach, we 
adapt ACDC into an embedded application. We assume that 
a company decides to reuse ACDC and to port it onto 
another device. We call this final product as ACDC player. 

In 3.1, we indicate how to construct ACDC’s call graph. 
In 3.2, we list statistics to show our demonstration. 
 
3.1. The customization of ACDC 
 
At beginning, our approach can be summarized into three 
phases: 
z Construct call graphs including application, library and 

kernel. 
z Find the unused code, procedures, and drivers. 
z Remove those unnecessary participants and test the new 

kernel. 
Therefore, to reuse and customize ACDC, we firstly 

construct the related call graphs. Then we combine three call 
graphs and try to obtain the SUCC(main). In this case, our 
experimental environment is shown as follows: 
z Linux distribution: Slackware 3.0 
z Kernel’s version: 1.2.3 
z Library: libc 4.6.27 
z Target application: text mode ACDC 

Kernel 1.2.3 has been adopted on academic researches, 
due to its simplicity. This kernel doesn’t support too 
complex functionalities. For an embedded domain, these 
functionalities are often not applicable. Hence, it would be 
easier to analyze this kernel’s structure. ACDC running on 
this kernel is a text mode application. For a CD player, it 
doesn’t need a GUI. Therefore, text mode ACDC could 
simplify our demonstration. 

Firstly, we construct ACDC’s call graph to find the 
necessary procedures. Some of these procedures in ACDC 
are provided by libc, which is a well-known library in Linux. 
These procedures can be regarded as the entries whenever 
Linux application requests its next layer’s services. The next 
step, therefore, is to construct libc’s call graph. According to 
this call graph, we might remove the unused library’s calls. 
The six libc’s calls, malloc, free, exit, close, open, and ioctl 



are channels between ACDC and libc. It also means the six 
libc’s calls are included into SUCC(main). Therefore, we 
can remove other libc’s calls. 

main

cd_status autocat

freeread_toc exit close open

malloc

ioctl

play_cd stop_cd checkit

play_chunk

malloc free exit close open ioctl

brk exit close open ioctl

ACDC

libc

Kernel

System Call

 
Fig. 3. The combined call graph 

 
Figure 3 shows that kernel provides five system calls as 

the kernel’s entries including mmap, exit, close, open, ioctl. 
Each of the five system calls has to call its successors. 
Finally, through the cooperation among these system calls, 
kernel serves its last layer’s requests. The system calls that 
are not included into SUCC(main) will be removed. 
 
3.2. Evaluation results 
 

Linux kernel can be decomposed into several parts and 
each of them is stored in individual directory. Linux 
provides “make config’ command to add/remove device 
drivers.  

We establish two experiment cases as follows: 
Case 1. The total size of kernel customized with call graph 

approach. 
Case 2. Mix two methods, “config” command and call 

graph, to customize Linux kernel.  In this case, we 
want to observe if a smaller kernel than first case 
can be generated or not. 

 
Table 1. The statistics of case 1 

Linux kernel’s 
organization 

Original 
size (byte)

After using 
call graph 
approach 

(byte) 

Percentage

arch/i386/kernel/head.o 60,617 60,617 0 % 
init/main.o 8,314 6,598 20.6 % 
init/version.o 639 639 0 % 
arch/i386/kernel/kernel.o 43,339 32,286 25.5 % 
kernel/kernel.o 73,000 50,730 30.5 % 
arch/i386/mm/mm.o 3,767 3,714 1.4 % 
mm/mm.o 37,079 32,336 12.8 % 
fs/fs.o 92,121 71,006 22.9 % 
net/net.o 117,098 115,606 1.3 % 
Ipc/ipc.o 22,472 21,355 5 % 
 

Table 1shows the statistics of case 1. Through this table, 
our approach is able to remove 13.9% of procedures from 
kernel, especially on kernel.o, which is core of kernel. 
Therefore, it proves that our approach can effectively 
customize kernel. We almost eliminate about 30.5 % of 
procedures from kernel.o. 

 
Table 2. The statistics of case 2 

Linux kernel’s 
organization Phase 1 Phase 2 Percentage

arch/i386/kernel/head.o 60,617 60,617 0 % 
init/main.o 8,314 6,598 20.6 % 
init/version.o 639 639 0 % 
arch/i386/kernel/kernel.o 36,710 32,478 11.5 % 
Kernel/kernel.o 58,054 46,288 20.7 % 
arch/i386/mm/mm.o 3,660 3,660 0 % 
mm/mm.o 32,336 32,336 0 % 
fs/fs.o 70,567 70,567 0 % 
net/net.o 15,311 15,311 0 % 
Ipc/ipc.o 221 221 0 % 
 

Table 2 lists the related statistics of case 2. Case 2 
contains two phases. At beginning, we adopt “config” to 
configure kernel as possible as we can. In the second phase, 
we adopt call graph approach to advance customization. 
Consequently, we find call graph approach removes about 
20.7% of procedures from kernel.o after customizing with 
“config”. 
 
 

IV. Conclusions 
 

In this paper, we try to adopt call graph representation to 
depict Linux kernel’s calling structure. Call graph is an 
adaptive structure to meet different application-specific 
domains. This property is beneficial for embedded system 
design. Our approach is not like typical methodologies that 
customize Linux kernel with lines of code. The typical 
methods are inefficient and costly. An experiment called 
ACDC player is the demonstration. The results show that 
our approach can remove about 20.5% of kernel’s 
procedures and causes no side effect.  
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