
Linux Kernel Customization for Embedded Systems By Using Call Graph Approach

Che-Tai Lee

Dept. of Info. Eng.
Feng Chia University

Taichung 407, Taiwan, R.O.C.
Tel:886-4-2451-7250
Fax:886-4-2451-6101

e-mail:ctlee@ultra2.iecs.fcu.edu.tw

F
Taich

T
F

e-mail:s

Jim-Min Lin

Dept. of Info. Eng.
Feng Chia University

Taichung 407, Taiwan, R.O.C.
Tel:886-4-2451-7250
Fax:886-4-2451-6101

e-mail:jimmy@fcu.edu.tw

Abstract - It has been attracting attention to reco
GPOS for application-specific domain. Linux is curr
of the popular candidate GPOSs. Although Linux has
kernel’s reconfiguration by letting users add/remov
function modules, we still lack of good schemes of reco
Linux according to a specific embedded system. In th
we are going to propose an approach to custo
application-specific Linux. This approach derives fro
graph” based on reengineering. By analyzing a graph-
representation of the target system, we could find the
removing the unnecessary codes of Linux.

I. Introduction

Recently, there existed many distributions of e
Linux, such as IBM Linux watch [1]. Linux
industries’ attention due to the following attributes
z The source code is free.
z Linux is able to provide enough function

extracting and reusing.
z Linux is robust, reliable, modularize

configurable in nature.
However, Linux has some difficulties to be an e

system.
z Linux is a monolithic GPOS and has diverse

Realizing this kind of huge OS is com
Therefore, we still lack of a formal and usefu
to cope with it. After all, manually custom
Linux is hard and costly.

z It is hard to guarantee the customized
completeness.

z Although Linux also provides the ways for
dynamically add/remove modules, the code
method still occupies space of storage.

In this article, we propose a call graph [2,3,4,5] app
customize Linux as an application-specific OS. Call
commonly employed to represent the interrela
among the procedures in a program. According
graph, it might be able to extract the reusable com
from a software system [6]. Hence, call graph is usu
for the purposes of software reengineering or
maintenance. Our approach is to use the call graph
to represent three parts of a Linux system. They are
applications, system libraries, and Linux kernel. O
Zeng-Wei Hong

Dept. of Info. Eng.
eng Chia University
ung 407, Taiwan, R.O.C.
el:886-4-2451-7250
ax:886-4-2451-6101
tewart@ultra2.iecs.fcu.edu.t
nfigure a
ently one
 tools for
e desired
nfiguring
is article,
mize an
m a “call
structure
 rules of

mbedded
 attracts

ality for

d, and

mbedded

versions.
plicated.
l scheme

izing a

kernel’s

users to
 of this

roach to
 graph is
tionships
to a call

ponents
ally used
software
 scheme
software
f course,

it would be a good approach that a Linux engineer firstly
adopts a traditional Linux tool - “make config” to remove
the most likely unused functions. Then, by tracing the
calling relations based on the various requirements,
including hardware and software configuration, of an
embedded system, it could be able to discover the unused
code more precisely. And then we could remove them from
Linux. Finally, a smaller and an application-specific Linux
would be obtained.

In this study, we adopt a popular audio tool, ACDC [7],
that is a CD player application in Linux, as the target system
for demonstration. Because this CD player box is a headless
system, that is a system without a display and keyboard, its
user interface should be removed at the first step. Then
according to ACDC software and target device, we remove
the unused code, such as the unnecessary hardware drivers.
Based on this experiment, we will list the related statistics to
verify the feasibility and correctness of our approach.
Finally, a complete and smaller customized Linux would
thus be obtained.

II. A graph-based approach for customizing Linux kernel

Linux kernel and other Unix-like systems are monolithic
operating systems. Linux consists of a number of procedures
and these procedures cooperatively perform jobs by calling
each other. However, Linux kernel is a non-fixed structure.
This kind of property is different from the typical program
that has a fixed hierarchy. Hence, it is more complicated to
predict Linux kernel. The first challenge of customizing
Linux kernel is to precisely understand its structure.

Call graph is a solution to cope with this challenge,
because it has well ability to depict a program’s calling
structure. The notion of a call graph is to extract the calling
relations of the invoked procedures. Recently, call graph has
been applied on the fields of software reengineering and
software maintenance. Our study adopts call graph technique
to abstract a Linux kernel. The basic concept is to construct
a kernel’ calling structure and to remove the unnecessary
codes according to specific application. Finally, our result
tries to reconstruct an application-specific Linux kernel and
to be ported onto the target device.

However, there might be several issues coming with

customizing Linux kernel:
z Although kernel is the main role of Linux, it is not the

only one participant. Almost modern OSs are
constructed as layer structure and Linux is also one of
them. Kernel is the medium layer of Linux. Other
layers such as application, library and device drivers
should also be reusable.

z You can’t find a rooted procedure (a rooted procedure
is similar to the main(), which is a root of a C
program) of Linux kernel. Hence, the calling relations
among kernel’s procedures are intricate.

Our stepwise approach has 7 steps including constructing
Linux application’s call graph and library’s call graph. This
approach’s advantage is to reuse each layer’s asset. The rest
parts of this section will indicate each step’s details.

Step 1. Construct an application’s call graph from the
application source code

Linux is an open-resource OS and supports diverse
valuable applications, packages and device drivers.
Moreover, you can acquire the source code easily, especially
from Internet. This attracts many embedded system
companies’ attention, because they strongly believe that it
would be an efficient way to manufacture distributions from
Linux.

main()

a() c()b()

d()

main()
{ a(); b(); c(); }
a()
{ ... }
b()
{ d(); }
c()
{ d(); }
d()
{ ... }
e()
{ f(); }
f()
{ ... }

e()

f()

(a) Application source code (b) Application call graph

Fig.1. Generating a call graph from the application source code

The first step of the approach is to construct an

application’s call graph, as the source code is available.
Recently, almost applications running on Linux are written
in C language. Based on the concept of call graph, we can
easily construct this application’s call structure.

Definition. A call graph is a directed graph, A call
graph of a program is formally defined as a graph
CG=(P, E, s), where P s is the set of nodes (the
nodes represent the procedures of this program), and
the set of E is defined by the call relations on (sU P)
× P, i.e., a directed edge (p1, p2) ∈ E exist iff p1
calls p2 one or more times.

U

According to the definition, a call graph represents a
program’s static structure. Take a C program as the example,
you can find the path composed by a number of invoked
procedures and main () is the starting node of this path
(figure 1(b)). SUCC(main) should contain the necessary
procedures. Hence, if there existed a procedure P ∉
SUCC(main), P is the unused procedure of this program.

Consequently, it is better to remove P from this program.
This is an interesting question: why did there exist an
unnecessary procedure? This situation usually appears due
to the programmer’s mistake, especially in a huge program
like Linux. Although the procedure P has not caused any
fault within Linux, we can’t make sure it is safe when
porting it onto the embedded system. In this case of figure 1,
two procedures, e() and f(), have to be removed.

Step 2. Construct a Library’s call graph from the library’s
source code

Linux is also a layer-based OS. Application is on the top
layer and sends request to the next layer. Typically, a Linux
application, which is written in C, requests OS’s services
through library calls (figure 2(a)). In Linux, libraries such as
I/O functions, mathematics functions, and string functions,
etc, usually occupy a lot of space. Almost embedded Linux
companies prefer to develop a new library from scratch.
However, based on the concept of software reuse, we believe
there are many reusable library calls. If we can reuse them
by an efficient way, that would reduce development time.

Therefore, the second step of this approach is to construct
a library call graph. This graph also represents the library’s
calling structure, but it doesn’t have a root. In the other
words, it provides a number of entries for application written
in C (figure 2(b)). The purpose of analyzing a library’s
calling structure is to realize which library call may be
reusable. Of course, we may be able to predict the
unnecessary ones.

Applicaiton
programm

Library call

Library call

Library call

Library call

Kernel
despatcher
function

system_call()

Kernel function

Kernel function

Kernel function

Kernel function

Library call
Applicaiton
programm

Fig. 2(a) Call a system service by library call

open read write lseek fsync mmap ioctl select

call from applcation

invoke system call
Fig. 2(b) Simplified library call graph

Step 3. Construct a kernel’s call graph from the source code

Library’s next layer is kernel, which is the central part of
Linux. It controls and coordinates operations. Because
kernel is an important and big building block, almost
embedded Linux distributions prefer to reserve kernel
instead of adapting it. Their basic consideration is to
guarantee kernel’s correct execution. Therefore, many
unnecessary codes still reside within kernel.

The third step of this approach is to analyze kernel’s
calling structure. This step is similar to step 2. Kernel’s
calling structure supports several entries for last layer.
Almost modern OSs are interrupt-driven systems. The
events request the services of CPU with interrupt or

exception. Whenever an interrupt or exception occurs, kernel
starts the relative handlers to cope with it. Therefore, in
order to abstract Linux kernel, we firstly have to understand
when kernel will be executed. We list the following
occasions:
z An application invokes system calls.
z The occurrence of any exception.
z The occurrence of interrupt.

The first and second conditions are for application, and
the third condition is for hardware device or platform.
Therefore, in order to look for the unnecessary procedures of
kernel, we can observe kernel’s call graph according to the
above conditions. For application, we could combine
application’s call graph, library’s call graph, and kernel’ call
graph. This combination would generate a SUCC(main).
Any procedure not in this set may be able to be removed.

Step 4. Identify which hardware device embedded system
have and needs

Linux supports many hardware devices, such as disk,
keyboard, mouse, and so on. However, an embedded system
is also a specific-hardware platform. For example, a
keyboard or a mouse may be not standard equipment for
PDA. Therefore, to adapt Linux into an embedded OS, we
have a sense that there existed too many unused device
drivers or related code in Linux. These parts might occupy
the embedded system’s resources. Therefore, the fourth step
is to seek these unused parts possibly.

Step 5. Combine application’s call graph, library’s call
graph, and kernel’s graph to extract which system calls that
an application needs

From step 5 to step 7, we want to find a set of
SUCC(main). This set describes a number of procedures that
we are able to reuse them for a specific application. As we
discuss above, a library’s call graph lacks of a root.
Therefore, we incorporate application’s call graph into
library’s call graph. Now the main(), which is the root of the
application’s call graph, represents the unique entry of this
combined call graph. Moreover, according to the
SUCC(main), we could extract the unused library’s calls.

As we discussed above, a library call is a channel to
connect application and Linux kernel. By combining
kernel’s call graph and library’s call graph, we can find out
which system calls interact with library’s calls. Hence, the
invoked system calls are added into the SUCC(main).
Consequently, we can extract the unnecessary system calls.

Step 6. Identify which exception handlers the kernel needs

In step 6, we try to remove the unemployed code that
handles exceptions. As we know, some exception handlers
are not needed. There have been about 18 handlers within
Linux 1.2.3 including divide_error, debug, nmi, int3,
overflow, bounds, invalid_op, device_not_available,
double_fault, coprocessor_segment_overrun, invalid_TSS,

segment_not_present, stack_segment, general_protection,
page_fault, coprocessor_error, and alignment_check. These
exceptions are also the entries provided by kernel.

Step 7. Remove the unused procedures and test the new
kernel

After identifying the unnecessary procedures, we remove
them from kernel in step 7. However, we must validate this
new generated kernel’s correction. If the new kernel has
faults, we have to verify its call graph and to generate the
correct graph.

III. A case study: ACDC player

In this section, we apply call graph approach on a case
study called ACDC player. ACDC is a media application
running on Linux. In order to demonstrate our approach, we
adapt ACDC into an embedded application. We assume that
a company decides to reuse ACDC and to port it onto
another device. We call this final product as ACDC player.

In 3.1, we indicate how to construct ACDC’s call graph.
In 3.2, we list statistics to show our demonstration.

3.1. The customization of ACDC

At beginning, our approach can be summarized into three
phases:
z Construct call graphs including application, library and

kernel.
z Find the unused code, procedures, and drivers.
z Remove those unnecessary participants and test the new

kernel.
Therefore, to reuse and customize ACDC, we firstly

construct the related call graphs. Then we combine three call
graphs and try to obtain the SUCC(main). In this case, our
experimental environment is shown as follows:
z Linux distribution: Slackware 3.0
z Kernel’s version: 1.2.3
z Library: libc 4.6.27
z Target application: text mode ACDC

Kernel 1.2.3 has been adopted on academic researches,
due to its simplicity. This kernel doesn’t support too
complex functionalities. For an embedded domain, these
functionalities are often not applicable. Hence, it would be
easier to analyze this kernel’s structure. ACDC running on
this kernel is a text mode application. For a CD player, it
doesn’t need a GUI. Therefore, text mode ACDC could
simplify our demonstration.

Firstly, we construct ACDC’s call graph to find the
necessary procedures. Some of these procedures in ACDC
are provided by libc, which is a well-known library in Linux.
These procedures can be regarded as the entries whenever
Linux application requests its next layer’s services. The next
step, therefore, is to construct libc’s call graph. According to
this call graph, we might remove the unused library’s calls.
The six libc’s calls, malloc, free, exit, close, open, and ioctl

are channels between ACDC and libc. It also means the six
libc’s calls are included into SUCC(main). Therefore, we
can remove other libc’s calls.

main

cd_status autocat

freeread_toc exit close open

malloc

ioctl

play_cd stop_cd checkit

play_chunk

malloc free exit close open ioctl

brk exit close open ioctl

ACDC

libc

Kernel

System Call

Fig. 3. The combined call graph

Figure 3 shows that kernel provides five system calls as

the kernel’s entries including mmap, exit, close, open, ioctl.
Each of the five system calls has to call its successors.
Finally, through the cooperation among these system calls,
kernel serves its last layer’s requests. The system calls that
are not included into SUCC(main) will be removed.

3.2. Evaluation results

Linux kernel can be decomposed into several parts and
each of them is stored in individual directory. Linux
provides “make config’ command to add/remove device
drivers.

We establish two experiment cases as follows:
Case 1. The total size of kernel customized with call graph

approach.
Case 2. Mix two methods, “config” command and call

graph, to customize Linux kernel. In this case, we
want to observe if a smaller kernel than first case
can be generated or not.

Table 1. The statistics of case 1

Linux kernel’s
organization

Original
size (byte)

After using
call graph
approach

(byte)

Percentage

arch/i386/kernel/head.o 60,617 60,617 0 %
init/main.o 8,314 6,598 20.6 %
init/version.o 639 639 0 %
arch/i386/kernel/kernel.o 43,339 32,286 25.5 %
kernel/kernel.o 73,000 50,730 30.5 %
arch/i386/mm/mm.o 3,767 3,714 1.4 %
mm/mm.o 37,079 32,336 12.8 %
fs/fs.o 92,121 71,006 22.9 %
net/net.o 117,098 115,606 1.3 %
Ipc/ipc.o 22,472 21,355 5 %

Table 1shows the statistics of case 1. Through this table,
our approach is able to remove 13.9% of procedures from
kernel, especially on kernel.o, which is core of kernel.
Therefore, it proves that our approach can effectively
customize kernel. We almost eliminate about 30.5 % of
procedures from kernel.o.

Table 2. The statistics of case 2

Linux kernel’s
organization Phase 1 Phase 2 Percentage

arch/i386/kernel/head.o 60,617 60,617 0 %
init/main.o 8,314 6,598 20.6 %
init/version.o 639 639 0 %
arch/i386/kernel/kernel.o 36,710 32,478 11.5 %
Kernel/kernel.o 58,054 46,288 20.7 %
arch/i386/mm/mm.o 3,660 3,660 0 %
mm/mm.o 32,336 32,336 0 %
fs/fs.o 70,567 70,567 0 %
net/net.o 15,311 15,311 0 %
Ipc/ipc.o 221 221 0 %

Table 2 lists the related statistics of case 2. Case 2
contains two phases. At beginning, we adopt “config” to
configure kernel as possible as we can. In the second phase,
we adopt call graph approach to advance customization.
Consequently, we find call graph approach removes about
20.7% of procedures from kernel.o after customizing with
“config”.

IV. Conclusions

In this paper, we try to adopt call graph representation to
depict Linux kernel’s calling structure. Call graph is an
adaptive structure to meet different application-specific
domains. This property is beneficial for embedded system
design. Our approach is not like typical methodologies that
customize Linux kernel with lines of code. The typical
methods are inefficient and costly. An experiment called
ACDC player is the demonstration. The results show that
our approach can remove about 20.5% of kernel’s
procedures and causes no side effect.

References

[1]. http://www.ibm.com/products/gallery/linuxwatch.shtm

l
[2]. Hecht, M. S., Flow analysis of Computer Programs,

North-Holland, New York, 1977.
[3]. B. Ryder, "Constructing the call graph of a program,"

IEEE Trans. Software Eng., vol. SE-5, pp. 216-225,
May 1979.

[4]. J. P. Banning, "An Efficient way to find the side
effects of procedure calls and the aliases of variables,"
Proc. 6th Annu. Symp. Principles of Programming
Languages, ACM, 1979, pp. 29-41.

[5]. Callahan, D., Carle, A., Hall, M.W., and Kernedy, K.,
"Constructing the procedure call multigraph," IEEE
Trans. on Software Engineering, SE-16(4):483-487,
April 1990.

[6]. A. Cimitile and G. Visaggio, "Software Salvaging and
the Call Dominance Tree," The Journal of System and
Software 28, 1995, pp. 117-127.

[7]. http://www.hitsquad.com/smm/linux/CD_PLAYERS/

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

