
Capturing and Analyzing Requirement

In case of Software and Applying to Hardware

Solutio
Yokohama

e-mail:a

Abstract - It introduces the technology of requ
capture and requirement analysis that uses the
the software world, and considers applying to h
development.

I. Introduction

In the world of software, requirement for sy
becoming large-scale and complicate every year.
order to capture requirement correctly, it is popula
UML for describing specification of system. As
important feature of the UML, there is descri
requirement using use cases. Furthermore, in o
maximum to utilize requirement description by us
the development process which proceeds every use
applied. With the combination of use cases and deve
process, while feeding back the capture and the re
of requirement mutually, it becomes possible to
development. Namely the mechanism which can
system development itself by use cases, has been pre

On one hand, regarding the hardware, require

becoming large-scale and complicate. So same
software, it is expected that the process that can
requirement correctly and can realize it under mana
this paper, It is introduced that capture and analysis
of the requirement which uses the UML in the softw
we consider the application to hardware developmen

II. Description of requirement

To begin with, Requirement is defined that a con
capability to which a system must conform. In addit
roughly classified to functional requireme
non-functional requirement [1]. Here, the Require
the software is shown in every the characteristic. It e
Akira Kawaguchi

n Design Laboratory Co.,Ltd.
 City Kanagawa Pref. 221-0062

Tel:03-3443-9720
Fax:03-3443-9721

-kawaguchi@msf.biglobe.ne.jp

irement
UML in
ardware

stem is
 So in
r to use
 one of
ption of
rder the
e cases,
 cases is
lopment
alization
advance
manage
pared.

ment is
 as the
 specify
ging. In
 process
are, and
t.

dition or
ion, it is
nt and
ment in
xamines

whether with the hardware and the software there is a
difference in requirement.

A. Functional requirement

Physical constraint is not considered and specifies the
actions that the system must perform. For example, behavior
of input/output of the system is specified. Inputting what, it
outputs what and so on.

B. Non-functional requirement

Other than functional requirement, the system must
conform, For example, performance, interface, physical
design constraint, design constraint concerning architecture
and implementation constraint et cetera.

* Performance requirement
Speed and the throughput that the system should fill up,

response time, memory amount used and the like is
specified.

* Interface requirement

Interface between system and its outside item which
system must interact is specified. In addition, the format,
timing and the other factors regarding the interaction are
made clear.

* Design constraint

This is the requirement that constricts the design of the
system. For example, constraint keeps extensibility and
constraint keeps maintainability. And the platform
dependency et cetera that relate to the reuse of the legacy
system or the essential part.

This way trying looking around requirement, the

requirement that is hardware peculiar does not exist, in the
same way the requirement that is peculiar to the software

does not exist.

Especially functional requirement originally does not
consider physical constraint, so it is possible to handle
without distinction between hardware and software.

Therefore, at the time of requirement describing, it is not
necessary to distinguish hardware from software, can
describe with identical method.

C. Description of requirement using use cases

In the world of the software, the mechanism of the
requirement description, use case is utilized. One use case
specifies the consecutive actions that include the variable
part. These actions are executed by the system and produce
concrete value for specific actor. The actor shows the user of
the system and the person and those that interact with the
system.

In another expression, a use case bundles requirement that
brings the individual concrete value to specific actor.

Fig.1 shows Use case Diagram that expresses relation

among use case and actor.

Fig.1. Use case diagram

D. Use case and development process

Requirement for system , especially functional
requirement specifies the actions which the system has to
perform. In actual development, the actions that the system
should execute are bundled with a certain scope, and that
bundled actions are developed at same turn. This is called
incremental development, and it is thought it is practical
approach.

The advantage of this development process is

approximately as mentioned below. The cost that depends on
one increment can be controlled. If certain iteration was the
failure, it is sufficient that the cost increase of one batch.
Risk of schedule delay can be lightened, early stage of
development risk can be identified. User requirements being

to be able to refine in the consecutive iterations, it is easy to
be adapted to the modification of requirement.

When this kind of incremental development is done, it

becomes important to show concretely the result, which is
achieved with every iteration in the form that is easy to be
understood by the customer or the user.

At each time iteration ends, it is verified whether the

result of that iteration conforms to the intention of the
customer and the user of that system. This way, It is
confirmed whether system development is in progress
according to plan.

With this incremental development, use case is effective

as the scope bundles the actions that it should develop with
iteration of one time. Use case has specified the consecutive
actions which produces concrete value for a certain actor.
Therefore if incremental development has done using use
case as its scope, the result is expected to become concrete
value for user and the like which is actor. In other words, if
one use case is realized, it means that one concrete value is
offered to the user and the like outside the system.

This way, use case becomes the tool in order to organize

requirement in management easy shape at the time of
incremental development process. By the fact that the use
case is used as the scope of development, the following kind
of merit is added to the merit of incremental development.

Drive

Change speedChange direction

Driver

<include> <include>

<extend> Inspect route

Actor Use case

Customer, system user, and developer closely examine

each use case in first stage of development, attache priority
to the value that is actualized by the respective use case.
Following to this priority, deliberate development becomes
possible.

It meaning that one value is actualized with iteration of

one time, order side of system development such as user and
customer is easy to grasp the progress and the contents of
development. Because of this, risk of schedule delay can be
lightened.

By the fact that early of development, risk is estimated in

every use case, risk can be grasped.

E. In order to capture requirement as use case

There are many requirements in a system. In order to

capture a certain range from a lot of requirement as one use
case, it is necessary to make the scope of the use case clear.
On description below it shows the point to notice in order to
capture requirements as a use case following to the clear
scope.

First, designate the consecutive actions, which give value

to one actor outside the system as the bundle. In other words,
the scope of use case is limited by the fact that the object
that gives value is restricted to the individual actor.

Furthermore, by making the content of value more concrete,
the scope of use case is limited more. For example, [the
system, car] [the actor, driver] is thought. First, vis-a-vis the
value that it can move favorite to the place, you can think
the use case that " drive ". If this furthermore is
disassembled in concrete value, " it can move favorite at
speed ", " it can move favorite to direction" and so on it
becomes. As the use case which gives these values, " change
direction of the car ", " change speed of the car", and so on is
extracted. This way, by making the value that the use case
gives to the actor concretely, the scope of the use case
becomes clearness and is limited to the appropriate range.

In case of incremental development using use case, lowest

step size to proceed becomes one use case. " Drive " the way,
when it develops with the use case to which the scope is too
large, the merit of incremental development fades. By the
fact that it disassembles to concrete value, it becomes
important to limit the scope of the use case to the
appropriate range.

In addition, to also complexity of the value that is

actualized with one use case should be noted. For example,
we assume the value that is actualized with a certain use
case, is actualized with combination of other plural values.
In this case, new use cases that actualize the respective value
should be specified, and original use case includes those new
use cases. The relationship of this is called Include [2].
Complexity of the value that is actualized with one use case
can be controlled using this kind of mechanism.

F. The requirement which use case describes

Because the use case bundles the consecutive actions that
produce the concrete value for outside the system,
description of functional requirement becomes prime object.
In other words, in regard to functional requirement, it can
structure naturally with use case.

In regard to non- functional requirement, other than of
performance requirement is circumstances of system
realization, is not the object that the use case should describe
directly. But, it can specify most non- functional requests,
vis-a-vis the individual use case. Because of this, in many
case it is possible to handle with the respective use case
description. Non-functional requirement which is common,
to the plural, or all use cases is described in the document
which is independent of individual use case, is handled as
supplemental requirement. These are referred through the
whole development process.

G. Applying hardware

As above, requirement description by use case is the
technology that can be applied without distinction of the
hardware and the software. But in case of ordinary software
it is general that environment for realization already exists as
a platform. Because of this, relatively it is easy to do

requirement description, analysis, design and
implementation incrementally every use case.

However, when it is the system whose hardware
development is necessary, in many case it is not practical to
iterate to implementation in every use case. Hardware
implementation needs more cost and time than software in
every iteration of one time, and use case has relatively small
scope, so iteration number becomes many. As a result cost
and time increases. This not only the hardware system, is
similar even in the domain where it is called the generally
known embedded software. Therefore, in the system that
includes hardware development, when it does incremental
development using use case, it is necessary to do some
device. It mentions later in regard to this problem.

III. Requirement analysis

As shown in the foregoing paragraph, assuming,
individual requirement had be captured by the use case it is
not appropriate that way to enter into actual design.

Because, each use case, in order to conform to the

incremental development process, bundles requirements that
can be realized within one iteration. Therefore if the
individual use case could be described completely,
requirement and its structure for the whole system cannot be
captured. Then, it is necessary to extract function and the
behavior to realize the overall system by looking around the
most of use cases with the concept that is orthogonal to use
case. Furthermore, while refining those function and
behavior, it structures simultaneously. This is Requirement
analysis.

In addition, it can grasp interference, concurrency, and
conflicts among use cases by this activity, these
characteristics are not found with just use case. Furthermore,
it becomes possible to add the structure that considers
flexibility and reusability for the modification of
requirement.

A. Activity of requirement analysis

In order to know the structure of entire requirement,
analyst takes a second look at requirement over the whole
system using the conceptual object model (analysis model)
and assigns function and behavior of the system in
combination of object. Analysis model contains analysis
class and analysis package.

Simultaneously, analyst considers the structure inside the
system that includes the common resource.

Furthermore, the structure that considers flexibility and
the reusability for the modification of requirement is added.
This structure should be kept till design and implementation
phase.

Furthermore, with the analysis model, analyst are not
conscious of realization environment, analyst tries to
investigate the functional level that is required to the system.

At first stage functional behavior of the system is

assigned in analysis class of three types of Boundary,
Control and Entity, and it is expressed by those
collaborations. It is necessary to analyze how to combine
the objects that offer some kind of function to realize
respective action that is included in each use case.
Functional behavior of the system is re-expressed by the
relationship of analysis objects. This is called use case
realization.

Being to become the argument that does not depend on

the environment of realization, it does not handle non-
functional request. Non-functional requirement handles
mainly with design and implementation phase.

B. Analysis class
 Fig.3 shows the example of use case realization.

Analysis class localizes use case description, especially
the functional part that is expressed with natural language, in
conceptual object. It becomes more structural expression. As
for analysis class, three types of Boundary, Control and
Entity class are used depend on the function that is mapped
to each object.

Fig.2 shows the example of analysis class.

*

s
o
b
i
r

*

i
s
w

*

u
B
a
i

C.

Speed Controller
Brake I/F

Brake Controller

Reduce speed

1:Reduce Command

3:Brake Command

3::Engine Command

Use case realization

Interface Object Control Object Entity Object
Fig.2. The example of analysis class

Control object
Control flow inside the use case such as coordination,

equence, and transaction, etc. is localized in control
bject, and assigns work to other object (entity and
oundary). Behavior of one use case is usually localized
n one control object. Relating to the plural use cases is
are case.

Entity object
It has long-term life, or is often permanent information

s localized in entity object. Often, it shows logical data
tructure, it is useful to understanding of the information
here the system depends.

Boundary object
Interaction between System and its actor (for example

ser, external system, and so on) is localized in this object.
oundary object models a part of system that depend on
ctor, for example communication interface or user
nterface, like that.

Use case realization by analysis class.

Speed Controller
Brake I/F Speed

Engine Controller

Brake Controller ta
th
o
s
a
fu
e

b
p

D

d
m
c
fi
A
a
d

C
re
A
a

Fig.3 The example of use case realization.

Speed

Engine Controller2:Current Speed Check 4:Reduce Confirm

Goal of the use case realization that uses analysis class

kes a second look at almost of use cases, it is to inventory
e functions which is necessary for the system without

mission. Simultaneously it is required to grasp internal
tructure and to refine it. For example, extracting conflict
nd function that can be shared among use cases, mapping
nctions to analysis classes with considering reusability and

xtensibility.

On the basis of the result of these activities, architecture
ase line construction of the system which uses analysis
ackage and the like which it mentions later is done.

. Architecture base line construction using analysis
package.

Among actually development, as for the case that can
evelop the whole system with one organization it is not
any. Usually, plural organizations respectively develop the

harge part (it calls subsystem) that is initially assigned,
nally, integrating those it is general to develop one system.
s a primary plan of this subsystem decomposition, the

rchitecture base line construction by the analysis package is
one.

The analysis package is the tool to organize object of
ontrol, Entity and Boundary that are defined in use case
alization in the group which is easy to manage each object.
t the point of view that is orthogonal to use case, you look

round all functions that are required to the system, and

reconstruct in an optimum group with analysis package.
Objects whose relationship is deep are grouped to the same
analysis package, and relationship among analysis packages
should to be lightened. In addition, functions of the objects
which grouping in same package have to belong to identical
domain, namely in order to be developed by identical
organization, it is important point for grouping. With this,
analysis package becomes primary candidate of the
subsystem that each developing team who belongs wrong
organization and has respectively wrong domain knowledge
can design and implementation independently and
concurrently.

After this phase, design, implementation, there is a part

that cannot be covered with just software development
rocess, such as Co-design for hardware and software.

e architecture base line as an input, as practical solution.

MDA (the Model Driven Architecture) and watched
].

pr ess using use case for hardware and embedded software.

ou

dev

p

In regard to design and implementation, it is thought
applying the technology that is individually optimum with
th

As for this, there is approach that separates function and
behavior of the system that is captured with requirement
description and requirement analysis phase from the
realization that is constructed with design and
implementation phase. In the world of the software, this is
called

This way, the architecture base line that consists of use

case, analysis class, and analysis package that are primary
candidate of subsystem, and interface between the analysis
packages is drawn up. Fig.4 shows a part of architecture
base line.

[3

Fig.5 shows the summary of incremental development
 oc

Fig.4. A part of architecture base line.

Speed Control Direction Control

Application-general layer

Application-specific layer

Speed Controller Speed

Driver interface Brake Control Engine Control Steering Control

Analysis Package

Actually subsystem decomposition is done on basis of
architecture base line, adding the various factors. For
example, human resource, domain knowledge skill,
know-how, intellectual property, etc.

Behavior and Function

E. Applying requirement analysis to hardware

development F
base
in t
beh
real

As for requirement analysis, functional requirement is

principal basically, so there is no distinction of hardware and
software. In addition, the architecture base line that is the
result of requirement analysis is effective regardless of the
hardware and the software.

th

A

desc
the

Way it shows with requirement description, In
incremental development, when it is the system needs
hardware development, in many case it is not practical to
iterate to implementation in every use case, because of cost
and time for hardware implementation.

I
dev
requ
env
Arc

Then, It is effective to iterate in every use case from the

requirement description to requirement analysis that can be
applied without distinction of hardware and software and to
construct the architecture base line.
using use case for hardware and embedded software.

zation is
ght to automate using some suitable tools.

rld, and considered applying to hardware
elopment.

Fig.5. Summary of incremental development process

Requirement description

Requirement analysis

Use case

Analysis package

Analysis class

Use case

Analysis package

Iteration
by use case

Iteration
by use case

Handling by use case

Architecture base line

Realization(Design and Implementation)

MDA

or example, when new realization appears such as C
d design or the application of the large capacity FPGA

he LSI, it is possible to reuse the model of function and
avior, because that model exists independent of
ization. Mapping from the model to reali

IV. Conclusion
bove, it introduced the technology of requirement
ription and requirement analysis that uses the UML in
software wo

t is thought the effect is shown sufficiently in hardware
elopment, in regard to requirement description and
irement analysis that is not influenced by realization

ironment. In addition, the MDA (Model Driven
hitecture) approach probably becomes one guide for

mapping the model of function and behavior that are
captured with requirement description and requirement
analysis to realization environment.

References

d Software Development Process, Addison-Wesley,

d Modeling Language User Guide, Addison-Wesley,

[3] http://www.omgj.org/technology/mda/

[1] Ivar Jacobson, Grady Booch, James Rumbaugh, The
Unifie
1999
[2] Grady Booch, James Rumbaugh, Ivar Jacobson, The
Unifie
1999

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

