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Abstract: This paper presents a methodology for full 
chip RTL timing closure for very large ASIC’s. The 
methodology is based on the concept of a “Silicon 
Virtual Prototype”. The methodology is based on the 
scalable technique of clustering and cluster 
placement and leverages the tight integration 
between the algorithms by means of a common, 
unified data model. 

1. Introduction 
The complexity of today’s largest IC designs is over ten 
million gates. Looking ahead it is prudent to prepare a 
methodology for the 50M gate ASIC. Three forces are 
at work which make designing chips at the edge of the 
capability of the fabrication technology increasingly 
difficult. First, the size of today’s 10M gate designs 
taxes even the largest and fastest computers. Second, 
the deep sub micron (DSM) effects are breaking 
existing design flows. The third force is the shrinking 
market window. The capacity and complexity problems 
impact the productivity causing a product to miss its 
market window.  
This leads to a requirement for a fast, high capacity 
and scalable technology that provides early estimates 
of post-layout performance and identifies many issues 
that would typically have been found only after detailed 
place & route in a conventional flow. This saves 
numerous time-consuming iterations and enhances the 
productivity to enable fast time-to-market. An 
additional advantage of such a technology is that 
engineers can explore design architectures and 
implementation alternatives and have a high level of 
confidence that performance goals can be achieved.   
The approach being discussed in this paper is that of a 
silicon virtual prototype (SVP). A silicon virtual 
prototype is a fast physical implementation of the 
design. This implementation has been coarsely tuned to 
reduce some of the most time consuming analyses and 
optimizations. However, the silicon virtual prototype 
still has sufficient accuracy to identify long-wire type 
timing implementation issues that are prevalent in large 
designs. Virtual prototyping leverages its high capacity 
to have a global view of the chip design to identify 
problems and also automate the creation of a floor plan. 
While most of the steps can be done automatically, the 
opportunity for manual intervention exists in most 
intermediate stages. Thus, the process of quickly 
building a virtual physical prototype of the final design 
from RTL or netlist in order to estimate chip area, 
performance and power early in the design cycle and 

determine changes needed to the RTL or constraints, if 
any, in order to successfully achieve timing closure in 
implementation, is called silicon virtual prototyping. 
The organization of the paper is as follows. In section 2 
we review previous work in this area. Section 3 outlines 
the two goals of the methodology. Section 4 describes 
an overview of the methodology as well as the use 
model. Section 5 describes extensively and in detail all 
of the different technologies which are required in this 
methodology. Section 6 introduces the products that 
embody this methodology. 

2. Previous work 
This paper touches on many issues in many different 
areas of EDA, but we will only review previous work in 
some of the core areas of prototyping, estimation and 
clustering.  
Early work in estimation [3][4][6][8] primarily focused 
on prediction of area, wire length and congestion. For 
instance [3] and [4] describe methods for forecasting 
the size and wire length of a design or partition. [6] and 
[8] use floorplanning methods to forecast congestion 
and routability. [5] and [11] describe approaches where 
floor planning information is used to support behavioral 
synthesis and can hence be seen as a form of 
prototyping. 
Beyond area and routability, performance and timing 
are an important concern [1][10][13].The authors of 
[17] describe an algorithm which simultaneously 
addresses logic synthesis and placement. [16] describes 
a more comprehensive hierarchical floorplanning 
methodology addressing the performance and timing 
budgeting issues. 
Prototyping technology raises the question of accuracy 
of fast estimation [18]. If the virtual prototype shows 
the design to be easily achievable then this approach 
provides a fast implementation flow.  
The methods that we use to develop a prototype are 
based on clustering. Clustering has been described in a 
number of placement and partitioning contexts. [2] and 
[7] describe the application of clustering in placement 
using simulated annealing algorithms, while [12][15] 
describe the application of clustering in force directed 
or quadratic placement optimization algorithms. [14] 
describes the application of multilevel clustering to 
graph partitioning. 



3. Two Goals 
Building a silicon virtual prototype (Figure 1) has two 
distinct goals. The first goal is to determine the 
feasibility of the design. The second goal is to develop 
a floor plan and constraints that can be used for the 
actual implementation of the design.  
 

Figure 1: Building a Silicon Virtual Prototype 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These joint goals are addressed by quickly creating a 
fast, flat implementation of the design. This flat 
implementation leverages the unique scalability of the 
placement problem. By creating clusters, the number of 
objects to place can be reduced dramatically. Making 
the clusters larger creates nearly unlimited speedup of 
the placement algorithm. This creates a continuous 
trade-off between run time and placement quality.  
Feasibility concerns, especially early in the design 
cycle, are dominated by timing and performance issues. 
To do a feasibility check, it is essential that timing 
analysis is performed with reasonably accurate delays. 
Especially with today’s multi-million gate chips, delay 
is very much affected by wire length. Long wires 
determine the performance of the design, and therefore 
cannot be ignored. Luckily, the cluster placement is 
sufficient to determine which wires are the long wires 
and to create a reasonably accurate wire length estimate 
for these wires. The short wires have much less of an 
impact on performance, and hence it is not necessary to 
complete a detailed placement to get accurate wire 
lengths for the short wires. 
The second goal of virtual prototyping is to create a 
floor plan for the further hierarchical implementation of 
the design. The cluster placement can here be used as a 
guide to determine the appropriate partitions and to 
shape and position them. To drive implementation 
process for each of the partitions, it is necessary to set 
up the constraints in both the physical and the logical 
domains. In the physical domain, besides the shape of 
the partition, the most important constraints are the pin 
positions. In the logical domain, the relevant constraints 
are the timing constraints for the pins of the partition. 

4. Proposed Prototyping Methodology 
The prototype is a flat chip level design, in which 
global timing has been done. In order to speed up the 
placement, not actually each of the cells in the entire 
design is placed. Rather, the placement and 
optimization is done with clusters, which each consist 
of a number of cells (Figure 2). The number of clusters 
is several orders of magnitude smaller than the number 
of cells. The distances inside each cluster are small 
enough and the cluster sizes are more or less uniform, 
that the wiring does not play a role in the delay 
calculation.  
 

Figure 2 : Tuning cluster size at different levels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once timing closure has been achieved at the prototype 
level, the prototype can either be refined for final 
implementation or the design can be partitioned into 
partitions. Each of these partitions is then implemented 
flat. By making the clusters significantly smaller than 
the partitions, there is overlap of the global scope and 
the partition scope. Overlapping the global scope and 
the partition scope reduces the effects of the boundaries 
of the partitions on the quality of the placement. 
The use model is one where a system integrator does 
daily integration. The timing closure loop consists of 
iterative prototyping runs while the RTL designer 
addresses timing issues from an architecture point of 
view. The methodology lets the system architect / 
system integrator learn about timing problems, by 
running the cluster placement and doing global timing. 
As timing problems are discovered, they can be solved 
at the "architectural" level. This can mean changing 
timing, pipelining, handshaking, FIFO queues, 
prefetching, speculative execution, parallel execution or 
by putting things physically close together. This is how 
the  "architect" designs his chip. The end product of 
his/her design is the "golden RTL source". 
To build a prototype, the system reads a Verilog or 
VHDL description, chip or partition level SDC timing 

RTL RTL RTL 

SVP 

Floor planning

P&R P&R P&R 

feedback 

Top (2M-10M cells) 

Leaf 
Cells 

Clusters  
(~1K cells)

Partitions 
(100K – 

500K cells)

Global 
Scope 

Partition 
Scope

Logical 
Hierarchy 



constraints and any constraints for pad or macro 
placement. The system includes fast logic synthesis, 
static timing analysis, and placement. A daily prototype 
is built, starting with RTL and ending with global 
timing. Timing problems are identified as a result. The 
RTL designers work on the timing problems and try to 
resolve them. Now, in addition to all of the things a 
designer can do to speed up the design, the RTL can 
also be changed to impose physical proximity. By 
adding cluster placement constraint, the RTL designer 
has an additional tool to resolve timing closure 
problems at the architectural level. A design team will 
build several prototypes before committing to one 
particular partitioning.  
The first step in the process consists of reading the 
Verilog source and clustering. In the case where the 
Verilog source is at the RTL level, this includes fast 
RTL synthesis. Once the net list has been read, the 
clusters in the hierarchy are identified. Ideally, most 
clusters already exist as modules in the logic hierarchy. 
Clusters should not be too large or too small. A global 
placement of the clusters is performed, which is fast, 
because there are only a few thousand clusters. Global 
static timing analysis can be performed on the placed 
clusters. This shows critical paths due to long wires. 
The cells inside the cluster are positioned in the center 
of the cluster. The global timing can also be used to 
derive timing budgets. 
Once the prototype is complete, the design can be 
partitioned, a floor plan can be developed. Usually, 
partitions are chosen along the lines of the logical 
hierarchy, due to constraints imposed by the functional 
verification and test methodologies. Floorplanning 
involves giving each of the blocks a shape and a 
position. Both abutment style as well as channel style 
floor plans are supported. Once the floor plan has been 
determined, the timing constraints and the pin positions 
can be derived. This information is required for the 
separate implementation of each of the partitions. 

5. Technologies Required for Prototyping 

a. Fast, high quality RTL synthesis technology 
One of the two goals of SVP is to support RTL design 
decisions and to arrive at full chip RTL timing closure.  
To do this, it is very important to perform accurate 
timing analysis and delay calculation. SVP provides 
much more accurate timing analysis as a global 
placement allows the identification of the long wires. 
The other requirement for SVP is to have very high 
capacity. It depends on synthesis technology which can 
synthesize several million gates at once— a 10x 
increase in capacity over conventional synthesis 
solutions. This means that, unlike conventional flows in 
which the RTL has to be arbitrarily partitioned into 
numerous submodules, our methodology allows design 
engineers to create their RTL based on functional intent 
rather than synthesis capacity limitations. Synthesizing 

the entire chip – rather than numerous submodules – 
produces superior optimization results because the 
algorithms are not limited by arbitrary boundaries. 
The large ASIC designs are typically composed of 
multiple functional partitions that are in different stages 
of definition and implementation during the design 
process. If a SVP tool has to provide the early insight 
into the design issues it has to read in the design net list 
that would be a mixture of gates, RTL and black boxes 
(e.g. Hard IP). The SVP tool requires a synthesis 
engine, which supports black box models and can start 
prototyping from incomplete RTL. 
As conventional synthesis tools are too time-consuming 
for SVP, some prototyping tools use  “fast and dirty” 
synthesis like direct RTL mapping. This compromises 
the correlation between the results obtained from such a 
technology and the quality synthesis engine that will be 
used for the implementation. Poor correlation 
minimizes the value of the early feedback and not only 
makes the flow unpredictable but also does not prevent 
iterations between logic and layout. 

b. Clustering Technology 
The proposed virtual prototyping methodology is based 
on the unique scalability of placement by means of 
clustering, which is an abstraction technique for 
placement. It reduces the number of objects that need to 
be considered in an intuitive way: To partition a design 
of 10M cells into 10 paritions, it should not be 
necessary to consider the individual standard cells. The 
clustering factor gives the designer an easy way to trade 
off accuracy versus run time, which is important when 
cluster placement is used to evaluate floor-planning 
decisions. 
Clustering is primarily driven by the connectivity of the 
net list. Placement clusters should be small enough to 
be uninteresting to the designer. A clustering algorithm 
should generate them automatically without user 
interaction.  
The objective is to select clusters that have few 
connections to other clusters. The actual number of 
cells vary from cluster to cluster to keep the areas of the 
clusters as uniform as possible. Having uniform cluster 
areas is good for placement, because placement 
algorithms are better at handling uniformly sized 
objects. If the clusters are too large then the deviation 
between the cluster placement used for the optimization 
and the final detailed cell placement can nullify the 
accuracy advantage. Similarly if the clusters are too 
small then the runtime gets adversely impacted.  
Since the clusters are small, the shape of the cluster is 
not very important, hence it has been chosen to be a 
square with an area proportional to the area of the cells 
contained in the cluster. For the purpose of placement, 
all of the cells contained in a cluster are assumed to be 
at the center of the cluster. The exception is very large 
cells, such as macro’s, which are the only cell within a 



cluster. Such clusters have the area and shape of the 
macro itself. 
Clusters follow the logical hierarchy, meaning that they 
only group cells that have the same parent in the 
hierarchy. If the logical hierarchy is deep and there are 
modules of all sizes in the logical hierarchy, then it is 
often advantageous to use the modules of the logical 
hierarchy as clusters. Since these have names that are 
meaningful to the RTL designer, the resulting 
placement is much easier to read for the RTL designer. 
Sometimes timing constraints are attached to the 
boundaries of the modules, and therefore their 
preservation is more important. The RTL designer is 
already used to using the logical hierarchy as a tool to 
influence the implementation of the design. Hence, 
keeping a logical module together is in line with the 
intentions of the RTL designer, even if it is not optimal 
with respect to wire length. Keeping elements in logical 
hierarchy together gives the RTL designer the 
opportunity to make physical proximity decisions as 
architectural decisions. 
The clusters form a separate hierarchical data structure, 
which represents the physical hierarchy. This second 
hierarchy coexists simultaneously with the logical 
hierarchy. The clusters are allowed to contain a 
hierarchical cell, which is interpreted as if they contain 
every leaf cell in the hierarchy tree rooted by the 
hierarchical cell. In this manner the physical and logical 
hierarchy may be interwoven. The physical hierarchy 
has a second, higher level, the level of the partition. The 
partition is a grouping of clusters in the physical 
hierarchy. 

c. Cluster Placement Technology 
The clusters are placed using a force directed placer, 
which uses a second order non-linear optimization 
algorithm. While clustering reduces the number of 
placeable objects, the number of nets decreases sub-
linearly. After clustering, there are many nets that 
connect exactly the same set of clusters. A single net 
with a higher weight can replace these nets. 
After the placement is first performed, a timing 
verification can be performed. This is the main 
feasibility check on the implementability of a very large 
design. The placement of the clusters shows where the 
long wires are. This information is used in the delay 
calculation of the long wires. 

d. Fast optimization technology 
Fast optimization technology is used to implement the 
logic with the required accuracy. For combinational 
logic, the speed advantage is obtained through synthesis 
methods based on the concept of logical effort. The 
concept of logical effort has a simple and elegant 
relevance – the delay depends on the gain of the gate, 
and not on its exact parasitics. The resulting 
breakthrough is that the ratio of capacitances can be 
chosen within limits beforehand, and can be kept 

constant by gate sizing during the design 
implementation stages. By adopting this methodology, 
delay can be controlled without advanced knowledge of 
parasitic capacitances. More importantly, circuit 
evaluations are performed without guessing at or fixing 
cell sizes before the actual routing exists. 
As the design progresses the gain of each gate is 
carefully tuned, delays are spread over paths, and the 
timing is maintained. This methodology has a unique 
advantage that the gain-based approach results in slew 
equalization where every cell in the design is sized such 
that it has exactly the drive strength for that path to 
meet timing. This is done for all paths whether they are 
critical or not and due to this approach SI issues are 
greatly reduced as there are no unnecessarily 
overdriven or under driven nets which would have 
played the role of aggressor or victim respectively. 
All of this means that there are a number of very 
important outcomes from the use of gain-based 
synthesis: 
• Synthesis times are dramatically reduced compared 

to traditional synthesis techniques. In one typical 
real-world example, a multi-day evaluation with a 
traditional synthesis tool was reduced to less than 5 
hours with gain-based synthesis tool (Blast Create).  

• The relative simplicity of Blast Create’s gain-based 
calculations means that it has a far greater capacity 
than other synthesis solutions. In turn this means 
that Blast Create has the capacity to handle 
multimillion-gate designs without resorting to 
artificial partitioning.  

The end of the synthesis step completes all timing 
optimizations, and all of the circuit delays are 
determined and frozen. 

e. Partitioning 
The partitioning methodology works as follows: When 
the clusters are first placed, the modules in the net list 
hierarchy form amorphous areas. The system includes 
graphical means to visualize the placement of the 
various levels in the logical hierarchy (Figure 3). This 
forms a guide to the user to determine the choice and 
final shape and location of top-level partitions of the 
hierarchical floorplan. Figure 1 shows clusters in a full 
chip. Each cluster is represented by a different color 
(shown here by marking the borders explicitly). 
The user will have to decide on the appropriate 
partitions based on the placement of the clusters. 
Modules in the logical hierarchy are candidates for 
partitions. Hierarchy manipulation can be used to arrive 
at good partitions. A heuristic will assign shapes and 
positions to each of the partitions. The user can 
intervene at this point and shape the partitions and give 
them a position. 
 
 
 
 



Figure 3: Cluster representation 
 

 
Since the partitions are usually rectangular, the clusters 
will need to be placed into these rectangles. This is 
accomplished in a second cluster placement stage. In 
this stage each of the partitions is represented by a 
region constraint or “fence”, which forces the clusters 
to remain within their assigned regions. 

f. Time budgeting 
For the front end RTL designer, the most important 
aspect of the prototype is timing verification and timing 
budgeting. From timing verification the RTL designer 
desires an accurate forecast to determine if timing 
closure of the RTL design can be achieved. If not, the 
RTL designer needs feedback as to what measures can 
be taken to improve the timing of the design. An RTL 
designer works on a design to improve the timing by 
changing the architecture of the design.  
Timing budgeting uses gain trimming approach which 
adjusts the delays of the cells to get zero slack at all 
points in the design. Gain trimming works as follows: a 
factor (the gain) is adjusted on outputs of cells 
depending on the slack. Outputs with a positive slack 
are made slower and outputs with a negative slack are 
made faster, proportionally to the slack and the number 
of levels of the path. Since there are a lot of 
reconvergent paths, which influence each other, this has 
to be repeated to converge to zero slack. This requires 
multiple timing analysis runs. Once zero slack has been 
achieved at all points, the timing constraints can be 
derived by characterization. As the required and arrival 
times are the same, either one, or any combination can 
be used to form the timing constraints if the design will 
be implemented hierarchically or it can be 
incrementally refined for final flat implementation. 

g. Pin assignment 
To implement each of the partitions, it is necessary to 
determine the pin positions on the boundary of the 
partitions. This must be done carefully, taking into 
account the requirements of antenna rules, power grid, 
as well as congestion.  The pin assignment depends 
directly on the cluster placement. Because clusters are 
smaller than partitions, and clusters have been placed 
within the partitions, they give detailed placement 
information of the cells within each of the partitions. 
This information is used in pin assignment by routing 
from cluster to cluster. 
Two methods for pin assignment are available. The first 
method is a simple heuristic based on point to point 
connections. This method is suitable for interactive 
work, as pins can be assigned one at a time, or by 
group. The second method is based on global routing. 
This method is more sophisticated, as it takes 
congestion into account. 

h. Testability analysis technology 
The RTL design can have structural testability issues 
that would require an iteration to modify the source. 
The structural issues can be identified early with net list 
checking tools. The SVP identifies the implementation 
issues. As the repair for testability issues modifies the 
netlist this also has to be embedded in the flow that 
produces the final optimized netlist. As we have stated 
before that logic synthesis is an integral part of the SVP 
flow, we need to include DFT analysis and repair as a 
key required technology. 
Failure by logic designers to adequately apply scan 
design rules early in the design cycle can lead to poor 
test coverage and testability problems later in the 
product development cycle. Hence DFT checks 
including checking for gated clock, bi-directional and 
tristate bus contention, set/reset inputs help identify and 
fix, if needed, such problems early in the design cycle. 

i. Correlation to implementation technology 
A key requirement for a SVP is that it correlates with 
the actual implementation results. The SVP tools in the 
market today face a challenge that building interfaces 
between disparate tools has put most of the RTL-to-
GDSII flows together. These typically have multiple 
analyses engines like extractor and timers and have 
correlation issues within the flow so it is impossible for 
an external SVP tool to not have inaccuracy issues. 
Moreover, the use of different placement and global 
routing algorithms can lead to a substantial 
miscorrelation with the actual implementation. 
High performance or high-density designs require 
accuracy of optimization. Clock tree, power structure 
and scan contribute significantly to the use of routing 
resources. Also the impact of placement quality cannot 
be neglected. Poor placement increases overall wire 
length, and reduces performance, and worse, it leads to 
invalid assumptions for optimization. Moreover, 



reducing optimization in the early stages of the design 
methodology can lead to larger increases later in the 
flow. 
Magma has the unique advantage that it has common 
analyses & optimization engines in its integrated flow 
from prototyping to final implementation. Magma also 
has a unified data model enabling seamless sharing of 
all data throughout the complete flow. This ensures that 
most of the algorithms and all of the analysis engines 
are shared, guaranteeing close correlation between the 
prototype and the actual implementation.  

j. Glass box Technology 
Assembling a design, which has been created using a 
hierarchical methodology, requires a strategy to reduce 
the amount of data. The entire design consists of the 
partitions plus the routes to connect the partitions. In 
order to assemble the design, it is necessary to have 
certain data for each of the partitions; in particular, it is 
necessary to have the pin positions and IO timing, but it 
is not sufficient. For accurate delay calculation, it is 
necessary to have a detailed delay model for the input 
and output wires of each of the partition inputs and 
outputs. To do antenna rule fixing, a detailed model for 
each of the wires is required. 
One approach is to develop model for each of the many 
different applications that require analysis of the 
partitions: delay calculation and antenna rule check are 
just two of many types of analysis. Other types of 
analysis are noise analysis, clock skew analysis, 
detailed routing modeling, design rule checking and 
timing analysis. This however, requires special data 
representation, often with special data formats, to be 
developed for each model, together with the data 
abstraction methods. This constitutes a considerable 
code development, test and maintenance burden. 
The other approach is not to require the development of 
special purpose models, but to inspect the design of 
each of the partitions itself. This has the advantage that 
the actual design data is inspected in the same manner 
as the design data is inspected during flat design. After 
extraction, the actual routing geometries become the 
“model” for delay calculation, while the same 
geometries can be inspected for antenna rule violations. 
While this is considerably easier to implement, the 
amount of data for each of the partitions is prohibitive.  
The solution is to reduce the actual design data, by 
selective deletion of features, which are not relevant for 
the chip assembly. In particular, for timing purposes, 
cells that are contained between register boundaries, 
with no combinational path to a partition IO, cannot 
influence the top level timing. Similarly, for antenna 
rule checking, it is only necessary to inspect the routing 
geometries between an IO pin and the cells within the 
partition. Preserving these geometries allows the entire 
route to be checked using the same antenna rule 
checking code that is used for a flat design. Other 

routes can be deleted, assuming that they have been 
implemented correctly at the partition level. 
We have developed data reduction techniques along 
these lines. The data reduction techniques delete all 
design elements (cells, nets, routing geometries) which 
cannot affect any global analysis. While there are many 
different global analysis methods to take into account, 
experience shows that in most cases, a large amount of 
data can be removed. The amount of reduction tends to 
grow with the size of the partition, so this methodology 
will scale very well with future technology generations.  
Since there is a single, comprehensive file format to 
represent all design data, no new format for abstraction 
needs to be invented. Moreover, this single format can 
support all present and future analysis requirements. No 
separate formats or “views” are required to support 
different analysis requirements.  

6. Product Description 
Blast Create allows logic designers to check, visualize, 
evaluate and improve the quality of the RTL code and 
design constraints. A logic-level prototyping or 
structural analysis is useful in the detection of large 
muxes, snaking timing paths, fanout violations, 
combinational loops or deep logic levels. Early 
detection of such problems leads to good quality RTL, 
hence a good quality netlist that finally leads to a better 
implementation. This facilitates a clean ASIC handoff 
model. The checking is enhanced by visualizations of 
the RTL functionality that lets designers view schematic 
representation of their code, view registers and latches, 
logic-clouds as well as allows them to directly cross-
probe into the source RTL. Blast Create also facilitates 
testability checks via Blast DFT that is seamlessly 
integrated within Blast Create.  
Blast Create delivers the only viable prototyping 
solution for today’s complex designs with fast, high-
capacity synthesis and fully integrated analysis and 
implementation engines that operate on a common 
datamodel. Figure 4 shows a chart of experimental data 
using Blast RTL on various designs. The chart is shown 
for the size of design vs runtime in hours. Table 1 
shows some of the experimental results of Blast Create 
usage on real designs. 
 

Figure 4: Experimental results from Blast RTL 
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TABLE 1: Experimental results from Blast Create 
 
 A B C 
Design Size 
(Gates) 

1.3M 6.0M 23.2M 

Macros 104 69 -- 

Cluster 
Size 

200 10 1000 

Cluster 
Placement 

6 min 2.5 hrs 2 hrs 

Prototype 2.8 hrs 7 hrs 20 hrs 

Memory 1.5 GB 317 MB 10GB 

Platform 32bit Linux 32bit Linux 64bit Solaris 

 
It is important that the prototype correlates well with 
the actual implementation tool i.e. the quality of results 
should not be compromised. Blast Create is 
implemented on the same code base as Blast Fusion; it 
uses the same timing analysis and shares the same high 
quality placement and optimization engines. 
Blast Create allows you to rapidly place the entire 
design to create a prototype of the chip. It allows you to 
place the design including the macros. Floor planning 
constraints and manual decisions can be quickly 
evaluated by iterating the placement interactively. To 
speed up the placement, clusters of cells are placed.  
Blast Plan is the portion of the product which uses SVP 
to create a floor plan. This tool is targeted for the back 
end designer, who, faced with a very large design, 
needs to create a floorplan for the hierarchical 
implementation of a design. Blast Plan allows the 
selection and creation of partitions, and most 
importantly, it allows the creation timing constraints 
and pin positions for the separate implementation of the 
partitions. Blast Plan also contains the abstraction 
technology for the bottom up hierarchical assembly of a 
large chip. 

7. Conclusions 
We have presented a methodology for the design of 
next generation of multi-million gate chips. The 
methodology is based on the construction of a “Silicon 
Virtual Prototype”, which allows both an early timing 
feasibility check as well as the construction of a 
globally optimized floor plan. 
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