
Design Flow and Methodology for 50M gate ASIC

Alok Mehrotra, Lukas van Ginneken, Yatin Trivedi
Magma Design Automation Inc.

Cupertino, CA 95014

Abstract: This paper presents a methodology for full
chip RTL timing closure for very large ASIC’s. The
methodology is based on the concept of a “Silicon
Virtual Prototype”. The methodology is based on the
scalable technique of clustering and cluster
placement and leverages the tight integration
between the algorithms by means of a common,
unified data model.

1. Introduction
The complexity of today’s largest IC designs is over ten
million gates. Looking ahead it is prudent to prepare a
methodology for the 50M gate ASIC. Three forces are
at work which make designing chips at the edge of the
capability of the fabrication technology increasingly
difficult. First, the size of today’s 10M gate designs
taxes even the largest and fastest computers. Second,
the deep sub micron (DSM) effects are breaking
existing design flows. The third force is the shrinking
market window. The capacity and complexity problems
impact the productivity causing a product to miss its
market window.
This leads to a requirement for a fast, high capacity
and scalable technology that provides early estimates
of post-layout performance and identifies many issues
that would typically have been found only after detailed
place & route in a conventional flow. This saves
numerous time-consuming iterations and enhances the
productivity to enable fast time-to-market. An
additional advantage of such a technology is that
engineers can explore design architectures and
implementation alternatives and have a high level of
confidence that performance goals can be achieved.
The approach being discussed in this paper is that of a
silicon virtual prototype (SVP). A silicon virtual
prototype is a fast physical implementation of the
design. This implementation has been coarsely tuned to
reduce some of the most time consuming analyses and
optimizations. However, the silicon virtual prototype
still has sufficient accuracy to identify long-wire type
timing implementation issues that are prevalent in large
designs. Virtual prototyping leverages its high capacity
to have a global view of the chip design to identify
problems and also automate the creation of a floor plan.
While most of the steps can be done automatically, the
opportunity for manual intervention exists in most
intermediate stages. Thus, the process of quickly
building a virtual physical prototype of the final design
from RTL or netlist in order to estimate chip area,
performance and power early in the design cycle and

determine changes needed to the RTL or constraints, if
any, in order to successfully achieve timing closure in
implementation, is called silicon virtual prototyping.
The organization of the paper is as follows. In section 2
we review previous work in this area. Section 3 outlines
the two goals of the methodology. Section 4 describes
an overview of the methodology as well as the use
model. Section 5 describes extensively and in detail all
of the different technologies which are required in this
methodology. Section 6 introduces the products that
embody this methodology.

2. Previous work
This paper touches on many issues in many different
areas of EDA, but we will only review previous work in
some of the core areas of prototyping, estimation and
clustering.
Early work in estimation [3][4][6][8] primarily focused
on prediction of area, wire length and congestion. For
instance [3] and [4] describe methods for forecasting
the size and wire length of a design or partition. [6] and
[8] use floorplanning methods to forecast congestion
and routability. [5] and [11] describe approaches where
floor planning information is used to support behavioral
synthesis and can hence be seen as a form of
prototyping.
Beyond area and routability, performance and timing
are an important concern [1][10][13].The authors of
[17] describe an algorithm which simultaneously
addresses logic synthesis and placement. [16] describes
a more comprehensive hierarchical floorplanning
methodology addressing the performance and timing
budgeting issues.
Prototyping technology raises the question of accuracy
of fast estimation [18]. If the virtual prototype shows
the design to be easily achievable then this approach
provides a fast implementation flow.
The methods that we use to develop a prototype are
based on clustering. Clustering has been described in a
number of placement and partitioning contexts. [2] and
[7] describe the application of clustering in placement
using simulated annealing algorithms, while [12][15]
describe the application of clustering in force directed
or quadratic placement optimization algorithms. [14]
describes the application of multilevel clustering to
graph partitioning.

3. Two Goals
Building a silicon virtual prototype (Figure 1) has two
distinct goals. The first goal is to determine the
feasibility of the design. The second goal is to develop
a floor plan and constraints that can be used for the
actual implementation of the design.

Figure 1: Building a Silicon Virtual Prototype

These joint goals are addressed by quickly creating a
fast, flat implementation of the design. This flat
implementation leverages the unique scalability of the
placement problem. By creating clusters, the number of
objects to place can be reduced dramatically. Making
the clusters larger creates nearly unlimited speedup of
the placement algorithm. This creates a continuous
trade-off between run time and placement quality.
Feasibility concerns, especially early in the design
cycle, are dominated by timing and performance issues.
To do a feasibility check, it is essential that timing
analysis is performed with reasonably accurate delays.
Especially with today’s multi-million gate chips, delay
is very much affected by wire length. Long wires
determine the performance of the design, and therefore
cannot be ignored. Luckily, the cluster placement is
sufficient to determine which wires are the long wires
and to create a reasonably accurate wire length estimate
for these wires. The short wires have much less of an
impact on performance, and hence it is not necessary to
complete a detailed placement to get accurate wire
lengths for the short wires.
The second goal of virtual prototyping is to create a
floor plan for the further hierarchical implementation of
the design. The cluster placement can here be used as a
guide to determine the appropriate partitions and to
shape and position them. To drive implementation
process for each of the partitions, it is necessary to set
up the constraints in both the physical and the logical
domains. In the physical domain, besides the shape of
the partition, the most important constraints are the pin
positions. In the logical domain, the relevant constraints
are the timing constraints for the pins of the partition.

4. Proposed Prototyping Methodology
The prototype is a flat chip level design, in which
global timing has been done. In order to speed up the
placement, not actually each of the cells in the entire
design is placed. Rather, the placement and
optimization is done with clusters, which each consist
of a number of cells (Figure 2). The number of clusters
is several orders of magnitude smaller than the number
of cells. The distances inside each cluster are small
enough and the cluster sizes are more or less uniform,
that the wiring does not play a role in the delay
calculation.

Figure 2 : Tuning cluster size at different levels

Once timing closure has been achieved at the prototype
level, the prototype can either be refined for final
implementation or the design can be partitioned into
partitions. Each of these partitions is then implemented
flat. By making the clusters significantly smaller than
the partitions, there is overlap of the global scope and
the partition scope. Overlapping the global scope and
the partition scope reduces the effects of the boundaries
of the partitions on the quality of the placement.
The use model is one where a system integrator does
daily integration. The timing closure loop consists of
iterative prototyping runs while the RTL designer
addresses timing issues from an architecture point of
view. The methodology lets the system architect /
system integrator learn about timing problems, by
running the cluster placement and doing global timing.
As timing problems are discovered, they can be solved
at the "architectural" level. This can mean changing
timing, pipelining, handshaking, FIFO queues,
prefetching, speculative execution, parallel execution or
by putting things physically close together. This is how
the "architect" designs his chip. The end product of
his/her design is the "golden RTL source".
To build a prototype, the system reads a Verilog or
VHDL description, chip or partition level SDC timing

RTL RTL RTL

SVP

Floor planning

P&R P&R P&R

feedback

Top (2M-10M cells)

Leaf
Cells

Clusters
(~1K cells)

Partitions
(100K –

500K cells)

Global
Scope

Partition
Scope

Logical
Hierarchy

constraints and any constraints for pad or macro
placement. The system includes fast logic synthesis,
static timing analysis, and placement. A daily prototype
is built, starting with RTL and ending with global
timing. Timing problems are identified as a result. The
RTL designers work on the timing problems and try to
resolve them. Now, in addition to all of the things a
designer can do to speed up the design, the RTL can
also be changed to impose physical proximity. By
adding cluster placement constraint, the RTL designer
has an additional tool to resolve timing closure
problems at the architectural level. A design team will
build several prototypes before committing to one
particular partitioning.
The first step in the process consists of reading the
Verilog source and clustering. In the case where the
Verilog source is at the RTL level, this includes fast
RTL synthesis. Once the net list has been read, the
clusters in the hierarchy are identified. Ideally, most
clusters already exist as modules in the logic hierarchy.
Clusters should not be too large or too small. A global
placement of the clusters is performed, which is fast,
because there are only a few thousand clusters. Global
static timing analysis can be performed on the placed
clusters. This shows critical paths due to long wires.
The cells inside the cluster are positioned in the center
of the cluster. The global timing can also be used to
derive timing budgets.
Once the prototype is complete, the design can be
partitioned, a floor plan can be developed. Usually,
partitions are chosen along the lines of the logical
hierarchy, due to constraints imposed by the functional
verification and test methodologies. Floorplanning
involves giving each of the blocks a shape and a
position. Both abutment style as well as channel style
floor plans are supported. Once the floor plan has been
determined, the timing constraints and the pin positions
can be derived. This information is required for the
separate implementation of each of the partitions.

5. Technologies Required for Prototyping

a. Fast, high quality RTL synthesis technology
One of the two goals of SVP is to support RTL design
decisions and to arrive at full chip RTL timing closure.
To do this, it is very important to perform accurate
timing analysis and delay calculation. SVP provides
much more accurate timing analysis as a global
placement allows the identification of the long wires.
The other requirement for SVP is to have very high
capacity. It depends on synthesis technology which can
synthesize several million gates at once— a 10x
increase in capacity over conventional synthesis
solutions. This means that, unlike conventional flows in
which the RTL has to be arbitrarily partitioned into
numerous submodules, our methodology allows design
engineers to create their RTL based on functional intent
rather than synthesis capacity limitations. Synthesizing

the entire chip – rather than numerous submodules –
produces superior optimization results because the
algorithms are not limited by arbitrary boundaries.
The large ASIC designs are typically composed of
multiple functional partitions that are in different stages
of definition and implementation during the design
process. If a SVP tool has to provide the early insight
into the design issues it has to read in the design net list
that would be a mixture of gates, RTL and black boxes
(e.g. Hard IP). The SVP tool requires a synthesis
engine, which supports black box models and can start
prototyping from incomplete RTL.
As conventional synthesis tools are too time-consuming
for SVP, some prototyping tools use “fast and dirty”
synthesis like direct RTL mapping. This compromises
the correlation between the results obtained from such a
technology and the quality synthesis engine that will be
used for the implementation. Poor correlation
minimizes the value of the early feedback and not only
makes the flow unpredictable but also does not prevent
iterations between logic and layout.

b. Clustering Technology
The proposed virtual prototyping methodology is based
on the unique scalability of placement by means of
clustering, which is an abstraction technique for
placement. It reduces the number of objects that need to
be considered in an intuitive way: To partition a design
of 10M cells into 10 paritions, it should not be
necessary to consider the individual standard cells. The
clustering factor gives the designer an easy way to trade
off accuracy versus run time, which is important when
cluster placement is used to evaluate floor-planning
decisions.
Clustering is primarily driven by the connectivity of the
net list. Placement clusters should be small enough to
be uninteresting to the designer. A clustering algorithm
should generate them automatically without user
interaction.
The objective is to select clusters that have few
connections to other clusters. The actual number of
cells vary from cluster to cluster to keep the areas of the
clusters as uniform as possible. Having uniform cluster
areas is good for placement, because placement
algorithms are better at handling uniformly sized
objects. If the clusters are too large then the deviation
between the cluster placement used for the optimization
and the final detailed cell placement can nullify the
accuracy advantage. Similarly if the clusters are too
small then the runtime gets adversely impacted.
Since the clusters are small, the shape of the cluster is
not very important, hence it has been chosen to be a
square with an area proportional to the area of the cells
contained in the cluster. For the purpose of placement,
all of the cells contained in a cluster are assumed to be
at the center of the cluster. The exception is very large
cells, such as macro’s, which are the only cell within a

cluster. Such clusters have the area and shape of the
macro itself.
Clusters follow the logical hierarchy, meaning that they
only group cells that have the same parent in the
hierarchy. If the logical hierarchy is deep and there are
modules of all sizes in the logical hierarchy, then it is
often advantageous to use the modules of the logical
hierarchy as clusters. Since these have names that are
meaningful to the RTL designer, the resulting
placement is much easier to read for the RTL designer.
Sometimes timing constraints are attached to the
boundaries of the modules, and therefore their
preservation is more important. The RTL designer is
already used to using the logical hierarchy as a tool to
influence the implementation of the design. Hence,
keeping a logical module together is in line with the
intentions of the RTL designer, even if it is not optimal
with respect to wire length. Keeping elements in logical
hierarchy together gives the RTL designer the
opportunity to make physical proximity decisions as
architectural decisions.
The clusters form a separate hierarchical data structure,
which represents the physical hierarchy. This second
hierarchy coexists simultaneously with the logical
hierarchy. The clusters are allowed to contain a
hierarchical cell, which is interpreted as if they contain
every leaf cell in the hierarchy tree rooted by the
hierarchical cell. In this manner the physical and logical
hierarchy may be interwoven. The physical hierarchy
has a second, higher level, the level of the partition. The
partition is a grouping of clusters in the physical
hierarchy.

c. Cluster Placement Technology
The clusters are placed using a force directed placer,
which uses a second order non-linear optimization
algorithm. While clustering reduces the number of
placeable objects, the number of nets decreases sub-
linearly. After clustering, there are many nets that
connect exactly the same set of clusters. A single net
with a higher weight can replace these nets.
After the placement is first performed, a timing
verification can be performed. This is the main
feasibility check on the implementability of a very large
design. The placement of the clusters shows where the
long wires are. This information is used in the delay
calculation of the long wires.

d. Fast optimization technology
Fast optimization technology is used to implement the
logic with the required accuracy. For combinational
logic, the speed advantage is obtained through synthesis
methods based on the concept of logical effort. The
concept of logical effort has a simple and elegant
relevance – the delay depends on the gain of the gate,
and not on its exact parasitics. The resulting
breakthrough is that the ratio of capacitances can be
chosen within limits beforehand, and can be kept

constant by gate sizing during the design
implementation stages. By adopting this methodology,
delay can be controlled without advanced knowledge of
parasitic capacitances. More importantly, circuit
evaluations are performed without guessing at or fixing
cell sizes before the actual routing exists.
As the design progresses the gain of each gate is
carefully tuned, delays are spread over paths, and the
timing is maintained. This methodology has a unique
advantage that the gain-based approach results in slew
equalization where every cell in the design is sized such
that it has exactly the drive strength for that path to
meet timing. This is done for all paths whether they are
critical or not and due to this approach SI issues are
greatly reduced as there are no unnecessarily
overdriven or under driven nets which would have
played the role of aggressor or victim respectively.
All of this means that there are a number of very
important outcomes from the use of gain-based
synthesis:
• Synthesis times are dramatically reduced compared

to traditional synthesis techniques. In one typical
real-world example, a multi-day evaluation with a
traditional synthesis tool was reduced to less than 5
hours with gain-based synthesis tool (Blast Create).

• The relative simplicity of Blast Create’s gain-based
calculations means that it has a far greater capacity
than other synthesis solutions. In turn this means
that Blast Create has the capacity to handle
multimillion-gate designs without resorting to
artificial partitioning.

The end of the synthesis step completes all timing
optimizations, and all of the circuit delays are
determined and frozen.

e. Partitioning
The partitioning methodology works as follows: When
the clusters are first placed, the modules in the net list
hierarchy form amorphous areas. The system includes
graphical means to visualize the placement of the
various levels in the logical hierarchy (Figure 3). This
forms a guide to the user to determine the choice and
final shape and location of top-level partitions of the
hierarchical floorplan. Figure 1 shows clusters in a full
chip. Each cluster is represented by a different color
(shown here by marking the borders explicitly).
The user will have to decide on the appropriate
partitions based on the placement of the clusters.
Modules in the logical hierarchy are candidates for
partitions. Hierarchy manipulation can be used to arrive
at good partitions. A heuristic will assign shapes and
positions to each of the partitions. The user can
intervene at this point and shape the partitions and give
them a position.

Figure 3: Cluster representation

Since the partitions are usually rectangular, the clusters
will need to be placed into these rectangles. This is
accomplished in a second cluster placement stage. In
this stage each of the partitions is represented by a
region constraint or “fence”, which forces the clusters
to remain within their assigned regions.

f. Time budgeting
For the front end RTL designer, the most important
aspect of the prototype is timing verification and timing
budgeting. From timing verification the RTL designer
desires an accurate forecast to determine if timing
closure of the RTL design can be achieved. If not, the
RTL designer needs feedback as to what measures can
be taken to improve the timing of the design. An RTL
designer works on a design to improve the timing by
changing the architecture of the design.
Timing budgeting uses gain trimming approach which
adjusts the delays of the cells to get zero slack at all
points in the design. Gain trimming works as follows: a
factor (the gain) is adjusted on outputs of cells
depending on the slack. Outputs with a positive slack
are made slower and outputs with a negative slack are
made faster, proportionally to the slack and the number
of levels of the path. Since there are a lot of
reconvergent paths, which influence each other, this has
to be repeated to converge to zero slack. This requires
multiple timing analysis runs. Once zero slack has been
achieved at all points, the timing constraints can be
derived by characterization. As the required and arrival
times are the same, either one, or any combination can
be used to form the timing constraints if the design will
be implemented hierarchically or it can be
incrementally refined for final flat implementation.

g. Pin assignment
To implement each of the partitions, it is necessary to
determine the pin positions on the boundary of the
partitions. This must be done carefully, taking into
account the requirements of antenna rules, power grid,
as well as congestion. The pin assignment depends
directly on the cluster placement. Because clusters are
smaller than partitions, and clusters have been placed
within the partitions, they give detailed placement
information of the cells within each of the partitions.
This information is used in pin assignment by routing
from cluster to cluster.
Two methods for pin assignment are available. The first
method is a simple heuristic based on point to point
connections. This method is suitable for interactive
work, as pins can be assigned one at a time, or by
group. The second method is based on global routing.
This method is more sophisticated, as it takes
congestion into account.

h. Testability analysis technology
The RTL design can have structural testability issues
that would require an iteration to modify the source.
The structural issues can be identified early with net list
checking tools. The SVP identifies the implementation
issues. As the repair for testability issues modifies the
netlist this also has to be embedded in the flow that
produces the final optimized netlist. As we have stated
before that logic synthesis is an integral part of the SVP
flow, we need to include DFT analysis and repair as a
key required technology.
Failure by logic designers to adequately apply scan
design rules early in the design cycle can lead to poor
test coverage and testability problems later in the
product development cycle. Hence DFT checks
including checking for gated clock, bi-directional and
tristate bus contention, set/reset inputs help identify and
fix, if needed, such problems early in the design cycle.

i. Correlation to implementation technology
A key requirement for a SVP is that it correlates with
the actual implementation results. The SVP tools in the
market today face a challenge that building interfaces
between disparate tools has put most of the RTL-to-
GDSII flows together. These typically have multiple
analyses engines like extractor and timers and have
correlation issues within the flow so it is impossible for
an external SVP tool to not have inaccuracy issues.
Moreover, the use of different placement and global
routing algorithms can lead to a substantial
miscorrelation with the actual implementation.
High performance or high-density designs require
accuracy of optimization. Clock tree, power structure
and scan contribute significantly to the use of routing
resources. Also the impact of placement quality cannot
be neglected. Poor placement increases overall wire
length, and reduces performance, and worse, it leads to
invalid assumptions for optimization. Moreover,

reducing optimization in the early stages of the design
methodology can lead to larger increases later in the
flow.
Magma has the unique advantage that it has common
analyses & optimization engines in its integrated flow
from prototyping to final implementation. Magma also
has a unified data model enabling seamless sharing of
all data throughout the complete flow. This ensures that
most of the algorithms and all of the analysis engines
are shared, guaranteeing close correlation between the
prototype and the actual implementation.

j. Glass box Technology
Assembling a design, which has been created using a
hierarchical methodology, requires a strategy to reduce
the amount of data. The entire design consists of the
partitions plus the routes to connect the partitions. In
order to assemble the design, it is necessary to have
certain data for each of the partitions; in particular, it is
necessary to have the pin positions and IO timing, but it
is not sufficient. For accurate delay calculation, it is
necessary to have a detailed delay model for the input
and output wires of each of the partition inputs and
outputs. To do antenna rule fixing, a detailed model for
each of the wires is required.
One approach is to develop model for each of the many
different applications that require analysis of the
partitions: delay calculation and antenna rule check are
just two of many types of analysis. Other types of
analysis are noise analysis, clock skew analysis,
detailed routing modeling, design rule checking and
timing analysis. This however, requires special data
representation, often with special data formats, to be
developed for each model, together with the data
abstraction methods. This constitutes a considerable
code development, test and maintenance burden.
The other approach is not to require the development of
special purpose models, but to inspect the design of
each of the partitions itself. This has the advantage that
the actual design data is inspected in the same manner
as the design data is inspected during flat design. After
extraction, the actual routing geometries become the
“model” for delay calculation, while the same
geometries can be inspected for antenna rule violations.
While this is considerably easier to implement, the
amount of data for each of the partitions is prohibitive.
The solution is to reduce the actual design data, by
selective deletion of features, which are not relevant for
the chip assembly. In particular, for timing purposes,
cells that are contained between register boundaries,
with no combinational path to a partition IO, cannot
influence the top level timing. Similarly, for antenna
rule checking, it is only necessary to inspect the routing
geometries between an IO pin and the cells within the
partition. Preserving these geometries allows the entire
route to be checked using the same antenna rule
checking code that is used for a flat design. Other

routes can be deleted, assuming that they have been
implemented correctly at the partition level.
We have developed data reduction techniques along
these lines. The data reduction techniques delete all
design elements (cells, nets, routing geometries) which
cannot affect any global analysis. While there are many
different global analysis methods to take into account,
experience shows that in most cases, a large amount of
data can be removed. The amount of reduction tends to
grow with the size of the partition, so this methodology
will scale very well with future technology generations.
Since there is a single, comprehensive file format to
represent all design data, no new format for abstraction
needs to be invented. Moreover, this single format can
support all present and future analysis requirements. No
separate formats or “views” are required to support
different analysis requirements.

6. Product Description
Blast Create allows logic designers to check, visualize,
evaluate and improve the quality of the RTL code and
design constraints. A logic-level prototyping or
structural analysis is useful in the detection of large
muxes, snaking timing paths, fanout violations,
combinational loops or deep logic levels. Early
detection of such problems leads to good quality RTL,
hence a good quality netlist that finally leads to a better
implementation. This facilitates a clean ASIC handoff
model. The checking is enhanced by visualizations of
the RTL functionality that lets designers view schematic
representation of their code, view registers and latches,
logic-clouds as well as allows them to directly cross-
probe into the source RTL. Blast Create also facilitates
testability checks via Blast DFT that is seamlessly
integrated within Blast Create.
Blast Create delivers the only viable prototyping
solution for today’s complex designs with fast, high-
capacity synthesis and fully integrated analysis and
implementation engines that operate on a common
datamodel. Figure 4 shows a chart of experimental data
using Blast RTL on various designs. The chart is shown
for the size of design vs runtime in hours. Table 1
shows some of the experimental results of Blast Create
usage on real designs.

Figure 4: Experimental results from Blast RTL

 Fast TAT, High Capacity

0

1000
2000

3000

4000

5000

6000

7000

8000

0.8 2.5 5.5 5 8 8 25

Runtime (hrs)

K

G
a
t
e
c
o
u
n
t

TABLE 1: Experimental results from Blast Create

 A B C
Design Size
(Gates)

1.3M 6.0M 23.2M

Macros 104 69 --

Cluster
Size

200 10 1000

Cluster
Placement

6 min 2.5 hrs 2 hrs

Prototype 2.8 hrs 7 hrs 20 hrs

Memory 1.5 GB 317 MB 10GB

Platform 32bit Linux 32bit Linux 64bit Solaris

It is important that the prototype correlates well with
the actual implementation tool i.e. the quality of results
should not be compromised. Blast Create is
implemented on the same code base as Blast Fusion; it
uses the same timing analysis and shares the same high
quality placement and optimization engines.
Blast Create allows you to rapidly place the entire
design to create a prototype of the chip. It allows you to
place the design including the macros. Floor planning
constraints and manual decisions can be quickly
evaluated by iterating the placement interactively. To
speed up the placement, clusters of cells are placed.
Blast Plan is the portion of the product which uses SVP
to create a floor plan. This tool is targeted for the back
end designer, who, faced with a very large design,
needs to create a floorplan for the hierarchical
implementation of a design. Blast Plan allows the
selection and creation of partitions, and most
importantly, it allows the creation timing constraints
and pin positions for the separate implementation of the
partitions. Blast Plan also contains the abstraction
technology for the bottom up hierarchical assembly of a
large chip.

7. Conclusions
We have presented a methodology for the design of
next generation of multi-million gate chips. The
methodology is based on the construction of a “Silicon
Virtual Prototype”, which allows both an early timing
feasibility check as well as the construction of a
globally optimized floor plan.

8. References
[1] Modarres, H. and S. Raam, J.-H. Lai: “Floorplanning of

hierarchical layout in ASIC environment” in: Proc. IEEE
Custom Integrated Circuits Conf., sec. 7.1, Rochtester,
May 1988.

[2] Mallela, S. and L.K. Grover: “Clustering based
simulated annealing for standard cell placement” in: Proc.
25th ACM/IEEE Design Automation Conf. pp.312-317,
Ahaheim, June 1988.

[3] Chen, X. and M.L. Bushnell: “A module area estimator
for VLSI layout”, in Proc. 25th ACM/IEEE Design
Automation Conf. pp.54-59, Anaheim, June 1988.

[4] Pedram, M. and B. Preas: "Accurate prediction of
physical design characteristics for random logic", in:
Proc. IEEE Int. Conf. Computer Design, pp.100-108, Oct.
1989.

[5] McFarland, M.C.: “A fast floor planning algorithm for
architectural evaluation” in Proc. IEEE Int. Conf.
Computer Design, pp. 96-99, Cambridge, Oct. 1989.

[6] Lengauer, T. and R. Muller: "A robust framework for
hierarchical floorplanning with integrated global wiring",
in: Proc. Int. Conf. on Computer-Aided Design, pp.148-
151, 1990.

[7] Lee, Y.W. and Y.S. Cheung, C.S.K. Yeung: “A flexible
clustering and floor planning approach to standard cell
placement using hierarchical simulated annealing”, in:
Proc. Int. Conf. Circuits and Systems, pp.882-885,
Shenzhen, 1991.

[8] Pedram, M. and E. Kuh: "BEAR-FP: A robust
framework for floorplanning", in: Int. J. High-Speed
Electron., vol.3, no.1, pp.137-170, 1992.

[9] Ding, C.L. and C.-Y. Ho, M.J. Irwin: “A new
optimization driven clustering algorithm for large
circuits” in Proc. Eur. Design Automation Conference,
pp.28-32, Hamburg, Sept. 1993.

[10] V. Narayananan and D. LaPotin, R. Gupta, G. Vijayan:
“PEPPER – a timing driven early floorplanner”, in Proc.
IEEE Int. Conf. Computer Design. pp.230-235, Austin,
1995.

[11] Mecha, H. and M. Fernandez, F. Tirade, J. Septien, D.
Motes, K. Olcoz: “A method for area estimation of data
path in high level synthesis”, in IEEE Trans. Computer
Aided Design, Vol 15, no. 2, pp. 258-265, Feb. 1996.

[12] Chen Chunhong, and Tang Pushan: “Cluster-based
placement for macrocell gate arrays”, in Proc. 2nd Int.
Conf. on ASIC, pp.46-49, Shanghai, Oct. 1996.

[13] Bushroe, R. G. and S. DasGupta, A. Dengi, P. Fisher, S.
Grout, G. Ledenbach, N. S. Nagaraj, R. Steele: "Chip
hierarchical design system (CHDS): A foundation for
timing-driven physical design into the 21st century", in:
Proc. Int. Symp. Physical Design, pp.212-217, 1997.

[14] Alpert. C.J. and Jen-Hsin Huang, A.B. Kahng:
“Multilevel circuit partitioning” in: IEEE Trans.
Computer Aided Design, vol.17, no. 8, pp.655-667, Aug.
1998.

[15] Xianlong Hong and Hong Yu, Changge Qiao, Yiel Cai:
“CASH: a novel quadratic placement algorithm for very
large standard cell layout design based on clustering”,
Proc. 5th Int. Conf. Solid-State and I.C. Technology,
Beijing Oct. 1998.

[16] Su, Hsiao-Pin and A.C.-H. Wu, Y-.L. Lin: “A timing-
driven soft-macro placement and resynthesis method in
interaction with chip floor planning”, in Proc. 36th Design
Automation Conf. pp.262-267, New Orleans, June 1999;
Also in: IEEE Trans. Computer Aided Design, Vol 18, no.
4, pp.475-483, April 1999.

[17] Salek, A.H. and Jinan Lou, M. Pedram: “An integrated
logical and physical design flow for deep submicron
circuits”. IEEE Trans. On Computer Aided Design, Vol.
18, no. 9, pp.1305-1315, Sept. 1999.

[18] Sarrafzadeh, M. and M. Wang: "Can fast algorithms be
used as good predictors?", in: Syst. Level Interconnect
Prediction, pp. 125-1999.

[19] Ranjan. A. and K. Bazargan, M. Sarrafzadeh: “Fast
hierarchical floorplanning with congestion and timing
control”, in: Proc. 2000 Int. Conf. Computer Design,
pp.357-362, Austin, Sept. 2000.

[20] Ranjan A. and K. Bazargan, S. Ogrenci, M. Sarrafzadeh:
“Fast floorplanning for effective prediction and
construction”, in. IEEE Trans. VLSI Systems, Vol. 9, no.
2, pp.341-351, April 2001.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

