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Abstract 
In this paper, we propose an efficient IP-Level power model 

with a small lookup table for complex CMOS circuits. The 
table has only one dimension that maps the zero-delay charging 
and discharging capacitance into the real power consumption 
of pattern pairs but still has high accuracy. In order to improve 
the efficiency of the characterization process, the Monte Carlo 
approach is used during the estimation of the average power to 
skip the samples that will not increase the accuracy too much. 
The experimental result shows the table sizes are only up to 107 
entries for ISCAS’85 benchmark circuits and the estimation 
error is only 2.99% on average using the lookup table. 

I. Introduction 
System-on-a-chip (SOC) is a trend of system integration 

in recent years. For SOC designs, most design teams 
integrate many well-designed circuit blocks called intelligent 
properties (IPs) and some self-designed circuit blocks to 
build up the complex system in a short time. While 
designing such complex systems, low power is also an 
important consideration because of the increasing 
requirement of portable devices. Traditionally, power 
estimation is often performed at transistor-level by 
SPICE-liked simulation. However, this approach is 
unpractical for SOC designs because it needs very high 
computing power. 

For this application, power models may provide an 
efficient solution to estimation the power consumption of 
IPs because the transistor-level simulation is only required at 
the characterization step. The power model of a design 
describes the relationship between power characteristics and 
real power consumption with specific input sequences or 
input signal statistics. Lookup tables are the most commonly 
used power models. Because the power dissipation of a 
combinational circuit depends on the previous and present 
input patterns, a fully characterized lookup table for an 
n-input combinational circuit will have 22n entries. It is 
obviously unfeasible for complex circuits because the table 
size is too large to be stored and the characterization process 
will consume too much time. Efficient reduction methods 
are definitely required to make this approach become 
feasible. 

 In this approach, the chosen power characteristics have 
large impacts on the table size and the accuracy of the 
estimated power consumption. Therefore, many power 
characteristics are proposed in the literature [1~4] such as the 
signal statistics of the primary inputs and outputs, the active 
information of a design, the power sensitivity of primary 
inputs, the Hamming distance of the pattern pairs at the 
primary inputs, etc. The methods proposed in [1][2] are 
building the lookup tables according to the signal transitions 
at the primary inputs. In [1], the authors use a clustering 
algorithm to compress the input vectors with approximate 

power consumption as a cluster such that the table size can 
be reduced. The method in [2] operates on the state transition 
graphs (STGs) of macrocells with merging transition 
compatible nodes to reduce the sizes of lookup tables. 

The methods in [3] use the signal statistics of the primary 
inputs and outputs to be the indexes of the lookup tables. In 
[3], the lookup tables with 2 dimensions (average input signal 
probability, average input signal transition density), 3 
dimensions (average output zero-delay transition density as 
the third dimension) and 4 dimensions (average spatial 
correlation coefficient as the fourth dimension) are 
compared. The results show that the estimation errors are 
decreased when the dimensions of tables are increased, but 
the sizes of tables are increased. The increase of table size 
will require extra characterization time that may become a 
non-neglectable overhead. However, because the distribution 
of the average output transition density is hard to control, the 
characterization time to fill the lookup tables is hard to 
control. 

Based on the above observations, we can realize that the 
size of the lookup table is a primary concern for the power 
models of complex designs such as commercial IPs. 
Therefore, we propose a table-based power modeling 
method in this paper for combinational circuits in which the 
table size is very small and almost independent to the 
number of primary inputs. In order to reduce the table size, 
we build a one-dimension lookup table to map the 
zero-delay charging and discharging capacitance (CDC) to 
the real power consumption of input pattern pairs. In order 
to simplify the description, we will use CDC to represents 
the zero-delay charging and discharging capacitance in the 
rest of this paper. The CDC of a pattern pair is the 
summation of charging and discharging capacitances of the 
nodes whose signals change from 0 to 1 or 1 to 0 during the 
transition of input patterns under zero-delay model. Using 
CDC as the index of the lookup tables is decided by our 
previous comparison results of the average normalized error 
between the three power characteristics, CDC, zero-delay 
switching count (SC) of internal nodes and Hamming 
distance (HD) of input pattern pairs [4]. Among those power 
characteristics, the CDC has the minimal average 
normalized error. 

In previous introductions, we can realize that the efforts 
for the characterization process are also important issues. 
Therefore, we modify the grouping algorithms in [4] to have 
a more efficient characterization process while building the 
lookup table. In [4], the CDC distribution of input sequence is 
deterministic. However, the CDC distribution in this work is 
non-deterministic until we simulate all input pattern pairs. In 
order to handle this situation without simulating all possible 
cases, we dynamically increase the entries of the lookup 



tables to cover the current CDC distribution of the designs 
when we characterize the average power for each entry in 
the table. Because a lot of pattern pairs may appear in the 
same group, we use the Monte Carlo simulation [5] to further 
reduce the characterization time. 

The rest of this paper is organized as follows. In Section 
II, we will describe the power model proposed in this work. 
In Section III, the dynamic grouping algorithm will be 
described. The power characterization process will be shown 
in Section IV. The estimation of average power with the 
proposed power model is described in Section V. The 
accuracy of our power model will be evaluated in Section VI 
through several experiments and some conclusions will be 
given at the end. 

II Power Modeling 
The power consumption of a digital circuit is formulated 

as Equation (1). The static power (Pstatic) is the power 
consumption of the leakage currents in the reversed P-N 
junctions, which is often much smaller than the dynamic 
power (Pdynamic). The Pdynamic is the summation of the power 
of functional transition (Pfunc_trans), the power of glitch (Pglitch) 
and the short-circuit power (Pshort-circuit) represented as 
Equation (2). The Pshort-circuit is consumed when short-circuit 
current flows from VDD to ground at the period that both 
PMOS and NMOS transistors turn on together during the 
signal transitions and is often smaller than the summation of 
the Pfunc_trans and the Pglitch. The proportion between Pfunc_trans 
and Pglitch is depending on the circuit behavior and the design 
skill. Given a circuit with n nodes, we could express the 
power consumptions of Pfunc_trans and Pglitch as Equation (3) 
and (4), where i denotes the node-index, Ci is its load 
capacitance of node i, Vdd is supply voltage of the circuit, the 
fi_func is the frequency of functional transition at node i and 
the fi_glitch is the frequency of glitch at node i. τi is the factory 
of the width of glitch to the glitch power and should be 
between 1 and 0. 
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In this work, the lookup table maps a CDC interval to a 
real power value implies that the lookup table uses the 
Pfunc_trans to indicate the trend of the real power consumption 
on average. The CDC value of a pattern pair is the 
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_ in Equation (3) where fi_func =1 if node i has 

signal transition or fi_func =0 if node i has no signal transition. 
The power model is represented by a lookup table, which 

maps the CDC values to real power consumption of input 
pattern pairs. The building flow of the lookup table is shown 
in Fig. 1. We will first divide the input pattern pairs into 
several groups according to their CDC values that are 

calculated by a logic-level simulator. Those pattern pairs 
within an interval of CDC values will be grouped together 
and the average power of them, which is estimated by 
PowerMill, will be recorded in the corresponding entry of 
the lookup table. 
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Fig. 1. The block diagram for building the power model 

III. Dynamic Grouping 
Using the CDC values of pattern pairs to be the index of 

lookup table may still have huge table size if we set a table 
entry for each different CDC value. Although the table size 
will be much smaller than 2n+n, where n is the number of 
primary inputs of the circuit, it is still very huge. Therefore, 
a table size reduction method is definitely required. 

In order to reduce the table size, we can collect those 
pattern pairs with similar CDC values to be a group and only 
set one entry in the lookup table for each group. A similar 
grouping method was used in pattern compaction techniques 
for power estimation [4]. In [4], however, the compacted 
sequence is generated for a specific input sequence. In other 
words, the input sequence is deterministic and the 
distribution of CDC values is deterministic, too. 
Unfortunately, when we build the lookup table for the 
proposed power model in our work, the CDC distribution is 
non-deterministic until we simulate all pattern pairs, which 
is almost impossible for large circuits even using a 
logic-level simulator. 

In order to handle this situation without simulating all 
possible cases, we propose a method to dynamically increase 
the entries of the lookup tables to cover the current CDC 
distribution of the designs when we characterize the average 
power for each entry in the table. As illustrated in Fig. 2, the 
CDC values of pattern-pairs have been sorted before 
grouping. The X-coordinate is the number of pattern pairs 
and the Y-coordinate is the CDC value of each pattern pair. 
In the first iteration, we randomly generate several pattern 
pairs and the dynamic grouping works like the grouping 
process in [4] as shown in Fig. 2(a). Each group is defined 
with an interval of CDC values and the neighborhood groups 
have continuous CDC values. In the second iteration, we 
generate more random patterns and the number of group is 
spread because the CDC distribution area is increased as 
shown in Fig. 2(b). The ranges of the groups in Fig. 2(a) are 
not changed but new groups are generated from the 
boundary of the first and last groups in Fig. 2(a). The size of 



the lookup table in our power model is determined by the 
number of groups in the dynamic grouping process, which 
can be controlled by the user-defined group interval. This 
group interval is defined by a percentage of the range from 
the maximum CDC value to the minimum CDC value of 
each group and set as 5% of the maximum CDC value in this 
work. If the interval is smaller than the minimum load 
capacitance of the nodes, the interval will be set as the 
minimum load capacitance of nodes because it is impossible 
to have such CDC values. 
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Fig. 2(a). The dynamic grouping process after the first iteration 
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Fig. 2(b). The dynamic grouping process after the second iteration 

IV. Power Characterization 
In our power model, the corresponding power for each 

table entry is determined by the average power consumption 
of all pattern pairs located in the corresponding CDC 
interval. Therefore, we use a random input generator to 
generate a number of pattern pairs such that they can 
distribute over different groups. Fig. 3 gives an illustration 
of this power characterization flow. The power 
characterization process will stop under 2 conditions as 
follows: 

(a). The average power consumption of each group has 
reached the desired confidence level. 

(b). The total pattern pairs have reached the constraint of 
maximum number of pattern pairs. 

The maximum number of characterized pattern pairs is 
used to control the characterization efforts. It can be decided 
by users to make a trade-off between accuracy and 
characterization efforts. If criterion (b) is used to stop the 
characterization process, the average power of those groups 
that do not have enough pattern pairs will be estimated with 
interpolation or extrapolation because the current samples 
may not have enough representatives.  

In order to further improve the efficiency of the 
characterization process, we use the Monte Carlo approach [5] 
to check the stop criteria (a) such that we can finish the 
characterization process as soon as possible. Under the 
assumption that the mean of any sample is normal 
distribution, the end of simulation can be decided according 
to the statistical stopping criterion as Equation (5). In 
Equation (5), ε is the user acceptable maximum percentage 

error, N is the number of sample, ηT is the sample mean and 
sT is the sample standard deviation. For (1-α) confidence 
level, tα/2 is t-distribution coefficient with (N-1) degrees of 
freedom. 
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Fig. 3. An illustration of the power characterization 

After the estimation of average power has converged 
according to the Monte Carlo stop criteria, we will not 
simulate the following pattern pairs for these groups in the 
transistor-level simulator because the current results already 
have the desired accuracy. 

V. Power Estimation with the Power Model 
 After the power model of a circuit is built, the average 

power consumption for any test sequence can be estimated. 
First, we use a logic-level simulator to calculate the CDC 
values of pattern pairs in the test sequence. With the CDC 
values, we can find their corresponding groups in the lookup 
table for those pattern pairs in the sequence. If a pattern pair 
belongs to a CDC interval, its power consumption will be set 
as the value of the corresponding table entry in the lookup 
table, and the total power is equal to the summation of total 
values of every pattern pairs. Finally, the average power can 
be obtained from dividing the total power by the number of 
pattern pairs. 

The lookup table may not cover the whole CDC 
distribution of all possible pattern pairs because we did not 
simulate all pattern pairs in the characterization process. In 
this case, we can use extrapolation to estimate the power 
consumption of those pattern pairs that belong to the 
non-sampled groups. The average power consumption can 
be expressed as Equation (6). In Equation (6), N is the total 
number of pattern pairs in the test sequence. g is the number 
of entries of the lookup table. Pi is the average power 
recorded in the ith entry of the lookup table. ni is the number 
of pattern pairs in the test sequence whose CDC values are 
involved in the CDC interval of ith entry. Pout_of_range is the 
total power consumption of those pattern pairs whose CDC 
values are out of the range of the lookup table. As shown in 
Equation (7), we can use extrapolation to estimate the power 
consumption of those pattern pairs. P1, P2, Pg-1 and Pg are 
defined as Pi in Equation (6). CDC1, CDC2, CDCg-1 and 

CDCg are the largest CDC values of entries 1, 2, g-1 and g in 



the lookup table. kr and kl are the numbers of pattern pairs 
which are out of the smallest and largest range of the CDC 
range in the lookup table. 
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VI. Experimental Results 
The experiments are obtained on a SUN UltraSPARC II 

workstation. The test circuits are ISCAS’85 benchmark 
circuits. In characterization process, the random input 
sequence generator generates a sequence with 5,000 pattern 
pairs in every iteration and the maximum number of 

characterized pattern pairs is set as 100,000. The confidence 
level in the Monte Carlo criteria is set as 0.99 (α is set as 
0.01) under the maximum acceptable error ε is set as 0.05. 
The sample size is set as 30. 

The experimental results are demonstrated in Table 1. 
The table sizes for the benchmark circuits are listed in the 
2nd row under the names of circuits in the 1st row. According 
to the results, table sizes are only 42 to 107 for those circuits. 
It is very small and is almost independent to the circuit size.  
In order to show that our approach can be applied to various 
input sequences, we test the accuracy of our method by 
estimating the average power consumption of circuits with 3 
different sequences. The test sequences are pseudo random 
sequence, counter sequence and LFSR sequence with 50,000 
pattern pairs respectively for those circuits. The overall 
average error is 2.99%. The experimental results show that 
our power model still has high accuracy for different input 
sequences. 

Table 1. The experimental results 

VII Conclusion 
In this paper, we proposed an efficient IP-Level power 

model with a small lookup table for complex CMOS circuits. 
The lookup table has only one-dimension that maps the 
zero-delay charging and discharging capacitance (CDC) to 
the real power consumption of input pattern pairs but still 
has high accuracy. In order to reduce the table size, we 
collect those pattern pairs with similar CDC values to be a 
group and only set an entry in the lookup table for each 
group. The dynamic grouping process will automatically 
increase the entries of the lookup tables to cover the current 
CDC distribution of the designs during the power 
characterization process. In order to improve the efficiency 
of the characterization process, the Monte Carlo approach is 
used during the estimation of the average power to skip the 
samples that will not increase the accuracy too much. The 
experimental results show that our power model can 
estimate the average power of IP-level complex designs very 
efficiently and accurately for various test sequences. 
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Circuits C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552  
Table Size 63 45 75 51 42 90 65 103 107 103 

I (uA) 56.135 149.718 106.480 161.386 144.083 261.945 340.913 611.173 4841.000 830.832 PowerMill 
Time (Sec) 3072 8626 5826 9494 7649 14667 19017 33918 290751 43169 
I (uA) 57.083 148.698 103.818 158.006 141.921 253.659 327.412 598.521 4722.450 816.488 

1-D Table 
Time (Sec) 23.4 70.3 46.2 65.9 54.5 112.5 114.9 205.4 388.5 267.3 R

an
do

m
 

Se
qu

en
ce

 

Error (%) 1.69 0.68 2.50 2.09 1.50 3.16 3.96 2.07 2.45 1.73 
I (uA) 13.243 34.493 38.119 38.270 50.477 6.402 191.720 20.911 351.290 68.626 PowerMill 
Time (Sec) 690 1958 1773 2163 2417 479 9347 1275 19385 3631 
I (uA) 13.971 33.468 37.153 37.456 53.483 5.923 192.283 20.703 355.533 70.526 

1-D Table 
Time (Sec) 19.7 61.9 39.4 57.2 48.6 84.9 105.1 159.3 257.6 210.5 C

ou
nt

er
 

Se
qu

en
ce

 

Error (%) 5.50 2.97 2.53 2.13 5.96 7.48 0.29 1.00 1.21 2.77 
I (uA) 71.436 167.103 118.619 182.053 169.728 286.910 374.463 669.812 5014.680 975.568 PowerMill 
Time (Sec) 4050 9496 6786 11007 9460 16789 21914 38744 309071 52882 
I (uA) 66.274 161.111 114.371 178.741 162.510 282.068 361.522 652.722 4820.264 936.464 

1-D Table 
Time (Sec) 24.4 71.8 47.5 68.4 56.4 117.1 117.3 210.9 398.3 279.3 L

FS
R

 
Se

qu
en

ce
 

Error (%) 7.23 3.59 3.58 1.82 4.25 1.69 3.46 2.55 3.88 4.01 
 Average Error (%) 4.80 2.41 2.87 2.01 3.90 4.11 2.57 1.87 2.51 2.83 
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