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Abstract

In this paper, we propose an efficient | P-Level power model
with a small lookup table for complex CMOS circuits. The
table has only one dimension that maps the zero-delay charging
and discharging capacitance into the real power consumption
of pattern pairsbut still has high accuracy. In order toimprove
the efficiency of the characterization process, the Monte Carlo
approach is used during the estimation of the average power to
skip the samples that will not increase the accuracy too much.
The experimental result showsthe table sizes are only up to 107
entries for ISCAS 85 benchmark circuits and the estimation
error isonly 2.99% on aver age using the lookup table.

|. Introduction

System-on-a-chip (SOC) is a trend of system integration
in recent years. For SOC designs, most design teams
integrate many well-designed circuit blocks called intelligent
properties (IPs) and some self-designed circuit blocks to
build up the complex system in a short time. While
designing such complex systems, low power is aso an
important consideration because of the increasing
requirement of portable devices. Traditionally, power
estimation is often performed at transistor-level by
SPICE-liked simulation. However, this approach is
unpractical for SOC designs because it needs very high
computing power.

For this application, power models may provide an
efficient solution to estimation the power consumption of
I Ps because the transistor-level ssimulation is only required at
the characterization step. The power model of a design
describes the relationship between power characteristics and
real power consumption with specific input sequences or
input signal statistics. Lookup tables are the most commonly
used power models. Because the power dissipation of a
combinational circuit depends on the previous and present
input patterns, a fully characterized lookup table for an
n-input combinational circuit will have 2% entries. It is
obvioudy unfeasible for complex circuits because the table
sizeistoo large to be stored and the characterization process
will consume too much time. Efficient reduction methods
are definitely required to make this approach become
feasible.

In this approach, the chosen power characteristics have
large impacts on the table size and the accuracy of the
estimated power consumption. Therefore, many power
characteristics are proposed in the literature (1.4 such as the
signal statistics of the primary inputs and outputs, the active
infformation of a design, the power sensitivity of primary
inputs, the Hamming distance of the pattern pairs at the
primary inputs, etc. The methods proposed in iy are
building the lookup tables according to the signal transitions
at the primary inputs. In [y, the authors use a clustering
agorithm to compress the input vectors with approximate
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power consumption as a cluster such that the table size can
be reduced. The method in |5 operates on the state transition
graphs (STGs) of macrocells with merging transition
compatible nodes to reduce the sizes of lookup tables.

The methods in (3 use the signal statistics of the primary
inputs and outputs to be the indexes of the lookup tables. In
13> the lookup tables with 2 dimensions (average input signal
probability, average input signa transition density), 3
dimensions (average output zero-delay transition density as
the third dimension) and 4 dimensions (average spatial
correlation coefficient as the fourth dimension) are
compared. The results show that the estimation errors are
decreased when the dimensions of tables are increased, but
the sizes of tables are increased. The increase of table size
will require extra characterization time that may become a
non-neglectable overhead. However, because the distribution
of the average output transition density is hard to control, the
characterization time to fill the lookup tables is hard to
control.

Based on the above observations, we can realize that the
size of the lookup table is a primary concern for the power
models of complex designs such as commercia IPs.
Therefore, we propose a table-based power modeling
method in this paper for combinational circuits in which the
table size is very small and almost independent to the
number of primary inputs. In order to reduce the table size,
we build a one-dimension lookup table to map the
zero-delay charging and discharging capacitance (CDC) to
the real power consumption of input pattern pairs. In order
to simplify the description, we will use CDC to represents
the zero-delay charging and discharging capacitance in the
rest of this paper. The CDC of a pattern pair is the
summation of charging and discharging capacitances of the
nodes whose signals change from 0 to 1 or 1 to O during the
transition of input patterns under zero-delay model. Using
CDC as the index of the lookup tables is decided by our
previous comparison results of the average normalized error
between the three power characteristics, CDC, zero-delay
switching count (SC) of interna nodes and Hamming
distance (HD) of input pattern pairs;s. Among those power
characteristics, the CDC has the minima average
normalized error.

In previous introductions, we can realize that the efforts
for the characterization process are also important issues.
Therefore, we modify the grouping agorithms in 4 to have
a more efficient characterization process while building the
lookup table. In 4, the CDC distribution of input sequence is
deterministic. However, the CDC distribution in thiswork is
non-deterministic until we simulate al input pattern pairs. In
order to handle this situation without simulating all possible
cases, we dynamically increase the entries of the lookup



tables to cover the current CDC distribution of the designs
when we characterize the average power for each entry in
the table. Because a lot of pattern pairs may appear in the
same group, we use the Monte Carlo simulation (g to further
reduce the characterization time.

The rest of this paper is organized as follows. In Section
I1, we will describe the power model proposed in this work.
In Section IlI, the dynamic grouping agorithm will be
described. The power characterization process will be shown
in Section IV. The estimation of average power with the
proposed power model is described in Section V. The
accuracy of our power model will be evaluated in Section VI
through several experiments and some conclusions will be
given at the end.

Il Power Modding

The power consumption of a digital circuit is formulated
as Equation (1). The static power (Pgaic) IS the power
consumption of the leakage currents in the reversed P-N
junctions, which is often much smaller than the dynamic
power (Pgynamic). The Pyynanic 1S the summation of the power
of functional transition (Pfunc trans), the power of glitch (Pgyjitcn)
and the short-circuit power (Psortdirciit) Fepresented as
Equation (2). The Pgortcircuit 1S cONsumed when short-circuit
current flows from Vpp to ground at the period that both
PMOS and NMOS transistors turn on together during the
signal transitions and is often smaller than the summation of
the Ptunc rans 8Nd the Pyiicn. The proportion between Prync irans
and Py;i«cn iS depending on the circuit behavior and the design
skill. Given a circuit with n nodes, we could express the
power consumptions of Prync rans @Nd Pgirch @ Equation (3)
and (4), where i denotes the node-index, C; is its load
capacitance of node i, Vy is supply voltage of the circuit, the
fi_func Is the frequency of functional transition at node i and
the fi_gien iS the frequency of glitch at nodei. 7 is the factory
of the width of glitch to the glitch power and should be
between 1 and 0.

P= Pstatic + denamic (1)
denamic = Pfunc_trans + I:)glitch + I:)dmrt—circuit (2)
12N
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In this work, the lookup table maps a CDC interval to a
real power value implies that the lookup table uses the
Prunc_trans t0 indicate the trend of the real power consumption
on average. The CDC value of a pattern pair is the

n
Zci L, func iN Equation (3) where fi fnc =1 if node i has

i=1
signal transition or f; f,nc =0 if node i has no signal transition.
The power model is represented by alookup table, which
maps the CDC values to real power consumption of input
pattern pairs. The building flow of the lookup table is shown
in Fig. 1. We will first divide the input pattern pairs into
several groups according to their CDC values that are

calculated by a logic-level simulator. Those pattern pairs
within an interval of CDC values will be grouped together
and the average power of them, which is estimated by
PowerMill, will be recorded in the corresponding entry of
the lookup table.
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Fig. 1. The block diagram for building the power model

[11. Dynamic Grouping

Using the CDC values of pattern pairs to be the index of
lookup table may still have huge table size if we set a table
entry for each different CDC value. Although the table size
will be much smaller than 2™", where n is the number of
primary inputs of the circuit, it is still very huge. Therefore,
atable size reduction method is definitely required.

In order to reduce the table size, we can collect those
pattern pairs with similar CDC values to be a group and only
set one entry in the lookup table for each group. A similar
grouping method was used in pattern compaction techniques
for power estimation [4. In 4, however, the compacted
sequence is generated for a specific input sequence. In other
words, the input sequence is deterministic and the
distribution of CDC vaues is deterministic, too.
Unfortunately, when we build the lookup table for the
proposed power model in our work, the CDC distribution is
non-deterministic until we simulate all pattern pairs, which
is amost impossible for large circuits even using a
logic-level simulator.

In order to handle this situation without simulating all
possible cases, we propose a method to dynamically increase
the entries of the lookup tables to cover the current CDC
distribution of the designs when we characterize the average
power for each entry in the table. Asillustrated in Fig. 2, the
CDC values of pattern-pairs have been sorted before
grouping. The X-coordinate is the number of pattern pairs
and the Y-coordinate is the CDC value of each pattern pair.
In the first iteration, we randomly generate several pattern
pairs and the dynamic grouping works like the grouping
process in 4 as shown in Fig. 2(a). Each group is defined
with an interval of CDC values and the neighborhood groups
have continuous CDC vaues. In the second iteration, we
generate more random patterns and the number of group is
spread because the CDC distribution area is increased as
shown in Fig. 2(b). The ranges of the groupsin Fig. 2(a) are
not changed but new groups are generated from the
boundary of the first and last groups in Fig. 2(8). The size of



the lookup table in our power model is determined by the
number of groups in the dynamic grouping process, which
can be controlled by the user-defined group interval. This
group interval is defined by a percentage of the range from
the maximum CDC value to the minimum CDC value of
each group and set as 5% of the maximum CDC valuein this
work. If the interval is smaller than the minimum load
capacitance of the nodes, the interval will be set as the
minimum load capacitance of nodes because it is impossible
to have such CDC values.
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Fig. 2(a). The dynamic grouping process after thefirst iteration

Fig. 2(b). The dynamic grouping process after the second iteration

V. Power Characterization

In our power model, the corresponding power for each
table entry is determined by the average power consumption
of all pattern pairs located in the corresponding CDC
interval. Therefore, we use a random input generator to
generate a number of pattern pairs such that they can
distribute over different groups. Fig. 3 gives an illustration
of this power characterization flow. The power
characterization process will stop under 2 conditions as
follows:

(a). The average power consumption of each group has
reached the desired confidence level.

(b). The total pattern pairs have reached the constraint of
maximum number of pattern pairs.

The maximum number of characterized pattern pairs is
used to control the characterization efforts. It can be decided
by users to make a trade-off between accuracy and
characterization efforts. If criterion (b) is used to stop the
characterization process, the average power of those groups
that do not have enough pattern pairs will be estimated with
interpolation or extrapolation because the current samples
may not have enough representatives.

In order to further improve the efficiency of the
characterization process, we use the Monte Carlo approach (5
to check the stop criteria (@) such that we can finish the
characterization process as soon as possible. Under the
assumption that the mean of any sample is normal
distribution, the end of simulation can be decided according
to the statistical stopping criterion as Equation (5). In
Equation (5), € is the user acceptable maximum percentage

error, N is the number of sample, 77 is the sample mean and
Sr is the sample standard deviation. For (1-a) confidence
level, t,, is t-distribution coefficient with (N-1) degrees of
freedom.

taIZSl' <& (5)
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Fig. 3. Anillustration of the power characterization
After the estimation of average power has converged
according to the Monte Carlo stop criteria, we will not
simulate the following pattern pairs for these groups in the
transistor-level simulator because the current results already
have the desired accuracy.

V. Power Estimation with the Power M odel

After the power model of a circuit is built, the average
power consumption for any test sequence can be estimated.
First, we use a logic-level simulator to calculate the CDC
values of pattern pairs in the test sequence. With the CDC
values, we can find their corresponding groups in the lookup
table for those pattern pairs in the sequence. If a pattern pair
belongsto aCDC interval, its power consumption will be set
as the value of the corresponding table entry in the lookup
table, and the total power is equal to the summation of total
values of every pattern pairs. Finaly, the average power can
be obtained from dividing the total power by the number of
pattern pairs.

The lookup table may not cover the whole CDC
distribution of all possible pattern pairs because we did not
simulate all pattern pairs in the characterization process. In
this case, we can use extrapolation to estimate the power
consumption of those pattern pairs that belong to the
non-sampled groups. The average power consumption can
be expressed as Equation (6). In Equation (6), N is the total
number of pattern pairs in the test sequence. g is the number
of entries of the lookup table. P; is the average power
recorded in the i entry of the lookup table. n; is the number
of pattern pairs in the test sequence whose CDC values are
involved in the CDC interval of i entry. Poy of range IS the
total power consumption of those pattern pairs whose CDC
values are out of the range of the lookup table. As shown in
Equation (7), we can use extrapolation to estimate the power
consumption of those pattern pairs. P;, P, Py, and P, are
defined as P; in Equation (6). CDC,;, CDC, CDC,,; and
CDC, are the largest CDC values of entries 1, 2, g-1and g in



the lookup table. k; and k; are the numbers of pattern pairs
which are out of the smallest and largest range of the CDC
range in the lookup table.
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V1. Experimental Results
The experiments are obtained on a SUN UltraSPARC 11
workstation. The test circuits are ISCAS' 85 benchmark
circuits. In characterization process, the random input
sequence generator generates a sequence with 5,000 pattern
pairs in every iteration and the maximum number of

characterized pattern pairs is set as 100,000. The confidence
level in the Monte Carlo criteria is set as 0.99 (o is set as
0.01) under the maximum acceptable error £ is set as 0.05.
Thesample sizeis set as 30.

The experimental results are demonstrated in Table 1.
The table sizes for the benchmark circuits are listed in the
2" row under the names of circuits in the 1% row. According
to the results, table sizes are only 42 to 107 for those circuits.
Itisvery small and is almost independent to the circuit size.
In order to show that our approach can be applied to various
input seguences, we test the accuracy of our method by
estimating the average power consumption of circuits with 3
different sequences. The test sequences are pseudo random
sequence, counter sequence and LFSR sequence with 50,000
pattern pairs respectively for those circuits. The overall
average error is 2.99%. The experimental results show that
our power model still has high accuracy for different input
sequences.

Table 1. The experimental results

Circuits | C432 | C499 | C880 | C1355 | C1908 | C2670 | C3540 | C5315 | C6288 | C7552

Table Size 63 45 75 51 42 90 65 103 107 103

PowerMill IL(UA) 56.135] 149.718] 106.480] 161.386] 144.083] 261.945] 340.913] 611.173] 4841.000] 830.832

£ 8 Time (Sec) 3072] 8626] 5826] 9494 7649| 14667| 10017| 33918| 200751 43169

E 2l D Table L(UA) 57.083| 148.698| 103.818| 158.006| 141.921| 253.659] 327.412| 598.521| 4722.450| 816.488

g 3 Time (Sec) 234 703 462 659| 545 1125 1149] 2054] 3885 2673

Error (%) 169 068 250 2.09 150 316 396 2.07 2.45 173

PowerMill IL(UA) 13243 34.493] 38.119] 38270] 50.477] 6.402] 191.720] 20.911] 351.290] 68.626

g8 Time (Sec) 600| 1958 1773| 2163] 2417 479 9347] 1275] 19385 3631

S 2 b Tape [LUA) 13971| 33.468| 37.153| 37.456] 53.483] 5.923] 102.283] 20.703| 355.533] 70.526

S 3 Time (Sec) 197] 619 394 572 486 849 1051] 150.3| 257.6| 2105

Error (%) 550 297 253 213 5.96 748 029 1.00 121 2.77

ol Powerminn [L(UA) 71.436] 167.103] 118.619] 182.053] 169.728] 286.910] 374.463] 669.812] 5014.680] 975.568

5 g Time (Sec) 4050] 9496| 6786] 11007| 9460 16789 21914 38744 300071] 52882

D 3 5 Tane LA 66.274] 161.111| 114.371| 178.741] 162.510] 282.068| 361.522| 652.722| 4820.264] 936.464

- 3 Time (Sec) 244 718 475 68.4] 564 1171 1173] 2109] 3983| 279.3

Error (%) 723 359 358 182] 425 169 346 255 388 401

Average Error (%) 480] 241 287 2.01 3.90 411] 257 1.87 251 2.83
VIl Conclusion Reference

In this paper, we proposed an efficient IP-Level power

model with a small lookup table for complex CMOS circuits.

The lookup table has only one-dimension that maps the
zero-delay charging and discharging capacitance (CDC) to
the real power consumption of input pattern pairs but still
has high accuracy. In order to reduce the table size, we
collect those pattern pairs with similar CDC values to be a
group and only set an entry in the lookup table for each
group. The dynamic grouping process will automatically
increase the entries of the lookup tables to cover the current
CDC distribution of the designs during the power
characterization process. In order to improve the efficiency
of the characterization process, the Monte Carlo approach is
used during the estimation of the average power to skip the
samples that will not increase the accuracy too much. The
experimental results show that our power model can
estimate the average power of |P-level complex designs very
efficiently and accurately for various test sequences.
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