
Run-Time Energy Estimation in System-On-a-Chip Designs*

Abstract - In this paper, a co-processor for run-time energy
estimation in system-on-a-chip designs is proposed. The
estimation process is done by using power macro-models, thus
making analogue measurement equipment obsolete to the
software engineer once the system-on-a-chip (SOC) design is
characterized. Compared to sampling-based profiling systems
[17], the performance overhead of energy profiling is less,
because the energy estimation is done completely parallel to the
functional units residing on the SOC. The proposed
methodology can be used for run-time power optimization and
in-system energy profiling. The co-processor was evaluated on
a SOC for MPEG layer III audio decoding and the
experimental results show a maximum relative error of <5%.

I. Introduction

Fast time to market and low energy consumption are
major requirements for system-on-a-chip (SOC) designs
developed for use in mobile applications as well as other
embedded systems. The technological trends towards
high-level integration and increasing performance, combined
with the demand for energy-efficient system design, drive
the development of energy estimation schemes.

In large VLSI circuits, such as System-On-a-Chip (SOC),
it is often difficult to perform a run-time energy estimation
of single functional units residing on the chip. Several
approaches exist for simulating the energy consumption by
using netlist simulators [9], instruction set simulators [4],
and empirical methods [3]. In most cases these simulations
rely either on an extensive pre-characterization effort or the
need of hardware netlists, mostly not available to application
engineers.

The goal of the presented work is to support the
development of (i) energy-efficient software and (ii) power
management policies without suffering from a significant
amount of performance. This will lead to the design of more
power-aware electronic systems meeting the tight constraints
on energy consumption of battery-powered mobile systems,
such as mobile phones and PDAs.

The major contributions of our work are: (i) development
of a co-processor for energy profiling in embedded systems,
(ii) run-time energy profiling with minimal impact on the
overall performance. The JouleDoc (JD) co-processor
performs an energy estimation of the entire SOC by energy
accounting. In contrast to existing estimation schemes, the
JD co-processor does the run-time energy estimation in
parallel and makes any additional analogue measurement

SOC

JD co-processor

Power Management
Policy

Stop
Energy Monitoring

Evaluation of Policy
and Optimization

E

t

Get Energy Profile

Init
JD co-processor

Start
Energy Monitoring

Power Manager

Fig. 1. A scenario using the JD co-processor for run-time optimization of
the power management policy.

equipment obsolete after the one-time characterization
process is done.

The energy estimation is done in parallel to the other
components of the SOC, and a few instructions are required
to perform energy profiling. The JD co-processor provides
single instructions for starting and stopping the energy
estimation of the entire SOC while a further single
instruction performs energy estimation. Therefore the
performance overhead of energy profiling is kept to a
minimum.

Fig. 1 shows how a power manager is able to use the JD
co-processor for optimization of its policy [1] by
permanently tracking the impacts of the power manger’s
decisions on the SOC.

The remainder is organized as follows: in Section 2,
related work is described. Section 3 presents the
methodology and implementation of the JD co-processor. In
Section 4 the evaluation of the JD co-processor is done by
investigating an MPEG Layer III audio decoder. Section 5
concludes and discusses future work.

II. Related Work

While traditional profiling tools [17] gather program
statistics in order to aid the software developer in optimizing
the performance of the program, new tools are required to
meet the needs of energy profiling systems [5] on electronic
devices with limited energy resources. For effective

J. Haid, G. Kaefer, Ch. Steger, R. Weiss
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

*This work was supported in part by austriamicrosystems AG, Austria.
Institute for Technical Informatics

profiling accurate and fast energy estimations are necessary.
Various techniques based on instruction-level
characterization and simulation of the underlying hardware
have been proposed [8], [12]. Instruction-level power
analysis, first proposed by Tiwari et. al. [6], relies on a
base-cost model. The base-cost model is determined by
running each instruction or short sequence of instructions in
a loop and measuring the current/power consumption.
Instruction-by-instruction energy costs are pre-characterized
for each target processor. For energy estimation on
instruction-level, instruction-set-simulators (ISS) are
extended with energy models, as proposed in [4]. ISS have
the disadvantages that they can execute only a limited
number of instructions per second and often cannot be used
for simulating complete SOC designs, because of simulation
time. HW/SW co-simulators have been proposed [9] to
reduce simulation time.

In [7] the authors present a run-time power estimation
methodology which makes use of on-chip hardware counters.
Hardware counters for tracking events are already integrated
in commercial processors [18] primarily targeted for
performance profiling [17]. The profiling process is based
on system-wide sampling which is done by stopping the
processor after a pre-specified amount of time or after a
specified number of processor events. Our approach differs
from [7] in three points: (i) the presented energy accounting
hardware is not sampling-based and therefore does not
interrupt the software running on the SOC, (ii) the
co-processor estimates the energy consumption in hardware
saving overhead in terms of performance and code size, (iii)
the co-processor is designed for use in embedded systems
with no high performance processors available.

III. JD Co-processor

A. Power Macro-Modeling

Modern SOC designs offer a various number of
possibilities to reduce the energy consumption during
run-time. Energy estimation is an important technique to
evaluate the effectiveness of the implemented power aware
features. As energy estimation of a SOC at gate level or even
below is not practicable, abstraction layers of the system are
introduced, such as the instruction-level of a processor.
These abstraction levels allow the use of power
macro-modeling as the fundamental theory for power
estimation. Macro-modeling has already been used for
RT-level hardware power analysis [10], [13], [16], [19].
Macro-modeling refers to the pre-characterization of a
comprehensive set of gates, and the computation of its
power dissipation and delay using either simulation or
empirical methods. Power models for macro-blocks also
utilize signal statistics at the boundaries of the macro-blocks,
including bit-level statistics such as signal probabilities,
transition probabilities, and spatial/temporal correlations [9].

For a set of macro-blocks M building a system S, the po-
wer consumption will be given by (1), where ESAVG denotes

the average energy consumption of S, and Ek the average en-
ergy consumption of the k-th macro-block as a function of
its current state. Accurate Ek are determined by analysis of
the macro-block, as done for micro-processors in [6], [7].

∑=
k

MkSAVG k
sEE)((1)

B. Power Macro-Models for Power Estimation of SOC

Designs

A system-on-a-chip is a large VLSI circuit built of
different analogue and digital components. For energy
profiling the software designer is mostly interested in the
energy consumption of each component on its own. For
processor macro-modeling the instruction set is mostly used
an abstraction layer, because ISS are available and can be
extended with energy values.

While most energy estimation tools, like ISS, are
implemented by people not involved in the hardware design
process, the more effective way is to include the principles
of macro-modeling in the hardware design flow. The
component’s designer mostly carries out numerous
energy-related simulations at design time, leading to a more
sophisticated definition of the energy-critical spots. While
analogue simulation on component-level is possible, it
cannot be done for large SOC in a reasonable time.
Incorporating the energy related information at
component-level leads to a bottom-up method contrary to
other power estimation tools which “flatten” the design
before analysis and re-structure the results after simulation
has finished.

Furthermore, for the application engineer this granularity
at component-level is comprehensible, and optimizations
can be done by reducing the energy consumption component
by component.

C. Implementation

The JD co-processor (Fig. 2) will be used for run-time
energy analysis, profiling and monitoring of electronic
systems. The co-processor is a sensor system with a control
logic block to allow configuration and data transfer from/to
the host controller. The primary design goal is to provide a
tool with nearly no performance overhead.

C.1 JD Energy Sensors

The sensors within the JD co-processor are called JD

energy sensors. Based on existing macro-models, the sensors
count the occurrence of pre-specified operating conditions.
Within the power macro-model different operating states
(see section III.A) are associated to certain energy
consumption values. Therefore, one can compare the JD
energy sensors with small energy meters avoiding analogue
circuits.

JD co-processor

Register Set

In
te

rf
ac

e

Control Logic
accumulator

status register
data register

Event Counter 0
increment value

temp. value
data register

C
on

tr
ol

event
trigger

Event Counter 1
increment value

temp. value
data register

C
on

tr
ol

event
trigger

Event Counter n
increment value

temp. value
data register

C
on

tr
ol

event
trigger

Fig. 2. Block diagram of the JD co-processor.

The average energy consumption EMavg of a macro-block

is given by (2) where ni denotes the number of occurrences
of the operating condition Si, E the energy consumption of
the macro-block dependent on the operating condition si, and
i is the number of different operating conditions for the
macro-block M.

∑ ⋅=
i

iiMavg sEnE)((2)

C.2 JD Control Logic

The co-processor implements a small instruction set for

data transfer and configuration tasks. Starting and stopping
the energy estimation process is done by sending a single
instruction to the co-processor. The JD co-processor is
equipped with a general synchronous 32-bit interface. For
specific host processors an interface wrapper must be
implemented. Energy estimation of the whole SOC can be
performed by a dedicated “read and accumulate” instruction,
which adds the values of all counters in an accumulation
register.

The program in pseudo-code (Fig. 3) shows the low
overhead in lines of code that is required to perform
run-time energy estimation. Except for the routine
configureCounters() all commands are single 16-bit
instructions. The calculation of the energy is done in parallel
and requires 2*(number of integrated sensors) cycles;
therefore, the host controller needs no additional program
code for calculating the energy, compared to e.g. [7], and is
able to run other tasks within this time.

The current implementation of a JD energy sensor
requires 2100 gates and the control logic 3200 gates on an
average 0.35µ process. The gate-count is dominated by the
number of registers for storing adder values and
accumulated data, which may be avoided by implementing
an optimized memory system storing configuration and
intermediate data.

configureJDProcessor(); //done once at startup
_startEnergyEstimation;

{
 … //program to be energy estimated
}
_stopEnergyEstimation;
_calculateEnergy;

//estimation is done in parallel and
//requires 2*(number of JD energy sensors) cycles

_readEnergyValue;

Fig. 3. Pseudocode for run-time estimation. All commands are single
instructions except the configuration routine configureJDProcessor().

D. Energy Estimation Using FPGA-based Prototyping

Whole system evaluation is often done on prototype

boards equipped with large FPGAs. Emulation with FPGAs
is often used to provide nearly at-speed verification.
However, emulation has several problems. A major problem
is that FPGA’s technology energy characteristics make it
impossible to give accurate estimates of energy consumption
for the eventual system fabricated in silicon. Other problems
are long compile times, high costs, and performance.
Nevertheless, FPGAs are gaining more and more importance
in the design flow.

Once the designer decides to use FPGA technology for
functional verification, the energy estimation can also be
done functionally. In many cases the macro-models of the
components can be built upon available information from
data sheets, testchips, or simulations. Assuming the
macro-models of the components exists, the designer must
configure the related JD energy sensors, denoted as E(si) in
(2), and is able to perform energy analysis of the SOC in the
prototyping phase without having the SOC available on
silicon.

IV. Results

A. Power Macro-Models for a Multimedia SOC Design

For evaluation of the JD co-processor we use a SOC [21]
that is thought to be an extension of portable devices like
mobile phones, electronic organizers, or standalone
battery-powered music players. The SOC (Fig. 4) consists of
an RISC processor by ARC [20], an audio-subsystem, a
memory system, and several interfaces. The processor is
provided as a soft-macro in VHDL which offers us a wide
range of possibilities for defining the processor’s
power-macro model. An audio subsystem is included on the
chip as well as several interfaces to the PC, USB, SPI, and
MultiMediaCard.

ARC
Core

MMC
Card IF

Interfaces
(USB,SPI,...)

MultiMediaCard

MP3
Data

Memory
System

18 Bit
DAC

18 Bit
DAC

Audio
AMPs

DAC
IF

Σ ∆
DACs

Audio Subsystem

Interface-
System

Fig. 4. Block diagram of the multimedia SOC for evaluation of the JD
co-processor[21].

For energy estimation we characterized the ARC

processor including the different memories (XY, RAM,
I-cache) at different available clock speeds of the on-chip
PLL. Furthermore, the MultiMediaCard and
Audio-Subsystem were described. The macro-model of the
SOC consists of the following parameters: number of
instruction fetches cycles, cache misses, store and load
operations, pipelines stalls (all of ARC core), MMC load and
store accesses, and sampling rate and volume of the
audio-subsystem. The energy consumption is a function of
the systems operating frequency f and the volume v of the
audio subsystem.

ES(f) = ECPU+memories(f) + EAudio(f,v) + EMMC (f) (4)

The JD co-processor is mapped into the memory space of

the processor by using the auxiliary register set (AUX
registers), provided by the ARC core. The AUX registers are
simple synchronous 32-bit registers designed for interfacing
the ARC to further components.

B. Energy Analysis of MP3 Audio Decoding Using an
FPGA Prototyping System

The digital part of the SOC including the JD co-processor

is synthesized to a XILINX Virtex [14] FPGA while the
analogue subsystem is available as a single testchip and
connected to the FPGA (Fig. 5). The power values have been
gathered by analysis of existing testchips.

Fig. 5. Experimental setup. The FPGA is used for emulation of the digital
part of the SOC including the JD co-processor.

The JD co-processor is evaluated by running the MPEG
Layer III [15] audio decoder software on the SOC. The
decoding algorithm consists of three blocks: frame
unpacking, reconstruction, and inverse mapping. The first
step is the synchronization and reading of the frame header
followed by frame decoding. Requantization, stereo
processing, if applicable, is done before applying the inverse
modified cosine transformation (IMDCT) and the polyphase
synthesis filterbank. The frames are loaded from the MMC
via a FIFO. The PCM audio samples are also written onto
the audio subsystem using a FIFO.

The experiments are done on audio files with 48kHz,
44kHz, and 32kHz sampling rate, using a bitrate of 128
kBits/sec. Fig. 6 shows the energy consumption of the SOC
while playing 1 second of a MPEG Layer III files.

0

20

40

60

80

100

120

140

160

180

48kHz 44kHz 32kHz

[m
J]

Audio

MMC

Proc.+Mem.

Fig. 6. Estimated energy consumption for playing 1 second of MPEG Layer
III file.

Table 1 shows the results of the energy estimation for

each subroutine. Therefore the commands for starting and
stopping the JD energy sensors are placed nearby the
subroutine calls. As these commands consist of only two
assembler-code lines the influence on the algorithm is
minimal. The MMC’s and audio subsystem’s energy
consumption is not taken into account for this analysis,
because they do not directly influence the subroutines.

TABLE 1
ENERGY ESTIMATIONS OF THE ARC CORE BY THE JD CO-PROCESSOR FOR

SINGLE SUBROUTINES OF THE MP3 AUDIO DECODER.

48kHz
128 kBit/s

[mJ]

44kHz
128kBit/s

[mJ]

32kHz
128kBit/s

[mJ]

GetScaleFactors 0,0141 0,0124 0,0139

Stereo 0,0250 0,0229 0,0242

Reorder 0,0366 0,0320 0,0335

Antialias 0,0604 0,0551 0,0577

HuffmanDecode 0,1025 0,0970 0,1023

DequantizeSample 0,1619 0,1478 0,1561

Hybrid 0,3723 0,3446 0,3588

SubBandSynthesis 0,8708 0,8029 0,8470

TABLE 2
RELATIVE ERROR OF ESTIMATED ENERGY CONSUMPTION OF JD

CO-PROCESSOR COMPARED TO TESTCHIP MEASUREMENTS.

48kHz
128 kBit/s

[%]

44kHz
128kBit/s

[%]

32kHz
128kBit/s

[%]

GetScaleFactor -1,63 -0,31 -0,15

Stereo 1,09 2,47 3,77

Reorder 1,16 0,95 2,44

Antialias -0,22 1,96 2,10

HuffmanDecode -4,84 -3,92 -3,67

DequantizeSample 1,79 2,84 4,52

Hybrid -3,62 -4,55 -2,68

SubBandSynthesis 2,28 4,33 3,52

The accuracy of the energy estimations of the JD is

determined by analyzing several subroutines of the MP3
decoder. Table 2 shows the relative error of the estimated
energy consumption compared to empirical measurements
done with a multimeter (running the subroutines in loops).

The relative error of the estimation results is within a
range of ±5% compared to the actual energy consumption.
In our opinion this is accurate enough for the evaluation of
power management policy strategies during run-time and
source code optimizations at the software development
phase.

An additional point of interest involves the overhead of
the co-processor in terms of gate-count resp. area. Therefore,
the co-processor has been synthesized using an available
0,35µm process [21]. The JD co-processor equipped with 8
JD energy sensors requires about 12000 gates which results
in an area of approximately 1mm2 on the chip. A reduction
of the area can be obtained by using an optimized register
file instead of unstructured sequential logic.

V. Conclusion

Time-to-market constraints and the increasing number of

SOC-based mobile electronic devices require new
methodologies for energy estimation. In this paper we have
presented the implementation of the JD co-processor
delivering run-time energy estimations using the
macro-modeling approach. The JD co-processor can be used
for supporting the power manager’s decisions during
run-time and offers the possibility to continuously monitor
the energy consumption without losing a significant amount
of performance. The experiments with a SOC for audio
decoding have shown a maximum relative error of 5%
which makes the appliance and evaluation of power-aware
strategies [2] practicable.

Future work will include both implementing power
managers that exploit the permanent information of the

energy consumption for optimizing the policy as well as
investigating possibilities to reduce the size of the JD
co-processor.

VI. References

[1] L. Benini, A. Bogliolo, G.A. Paleologo and G. De Micheli, “Policy

optimization for dynamic power management,” IEEE Trans. on
Computer-Aided Design, Vol. 18, No. 6 (1999), pages 813-833.

[2] L. Benini and G. de Micheli, “System-Level power optimization:
Techniques and Tools,” ACM Transactions on Design Automation
of Electric Systems, Vol. 5, No. 2, April 2000.

[3] J. Flinn and M. Satyanarayanan, “PowerScope:A Tool for Profiling
the Energy Usage of Mobile Applications,” In Proc. 2nd IEEE
Workshop on Mobile Computing Systems and Applications,
pp.23–30, 1999.

[4] T. Simunic, L. Benini, G. De Micheli, “Cycle-Accurate Simulation
of Energy Consumption in Embedded Systems,” In Proc. Design
Automation Conference, pp.867–872, 1999.

[5] T. Simunic, “ Energy Efficient System Design and Utilization,”
PhD-Thesis, Stanford University, 2001

[6] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization,”
IEEE Transactions on VLSI Systems, vol. 2, no.4, pp.437–445,
December 1994.

[7] Russ J. and M. Martonosi, „Run-Time Power Estimation in High
Performance Microprocessor,“ In Proc. International Symposium on
Low Power Electronics and Design, pp. 135-140, August 2001.

[8] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, “Evaluation of
architecture-level power estimation for CMOS RISC processors,” In
Proc. Symp. Low Power Electronics, pages 44–45, Oct. 1995.

[9] M. Lajolo, et.al., “Efficient Power Estimation Techniques for
HW/SW Systems,” In Proc. Proc. Design Automation and Test
Europe (DATE), March 2000.

[10] J. Rabaey and M. Pedram (Editors). Low Power Design
Methodologies. Kluwer Academic Publishers, Norwell, MA, 1996.

[11] Sinha A., et.al., “JouleTrack - A Web Based Tool for Software
Energy Profiling, “In Proc. Design Automation Conference, Las
Vegas, Nevada, USA, June 2001.

[12] C-T Hsieh, L-S. Chen, and M. Pedram, “Microprocessor power
analysis by labeled simulation,” Proc. of Design Automation and
Test in Europe, Mar. 2001, pp. 182-189.

[13] Q. Qiu, Q. Wu, and M. Pedram, “Cycle-Accurate MacroModels for
RT-Level Power Analyis,” Proceedings of 1997 International
Symposium on Low Power Electronics and Design, pp. 125-130,
August 1997.

[14] XILINX Inc. http://www.xilinx.com.
[15] ISO/IEC JTC 1/SC 29/WG 11 11172-3. Information Technology –

Coding of moving pictures and associated audio for digital storage
media up to 1.5 Mbit/s – Part 3: Audio. International Organization
for Standardization, November 1994.

[16] Q. Wu, C. Ding, C. Hsieh, and M. Pedram, “Statistical Design of
Macro-models For RT-Level Power Evaluation,” In Proc. of the
Asia and South Pacific Design Automation Conference, pp.523-528,
January 1997.

[17] VTUNE Performance Analyzer. Intel Corporation, 2002.
[18] The IA-32 Intel® Architecture Software Developer’s Manual,

Volume 3: System Programming Guide. Intel Corporation, 2002.
[19] L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, R. Zafalon,

“A Power Modeling and Estimation Framework for VLIW-based
Embedded Systems," In Proc. Int. Workshop on Power And Timing
Modeling, Optimization and Simulation PATMOS, September.
2001.

[20] ARC International. http://www.arccores.com
[21] austriamicrosystems AG. http://www.austriamicrosystems.com

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

