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Abstract - In this paper, a co-processor for run-time energy 
estimation in system-on-a-chip designs is proposed. The 
estimation process is done by using power macro-models, thus 
making analogue measurement equipment obsolete to the 
software engineer once the system-on-a-chip (SOC) design is 
characterized. Compared to sampling-based profiling systems 
[17], the performance overhead of energy profiling is less, 
because the energy estimation is done completely parallel to the 
functional units residing on the SOC. The proposed 
methodology can be used for run-time power optimization and 
in-system energy profiling. The co-processor was evaluated on 
a SOC for MPEG layer III audio decoding and the 
experimental results show a maximum relative error of <5%. 
 
 

I. Introduction 
 

Fast time to market and low energy consumption are 
major requirements for system-on-a-chip (SOC) designs 
developed for use in mobile applications as well as other 
embedded systems. The technological trends towards 
high-level integration and increasing performance, combined 
with the demand for energy-efficient system design, drive 
the development of energy estimation schemes. 

In large VLSI circuits, such as System-On-a-Chip (SOC), 
it is often difficult to perform a run-time energy estimation 
of single functional units residing on the chip. Several 
approaches exist for simulating the energy consumption by 
using netlist simulators [9], instruction set simulators [4], 
and empirical methods [3]. In most cases these simulations 
rely either on an extensive pre-characterization effort or the 
need of hardware netlists, mostly not available to application 
engineers. 

The goal of the presented work is to support the 
development of (i) energy-efficient software and (ii) power 
management policies without suffering from a significant 
amount of performance. This will lead to the design of more 
power-aware electronic systems meeting the tight constraints 
on energy consumption of battery-powered mobile systems, 
such as mobile phones and PDAs.  

The major contributions of our work are: (i) development 
of a co-processor for energy profiling in embedded systems, 
(ii) run-time energy profiling with minimal impact on the 
overall performance. The JouleDoc (JD) co-processor 
performs an energy estimation of the entire SOC by energy 
accounting. In contrast to existing estimation schemes, the 
JD co-processor does the run-time energy estimation in 
parallel  and makes any additional  analogue measurement 
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Fig. 1. A scenario using the JD co-processor for run-time optimization of 
the power management policy. 

 
equipment obsolete after the one-time characterization 
process is done. 

The energy estimation is done in parallel to the other 
components of the SOC, and a few instructions are required 
to perform energy profiling. The JD co-processor provides 
single instructions for starting and stopping the energy 
estimation of the entire SOC while a further single 
instruction performs energy estimation. Therefore the 
performance overhead of energy profiling is kept to a 
minimum. 

Fig. 1 shows how a power manager is able to use the JD 
co-processor for optimization of its policy [1] by 
permanently tracking the impacts of the power manger’s 
decisions on the SOC. 

The remainder is organized as follows: in Section 2, 
related work is described. Section 3 presents the 
methodology and implementation of the JD co-processor. In 
Section 4 the evaluation of the JD co-processor is done by 
investigating an MPEG Layer III audio decoder. Section 5 
concludes and discusses future work. 
 
 

II. Related Work 
 

While traditional profiling tools [17] gather program 
statistics in order to aid the software developer in optimizing 
the performance of the program, new tools are required to 
meet the needs of energy profiling systems [5] on electronic 
devices with limited energy resources. For effective 
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profiling accurate and fast energy estimations are necessary. 
Various techniques based on instruction-level 
characterization and simulation of the underlying hardware 
have been proposed [8], [12]. Instruction-level power 
analysis, first proposed by Tiwari et. al. [6], relies on a 
base-cost model. The base-cost model is determined by 
running each instruction or short sequence of instructions in 
a loop and measuring the current/power consumption. 
Instruction-by-instruction energy costs are pre-characterized 
for each target processor. For energy estimation on 
instruction-level, instruction-set-simulators (ISS) are 
extended with energy models, as proposed in [4]. ISS have 
the disadvantages that they can execute only a limited 
number of instructions per second and often cannot be used 
for simulating complete SOC designs, because of simulation 
time. HW/SW co-simulators have been proposed [9] to 
reduce simulation time. 

In [7] the authors present a run-time power estimation 
methodology which makes use of on-chip hardware counters. 
Hardware counters for tracking events are already integrated 
in commercial processors [18] primarily targeted for 
performance profiling [17]. The profiling process is based 
on system-wide sampling which is done by stopping the 
processor after a pre-specified amount of time or after a 
specified number of processor events. Our approach differs 
from [7] in three points: (i) the presented energy accounting 
hardware is not sampling-based and therefore does not 
interrupt the software running on the SOC, (ii) the 
co-processor estimates the energy consumption in hardware 
saving overhead in terms of performance and code size, (iii) 
the co-processor is designed for use in embedded systems 
with no high performance processors available. 
 
 

III. JD Co-processor 
 

A. Power Macro-Modeling 
 

Modern SOC designs offer a various number of 
possibilities to reduce the energy consumption during 
run-time. Energy estimation is an important technique to 
evaluate the effectiveness of the implemented power aware 
features. As energy estimation of a SOC at gate level or even 
below is not practicable, abstraction layers of the system are 
introduced, such as the instruction-level of a processor. 
These abstraction levels allow the use of power 
macro-modeling as the fundamental theory for power 
estimation. Macro-modeling has already been used for 
RT-level hardware power analysis [10], [13], [16], [19]. 
Macro-modeling refers to the pre-characterization of a 
comprehensive set of gates, and the computation of its 
power dissipation and delay using either simulation or 
empirical methods. Power models for macro-blocks also 
utilize signal statistics at the boundaries of the macro-blocks, 
including bit-level statistics such as signal probabilities, 
transition probabilities, and spatial/temporal correlations [9]. 

For a set of macro-blocks M building a system S, the po-
wer consumption will be given by (1), where ESAVG denotes 

the average energy consumption of S, and Ek the average en-
ergy consumption of the k-th macro-block as a function of 
its current state. Accurate Ek are determined by analysis of 
the macro-block, as done for micro-processors in [6], [7]. 
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B. Power Macro-Models for Power Estimation of SOC 

Designs 
 

A system-on-a-chip is a large VLSI circuit built of 
different analogue and digital components. For energy 
profiling the software designer is mostly interested in the 
energy consumption of each component on its own. For 
processor macro-modeling the instruction set is mostly used 
an abstraction layer, because ISS are available and can be 
extended with energy values. 

While most energy estimation tools, like ISS, are 
implemented by people not involved in the hardware design 
process, the more effective way is to include the principles 
of macro-modeling in the hardware design flow. The 
component’s designer mostly carries out numerous 
energy-related simulations at design time, leading to a more 
sophisticated definition of the energy-critical spots. While 
analogue simulation on component-level is possible, it 
cannot be done for large SOC in a reasonable time. 
Incorporating the energy related information at 
component-level leads to a bottom-up method contrary to 
other power estimation tools which “flatten” the design 
before analysis and re-structure the results after simulation 
has finished.  

Furthermore, for the application engineer this granularity 
at component-level is comprehensible, and optimizations 
can be done by reducing the energy consumption component 
by component. 

 
 

C. Implementation 
 

The JD co-processor (Fig. 2) will be used for run-time 
energy analysis, profiling and monitoring of electronic 
systems. The co-processor is a sensor system with a control 
logic block to allow configuration and data transfer from/to 
the host controller. The primary design goal is to provide a 
tool with nearly no performance overhead. 

 
 

C.1 JD Energy Sensors 
 
The sensors within the JD co-processor are called JD 

energy sensors. Based on existing macro-models, the sensors 
count the occurrence of pre-specified operating conditions. 
Within the power macro-model different operating states 
(see section III.A) are associated to certain energy 
consumption values. Therefore, one can compare the JD 
energy sensors with small energy meters avoiding analogue 
circuits. 
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Fig. 2. Block diagram of the JD co-processor. 
 
The average energy consumption EMavg of a macro-block 

is given by (2) where ni denotes the number of occurrences 
of the operating condition Si, E the energy consumption of 
the macro-block dependent on the operating condition si, and 
i is the number of different operating conditions for the 
macro-block M. 
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C.2 JD Control Logic 
 
The co-processor implements a small instruction set for 

data transfer and configuration tasks. Starting and stopping 
the energy estimation process is done by sending a single 
instruction to the co-processor. The JD co-processor is 
equipped with a general synchronous 32-bit interface. For 
specific host processors an interface wrapper must be 
implemented. Energy estimation of the whole SOC can be 
performed by a dedicated “read and accumulate” instruction, 
which adds the values of all counters in an accumulation 
register. 

The program in pseudo-code (Fig. 3) shows the low 
overhead in lines of code that is required to perform 
run-time energy estimation. Except for the routine 
configureCounters() all commands are single 16-bit 
instructions. The calculation of the energy is done in parallel 
and requires 2*(number of integrated sensors) cycles; 
therefore, the host controller needs no additional program 
code for calculating the energy, compared to e.g. [7], and is 
able to run other tasks within this time. 

The current implementation of a JD energy sensor 
requires 2100 gates and the control logic 3200 gates on an 
average 0.35µ process. The gate-count is dominated by the 
number of registers for storing adder values and 
accumulated data, which may be avoided by implementing 
an optimized memory system storing configuration and 
intermediate data. 

 
configureJDProcessor(); //done once at startup 
_startEnergyEstimation; 
 
{ 
  … //program to be energy estimated 
} 
_stopEnergyEstimation; 
_calculateEnergy; 
 
//estimation is done in parallel and 
//requires 2*(number of JD energy sensors) cycles 
 
_readEnergyValue; 
 
 

Fig. 3. Pseudocode for run-time estimation. All commands are single 
instructions except the configuration routine configureJDProcessor(). 

 
 

D. Energy Estimation Using FPGA-based Prototyping 
 
Whole system evaluation is often done on prototype 

boards equipped with large FPGAs. Emulation with FPGAs 
is often used to provide nearly at-speed verification. 
However, emulation has several problems. A major problem 
is that FPGA’s technology energy characteristics make it 
impossible to give accurate estimates of energy consumption 
for the eventual system fabricated in silicon. Other problems 
are long compile times, high costs, and performance. 
Nevertheless, FPGAs are gaining more and more importance 
in the design flow.  

Once the designer decides to use FPGA technology for 
functional verification, the energy estimation can also be 
done functionally. In many cases the macro-models of the 
components can be built upon available information from 
data sheets, testchips, or simulations. Assuming the 
macro-models of the components exists, the designer must 
configure the related JD energy sensors, denoted as E(si) in 
(2), and is able to perform energy analysis of the SOC in the 
prototyping phase without having the SOC available on 
silicon. 

 
 
 

IV. Results 
 

A. Power Macro-Models for a Multimedia SOC Design 
 

For evaluation of the JD co-processor we use a SOC [21] 
that is thought to be an extension of portable devices like 
mobile phones, electronic organizers, or standalone 
battery-powered music players. The SOC (Fig. 4) consists of 
an RISC processor by ARC [20], an audio-subsystem, a 
memory system, and several interfaces. The processor is 
provided as a soft-macro in VHDL which offers us a wide 
range of possibilities for defining the processor’s 
power-macro model. An audio subsystem is included on the 
chip as well as several interfaces to the PC, USB, SPI, and 
MultiMediaCard. 
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Fig. 4. Block diagram of the multimedia SOC for evaluation of the JD 
co-processor[21]. 

 
For energy estimation we characterized the ARC 

processor including the different memories (XY, RAM, 
I-cache) at different available clock speeds of the on-chip 
PLL. Furthermore, the MultiMediaCard and 
Audio-Subsystem were described. The macro-model of the 
SOC consists of the following parameters: number of 
instruction fetches cycles, cache misses, store and load 
operations, pipelines stalls (all of ARC core), MMC load and 
store accesses, and sampling rate and volume of the 
audio-subsystem. The energy consumption is a function of 
the systems operating frequency f and the volume v of the 
audio subsystem. 

 
ES(f) = ECPU+memories(f) + EAudio(f,v) + EMMC (f)  (4) 
 
The JD co-processor is mapped into the memory space of 

the processor by using the auxiliary register set (AUX 
registers), provided by the ARC core. The AUX registers are 
simple synchronous 32-bit registers designed for interfacing 
the ARC to further components. 

 
 

B. Energy Analysis of MP3 Audio Decoding Using an 
FPGA Prototyping System 

 
The digital part of the SOC including the JD co-processor 

is synthesized to a XILINX Virtex [14] FPGA while the 
analogue subsystem is available as a single testchip and 
connected to the FPGA (Fig. 5). The power values have been 
gathered by analysis of existing testchips.  

 

 
 

Fig. 5. Experimental setup. The FPGA is used for emulation of the digital 
part of the SOC including the JD co-processor. 

 

The JD co-processor is evaluated by running the MPEG 
Layer III [15] audio decoder software on the SOC. The 
decoding algorithm consists of three blocks: frame 
unpacking, reconstruction, and inverse mapping. The first 
step is the synchronization and reading of the frame header 
followed by frame decoding. Requantization, stereo 
processing, if applicable, is done before applying the inverse 
modified cosine transformation (IMDCT) and the polyphase 
synthesis filterbank. The frames are loaded from the MMC 
via a FIFO. The PCM audio samples are also written onto 
the audio subsystem using a FIFO. 

The experiments are done on audio files with 48kHz, 
44kHz, and 32kHz sampling rate, using a bitrate of 128 
kBits/sec. Fig. 6 shows the energy consumption of the SOC 
while playing 1 second of a MPEG Layer III files. 
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Fig. 6. Estimated energy consumption for playing 1 second of MPEG Layer 
III file. 

 
Table 1 shows the results of the energy estimation for 

each subroutine. Therefore the commands for starting and 
stopping the JD energy sensors are placed nearby the 
subroutine calls. As these commands consist of only two 
assembler-code lines the influence on the algorithm is 
minimal. The MMC’s and audio subsystem’s energy 
consumption is not taken into account for this analysis, 
because they do not directly influence the subroutines. 

 
 

TABLE 1 
ENERGY ESTIMATIONS OF THE ARC CORE BY THE JD CO-PROCESSOR FOR 

SINGLE SUBROUTINES OF THE MP3 AUDIO DECODER. 
 

 

48kHz 
128 kBit/s 

[mJ] 

44kHz 
128kBit/s 

[mJ] 

32kHz 
128kBit/s 

[mJ] 

GetScaleFactors 0,0141 0,0124 0,0139 

Stereo 0,0250 0,0229 0,0242 

Reorder 0,0366 0,0320 0,0335 

Antialias 0,0604 0,0551 0,0577 

HuffmanDecode 0,1025 0,0970 0,1023 

DequantizeSample 0,1619 0,1478 0,1561 

Hybrid 0,3723 0,3446 0,3588 

SubBandSynthesis 0,8708 0,8029 0,8470 
 



TABLE 2 
RELATIVE ERROR OF ESTIMATED ENERGY CONSUMPTION OF JD 

CO-PROCESSOR COMPARED TO TESTCHIP MEASUREMENTS. 
 

 

48kHz 
128 kBit/s 

[%] 

44kHz 
128kBit/s 

[%] 

32kHz 
128kBit/s 

[%] 

GetScaleFactor -1,63 -0,31 -0,15 

Stereo 1,09 2,47 3,77 

Reorder 1,16 0,95 2,44 

Antialias -0,22 1,96 2,10 

HuffmanDecode -4,84 -3,92 -3,67 

DequantizeSample 1,79 2,84 4,52 

Hybrid -3,62 -4,55 -2,68 

SubBandSynthesis 2,28 4,33 3,52 
 
The accuracy of the energy estimations of the JD is 

determined by analyzing several subroutines of the MP3 
decoder. Table 2 shows the relative error of the estimated 
energy consumption compared to empirical measurements 
done with a multimeter (running the subroutines in loops). 

The relative error of the estimation results is within a 
range of ±5% compared to the actual energy consumption. 
In our opinion this is accurate enough for the evaluation of 
power management policy strategies during run-time and 
source code optimizations at the software development 
phase. 

An additional point of interest involves the overhead of 
the co-processor in terms of gate-count resp. area. Therefore, 
the co-processor has been synthesized using an available 
0,35µm process [21]. The JD co-processor equipped with 8 
JD energy sensors requires about 12000 gates which results 
in an area of approximately 1mm2 on the chip. A reduction 
of the area can be obtained by using an optimized register 
file instead of unstructured sequential logic. 

 
 
 

V. Conclusion 
 
Time-to-market constraints and the increasing number of 

SOC-based mobile electronic devices require new 
methodologies for energy estimation. In this paper we have 
presented the implementation of the JD co-processor 
delivering run-time energy estimations using the 
macro-modeling approach. The JD co-processor can be used 
for supporting the power manager’s decisions during 
run-time and offers the possibility to continuously monitor 
the energy consumption without losing a significant amount 
of performance. The experiments with a SOC for audio 
decoding have shown a maximum relative error of 5% 
which makes the appliance and evaluation of power-aware 
strategies [2] practicable. 

Future work will include both implementing power 
managers that exploit the permanent information of the 

energy consumption for optimizing the policy as well as 
investigating possibilities to reduce the size of the JD 
co-processor. 
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