
The Design of an i8080A Instruction Compatible Processor
with Extended Memory Address

Chiaki Kon Naohiko Shimizu

Graduated School of Engineering, Dept. Communications Engineering,
Tokai University Tokai University

Kitakaname 1117, Hiratsuka, Kitakaname 1117, Hiratsuka,
Kanagawa 259-1292 Kanagawa 259-1292

e-mail: 1aepm024@keyaki.cc.u-tokai.ac.jp e-mail: nshimizu@keyaki.cc.u-tokai.ac.jp

Abstract— Computer systems with 8080 or compatible proces-
sor and CP/M were most popular from the end 70’s to early in
80’s. We designed an 8080 compatible processor with MMU and
implement it on an FPGA as a CP/M system.
Keyword: SFL, 8080, CP/M

I. I NTRODUCTION

Intel 8080 was a famous processor. It was used as CPU in
old computer systems and the successors of 8080 are still used
to control embedded systems in present. We have designed
an Intel 8080A instruction compatible processor core ”my80”
and designed a CP/M machine with it. My80 can access to the
extended memory area up to 16MB with newly added instruc-
tions, and it can execute all 8080 instructions faster than the
original. In this paper, we present the design of my80, and the
implementation.

II. H ARDWARE DESIGN

My80 is designed with a description language SFL[3]. The
Fig.1 is the block diagram of my80. My80 is a non-pipelined
CISC processor. My80 executes all 8080’s instruction faster
than the original(TABLE I). Fig.2 is the state transition of
My80. In if state, my80 fetches an instruction and set it in
theOP0 register and transit tof1 state. Depending on the in-
struction length,f2 andf3 states are activated, respectively. If
my80 needs more than 4 clock cycles for the execution of in-
struction(for example, the instruction needs multiple memory
access), the state of my80 is transferred to instruction specific
states.

My80 has programmable register set as same as the original
i8080A. OP0 - OP2 register is used as internal registers. An
ALU unit and an INC/DEC unit ware designed as ripple carry
adders to reduce the gate size.

As a disk-less CP/M workstation, we added the following
changes to the original i8080A.

A. Address Extension

We added additional 8bit address lines. Hence, My80 has
16MB address space. The extended address space is used as

F

ALU

AB C

D E

H L

SP

PC

MUX, DMUX

INC,DEC

OP0 OP1 OP2

CONTROL UNIT

RS232C INTERFACE

INTERNAL BUS

SYSTEM BUS

RAM ROM

DMUX

Fig. 1. The block diagram of My80.

Instruction Fetch

Instruction Decode
 and
Operand Fetch

Execution

f1, f2, f3

if

execution continue

finish finish

execution continue

need more operand

instruction specific state

Fig. 2. State Transition

ROM/RAM disks in the CP/M system. My80 has two orig-
inal instructions to access the extended address space. BIOS
parameters configure the geometry of the disks. For exam-
ple, We decided to use the extended address space as a 128kB
disk(Fig.3,4). Boot time bank switching is also a part of the
logic. And there is no need for off-chip logic.

B. Additional Instructions

My80 has two memory access mode. One is normal memory
access mode, the other can access to extended address space.

In the normal memory access, the extended address lines
are intended to be zero(Fig.3). MSB is a RAM/ROM select
bit from a programmable status register for the boot up bank
switching. If bank switching register value was zero, my80 ac-
cess to RAM, if it was one, my80 access to ROM. We can alter

TABLE I
MACHINE CYCLES COMPARISON BETWEEN ORIGINAL I8080A AND MY 80

instruction original[2] my80 instruction original my80 instruction original my80 instruction original my80
MOV(rr) 5 2 XRI 7 3 CP 11/17a 4/6a XCHG 4 2

MOV(mr, rm) 7 3 ORI 7 3 CM 11/17a 4/6a XTHL 18 5
HLT 7 2 CPI 7 3 CPE 11/17a 4/6a SPHL 5 2

MVI(r, m) 7, 10 3 RLC 4 2 CPO 11/17a 4/6a PCHL 5 3
INR(r) 5 2 RRC 4 2 RET 10 3 DAD 10 3
DCR(r) 5 2 RAL 4 2 RC 5/11a 2/3a STAX 7 2
INR(m) 10 3 RAR 4 2 RNC 5/11a 2/3a LDAX 7 2
DCR(m) 10 3 JMP 10 4 RZ 5/11a 2/3a INX 5 3

ADD(r, m) 4, 7 3 JC 10 4 RNZ 5/11a 2/3a DCX 5 3
ADC(r, m) 4, 7 3 JNC 10 4 RP 5/11a 2/3a CMA 4 2
SUB(r, m) 4, 7 3 JZ 10 4 RM 5/11a 2/3a STC 4 2
SBB(r, m) 4, 7 3 JNZ 10 4 RPE 5/11a 2/3a CMC 4 2
ANA(r, m) 4, 7 3 JP 10 4 RPO 5/11a 2/3a DAA 4 3
XRA(r, m) 4, 7 3 JM 10 4 RST 11 4 SHLD 16 5
ORA(r, m) 4, 7 3 JPE 10 4 IN 10 3 LHLD 16 5
CMP(r, m) 4, 7 3 JPO 10 4 OUT 10 3 EI 4 2

ADI 7 3 CALL 17 6 LXI 10 4 DI 4 2
ACI 7 3 CC 11/17a 4/6a PUSH 11 4 NOP 4 2
SUI 7 3 CNC 11/17a 4/6a POP 10 3 STAB 3
SBI 7 3 CZ 11/17a 4/6a STA 13 4 LDAB 3
ANI 7 3 CNZ 11/17a 4/6a LDA 13 4

a
False/Success

MEMORY

DISK 2

CP/M

DISK 1

64KB

128B

8KB

BOOT

RAM ROM

64KB

H L

A

ACCESS
CONTROL

 Constant
 0000000b

/CE CE

ADRS

Fig. 3. Normal Memory Access Mode

TABLE II
SYNTHESIZE RESULTS

Device Maximum Frequency Used LC or Gates
EPF10K30AQC240-3a 8.90 MHz 1260 LCs
EPF1S80F1508C6a 57.21 MHz 1240 LCs
NEC CMOS9b 34.36 MHz 7826 Gates

a
Synthesized by Max+plus2

b
Synthesized by PARTHENON

bank switching register with out instruction.
We added two instructions,STAB and LDAB. These In-

structions are used to access for the extended address space.
STAB andLDAB works as a store instruction and a load in-
struction, respectively. The address is designated with the
combination of theB, H andL registers, as shown in Fig.4.

The op-codes are selected from the unused codes of the
Z80(DD02, DD03). Hence, it is easy to port these instruction
for Z80 compatible processors.

III. I MPLEMENTATION

We implemented my80 as a CP/M machine. We used
CSP-011-30A[5] for MPU and an original PCB board for
RAM/ROM.

MEMORY

DISK 2

CP/M

DISK 1

64KB

128B

8KB

BOOT

8MB 8MB
RAM ROM

A

H LB

B’s MSB

/CE CE

ADRS

Fig. 4. Extended Address Memory Access Mode

The results of logic synthesis by Parthenon[3], Max+plus2
and Quartus2[6] are shown in the TABLE II. We used an
EPF10K30AQC240-3 device for our demo board. Target mod-
ule contains My80 core, SIO interface and required address de-
coders. Then we do not need any glue logic. We used 2.304
MHz clock due to the EPROM access speed.

IV. CONCLUSION

We designed an 8080A compatible system with extended
address space running as a disk-less CP/M machine. Because
it uses only a small amount of gates, we think that it is possible
to use my80 as an embedded controller in SOC design, and/or
educations.

REFERENCES

[1] Homepage: http://shimizu-lab.et.u-tokai.ac.jp/

[2] MCS-86 User’s Manual (1979) Intel

[3] Parthenon: http://www.kecl.ntt.co.jp/parthenon/

[4] Retro Archive: http://www.retroarchive.org

[5] Humandata: http://www.hdl.co.jp

[6] Altera: http://www.altera.com

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

