
A0

B0

A < B

A > B

A = B

ARBITRARY LONG DIGIT INTEGER SORTER HW/SW CO-DESIGN

Shun-Wen Cheng

Tamkang University
Taipei, TAIWAN

E-mail: swcheng@ieee.org

Abstract–– The coming of multimedia era and information
security era indicates that must process longer digit integer
data. Previous sort researches focus on pure performance of
large amount of finite fixed digit/bit number. This paper
discusses on effectively solving arbitrary long digit integer
sorting problem by HW/SW co-design under the Area×Time2
(AT2) price-performance constraint. The work proposes
multi-level (two-level) sort architecture to attain the object:
an accomplished fixed-digit (k-bit) hardware sorter
implements the first or basic level sorting, software
programmed radix 2k sort implements the second or higher
level sorting. By Super Radix Sorting HW/SW co-design and
reuse techniques, the work makes fixed-digit HW sorters
more flexible and useful.

Index Term –– HW/SW co-design, Reusable & Embedded
Cores, Sorting, Radix Sort, Technology Independent
Methodologies, System-on-a-Chip (SoC), VLSI design.

 1. INTRODUCTION

Sorting is one of the most important problems in
computer science. Many fundamental processes in
computing and communication systems require sorting of
data. Sorting network play a key role in the areas of
parallel computing, multi-access memories and
multiprocessing [3], [4], [5], [6], [11], [13], [14], [19].

Compare and swap elements of data are vital for
sorting, as depicted in Fig. 1. But if someone needs to
process very long digit integer sorting, then directly design
a corresponding digit integer hardware sorter, the
comparators and networks will become very huge. The
circuit schematics of 1, 2, 4, and 16 bit magnitude
comparators are depicted in Fig. 2. And about bus, if it is
designed for 32-digit integer, every bus represents 32-bit
line. And if it is designed for 64-digit integer, every bus
represents 64-bit line. That means it needs double wire
structures and areas.

More importantly, circuit cost/complexity of a (2k)-
bit comparator are not only twice than a k-bit comparator,
as shown in Table 1. Also, the ability of CMOS circuit
fan-out is limited; it still needs to add some additional
buffers in the comparator circuits.

a

b

a

b

a

b

a

b

max(a , b)

m in (a , b)

b

a
 a
b a �b

min(a , b)

max(a , b)

a

b

a

b

a

b

a

b

b

a
 a 	b a �b

Figure 1. Compare & swap elements are vital for sorting

A 1

B 1

A 0

B 0

A < B

A > B

A = B
 (a) 1-bit magnitude comparator. (b) 2-bit comparator.

A 3

B 3

A 2

B 2

A 1

B 1

A 0

B 0

A < B

A > B

A = B

A < B

A > B

B1 2 - 1 5

A1 2 - 1 5

A < B

A > B

B8 - 1 1

A8 - 1 1

A < B

A > B

B4 - 7

A4 - 7

A < B

A > B

B0 - 3

A0 - 3

A < B

A > B

A = B

(c) 4-bit comparator. (d) 16-bit comparator.

Figure 2. The Circuit of magnitude comparators.

magnitude
comparator

1-bit 2-bit 4-bit 16-bit

CMOS Cost
(gate count) 12 P + 12 N 39 P + 39 N 87 P + 87 N 399P + 399N

Table 1. Circuit cost/complexity of a long bit/digit
comparator are more higher than a short bit/digit one.

In Table 2, some sorter chip designs had shown

hardware expandable properties [1], [2], [8]. But they are
not good enough for arbitrary long digit integer sorter
design. The time performance of a fixed-digit (k-bit)
hardware sorter is often better than a same digit software
sort program, as displayed in Table 3. But a pure hardware
sorter still has higher area cost and some restrictions, so it
is not popular yet on common commercial CPUs.

Base on the physical considerations, the author
focuses on effectively solving arbitrary long digit integer
sort problem by HW/SW co-design under Area-Time2
(AT2) cost-performance trade-off constraint [20], [21].
Several AT2-optimal sorting networks under different
word length models have been proposed in [7], [9], [15],
and [17].

For embedded systems, a uniprocessor software
solution is often not applicable due to the insufficient I/O
and performance, while realizing multiprocessor sorting
methods on parallel computers is much too expensive with
respect to area cost and power consumption.

When the trends of data processing migrate from 32-
bit to 64-bit, 128-bit or uncertainly higher, a fixed-digit
pure HW sorter cannot content demands alone. All of the
sorting algorithms or circuits in this paper are based on
commonly known algorithms and structures. But make an
accomplished hardware sorter reusable [12], make a pure
HW sorter more flexible and balance its cost-performance,
are very valuable and necessary.

This paper is organized as follows. Section 2 briefly
introduces the basic LSD radix sort algorithm. Then a
cost-benefit balanced multi-level (two-level) HW/SW
mixed sort architecture is given and discussed in Section
3. Finally conclude the major findings and outline the
future work.

 II. STRAIGHT RADIX SORT ALGORITHM
This approach begins with the least significant key

first, and is known as LSD (Least Significant Digit) sort.
Following the sort on a key, the piles are put together to
obtain a single pile that is then sorted on the next
significant key. This process is continued until the pile is
sorted on the most significant key [13]. And the sorted
sequence is obtained.

Complexity As shown in Fig. 3, it takes n steps to
put all the elements in queue AUX, and d steps to initialize
the queues Q[i]. The main loop of the algorithm, which is
executed m times, pops each element from AUX and
pushes it into one of the Q[i]s.

It also concatenates all the Q[i]s together. So the
overall running time of the algorithm is O(m n). But if m
is limited or small, it can be ignored. So the time
complexity of the algorithm is O(n), this is a common
condition under a common CPU.

m number
single sorter chip design

Function blocks of
one-sorter cell

Cost of each functional block
(CMOS transistor gate count)

Number of
cells

Number of
clock cycles

16-bit
Enumeration Sorter [23]

(1982)

Two 16-bit data registers
One 16-bit comparator
One 8-bit counter

256P + 256N
399P + 399N
136P + 136N

m 2 N

16-bit VLSI Sorter [16]
(1983)

Two 16-bit data registers
One 16-bit comparator
Two 16-bit 2-way multiplexers

256P + 256N
399P + 399N
64P + 64N

m / 2 4 N

16-bit Rebound Sorter [8]
(1978 [8], 1989 [2])

Two 8-bit data registers
One 8-bit comparator
Two 8-bit 2-way multiplexers

128P + 128N
195P + 195N
32P + 32N

m 2 N

16-bit Bit-Serial Sorter [1]
(1991)

One 1-bit comparator
One 16-bit shift register
Two 1-bit 2-way multiplexers
Two 1-bit delay elements

12P + 12N
452P + 452N

4P + 4N
2P + 2N

m N + 1

Table 2. Chip Comparison of m 16-bit hardware sorter designs.

Design Area Perf. (A) Time Perf. (Td)

Uniprocessor
Heapsort log N N (log 2 N)2

(1 + log 2 N) – processor
Mergesort (log 2 N)2 N log 2 N

(log 2 N) 2 – processor
Bitonic Sort (log 2 N)3 N

N–processor Bitonic Sort on
Mesh N (log 2 N)2 sqrt(N)

N–processor Bitonic Sort on
Shuffle-Exchange Net [19] N2 / (log 2 N)2 (log 2 N)3

N (log 2 N)2 – Comparator
Bitonic Sort N2 / log 2 N (log 2 N)2

N2 comparators
Bubble Sort N log 2 N N

Table 3. Area-Time Bounds for the finite and fixed bit/digit
number sorting problem [21].

III. A M ULTI-LEVEL MIXED ARCHITECTURE:
SUPER RADIX SORT

Figure 3 also displays an LSD radix-10 sorting
example using linked allocation [9]. But when the radix is
very large, linked list allocation will become ineffective.

From this example, the benefits of LSD radix sort are
directly unfolded: (1) the key size can be changed easily;
(2) there is no recursive function call, no stack size
problem. For solving arbitrary long digit integer sorting
problem under cost-performance trade-off constraint, the
LSD radix benefits will be extended to the utmost edge.

And because of very long digit integer, using bit field
structure to reduce memory requirement, and accelerate
sort process, is necessary. As depicted in Fig. 4, a two-
level HW/SW mixed sort architecture are proposed: an
accomplished fixed-digit (k-bit) hardware sorter
implements the first/bottom level sorting, software
programmed LSD-radix (radix 2k) sort implements the
second/higher level sorting by way of CPU. Thus sort
operation will appear in assembly codes, as Fig. 5 shows.

It can directly handle maximum 232 × k-digit integers
sorting job (if 32 is the length of common register). If
k=16, it can handle max 232 × 16 digit integer sorting job.
If the number of digit is still higher then the quota, similar

multi-level mixed sort architecture can be considered. Of
course, if the input sequence is also arbitrary long, some
special design have provided solutions [24]. Or the
sequence is separated into several pieces, and then merges
them to get the total result after sorting.

Because the bit length of numbers is very long,
compare two numbers than directly swap them is very
ineffective [18]. An indirect method -- only record
swapped indices and hold them in cache is a good idea.

If the system only has an common CPU and the bits
of the longest number is m, and the sort algorithm is radix
sort, the average overall running time of the proposed
method is m × O(N). But if the system has an
accomplished fixed-digit (k-bit) hardware sorter on the
system and the bits of the longest number is m, the overall
running time of the proposed method becomes m / k × Td.
If the HW sorter is N (log 2 N)2 – Comparator Bitonic
Sorter, the overall running time is m / k × O((log 2 N)2).
Some comparisons are shown in Table 4.

The proposed HW/SW mixed super radix sorting
architecture can process and change HW/SW partitioning
ratio easily, as displayed in Fig. 6, to get a cost-benefit
balanced flexible HW/SW mixed design. And the
accomplished fixed-digit (k-bit) hardware sorter can
choose any your favor or your own design.

Figure 3. Basic straight radix sort algorithm and a radix-10 sorting example.

 Algorithm Straight_Radix_Sort (A[], n, k)
 (* Input : A[](an array of integer, each with k digits, in the rage 1 to n).
 Output : A[] (the array in sorted order). *)
 begin
 Assume that all elements are initially in a auxiliary queue AUX;
 (* The use of AUX is for simplicity; it can be implemented by Array A *)

 for i:= 1 to d do
 (* d is the possible digits; d = 10 in case of decimal numbers *)
 Initialize queue Q[i] to be empty;

 for i:= k downto d do
 while AUX is not empty do
 Pop x from AUX;
 d := the i-th digit of x;
 Insert x into Q[d];

 for j:= 1 to d do
 Insert Q[j] into AUX;

 for i:= 1 to n do
 Pop A[i] from AUX;

 end.

A Radix -10 Sorting Example:

232, 321, 213, 231, 111, 112, 132, 123, 221
1S (321, 231, 111, 221
2S (232, 112, 132
3S (213, 123

321, 231, 111, 221, 232, 112, 132, 213, 123
10S (111, 112, 213
20S (321, 221, 123
30S (231, 232, 132

111, 112, 213, 321, 221, 123, 231, 232, 132
100S (111, 112, 123, 132
200S (213, 221, 231, 232
300S (321

Result: 111, 112, 123, 132, 213, 221, 231, 232, 321

int 7

C P U
[88 /32
 3]

(CX=3)

k-bi t (32-bi t)
H W

Sorter
T A G

Cache

High Speed Sys tem Bus

32 b i ts

int 1

int 2

int 3

int 4

int 5

int 6

32 b i ts

M
ai

n
M

em
or

y
/

V
ir

tu
al

 M
em

or
y

S
pa

ce

l oad data

contro l load data

contro l

(a) Sort step 1.

int 7

C P U
(CX=2)

k-bi t (32-bi t)
H W

Sorter
T A G

Cache

High Speed Sys tem Bus

32 b i ts

int 1

int 2

int 3

int 4

int 5

int 6

32 b i ts

M
ai

n
M

em
or

y
/

V
ir

tu
al

 M
em

or
y

S
pa

ce

l oad data

contro l load data

contro l

(b) Sort step 2.

int 7

C P U
(CX=1)

k-bi t (32-bi t)
H W

Sorter
T A G

Cache

High Speed Sys tem Bus

32 b i ts

int 1

int 2

int 3

int 4

int 5

int 6

32 b i ts

M
ai

n
M

em
or

y
/

V
ir

tu
al

 M
em

or
y

S
pa

ce

l oad data

contro l load data

contro l

(c) Sort step 3 and complete the work.

Figure 4. Two-level HW/SW mixed sort architecture.

Figure 5. Why does not instruction SORT appear in
instruction sets of nowadays?

Increas ing Hardware Sor te r

H W
H W

H W
H WS W

S W
S W

S W

Inc reas ing Sof tware Sor t ing Process ing (Super Rad ix Sor t)

C o m m o n C P U Pure AS IC
16 -b i t HW 32-b i t HW 64-b i t HW

Smal l Large
Tota l Area (Cost)

Fast

S l o w

S
ort S

peed
(P

erform
ance)

B i g CPU +
L igh t HW Sor te r

Sma l l CPU +
Power fu l HW Sor te r

Figure 6. Impact and challenge of hardware/software
co-design trade-off.

Figure 7 demonstrates a super radix sort: 88-digit

integer SW LSD radix-4,294,967,296 (radix-232) sort with
32-bit HW sorter mixed sorting, it needs 3 steps. And it is
processed by 88-digit integer SW LSD Radix-65,536
(Radix-216) sort with 16-bit HW sorter mixed sorting, it
will needs 6 steps. If the hardware sorter can be easily
decomposed to several stages then pipeline, the hardware
sorter can get more higher hardware sharing and
throughputs, as Fig. 8 depicts.

DATA SEGMENT
NUM DB
...............

DATA ENDS
..........................

CODE SEGMENT

..........................
SORT_START:

MOV ESI, OFFSET NUM ; source address
MOV EBX, 88D ; digit of number = 88
MOV EDX, 9D ; there are 9 numbers to be sorted
SORT
.........................

CODE ENDS

 Tag[X] num[X][2] num[X][1] num[X][0]
Origin: [1] 00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000

 [2] 10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000
 [3] 00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100
 [4] 00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010
 [5] 00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011
 [6] 00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000
 [7] 00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000
 [8] 00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100
 [9] 00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000

Step 1: [4] 00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010

 [5] 00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011
 [2] 10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000
 [6] 00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000
 [9] 00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000
 [7] 00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000
 [3] 00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100
 [1] 00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000
 [8] 00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100

Step 2: [3] 00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100

 [5] 00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011
 [6] 00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000
 [8] 00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100
 [9] 00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000
 [2] 10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000
 [7] 00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000
 [1] 00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000
 [4] 00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010

Step 3: [5] 00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011

 [6] 00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000
 [8] 00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100
 [7] 00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000
 [3] 00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100
 [9] 00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000
 [4] 00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010
 [1] 00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000
 [2] 10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000

Step 1:
Input Sequence: A[1][0], A[2][0], A[3][0], A[4][0], A[5][0], A[6][0], A[7][0], A[8][0], A[9][0]
After HW Sorting: A[4][0], A[5][0], A[2][0], A[6][0], A[9][0], A[7][0], A[3][0], A[1][0], A[8][0]
ONLY Record swapped index: 4, 5, 2, 6, 9, 7, 3, 1, 8.

Step 2:
Input Sequence: A[4][1], A[5][1], A[2][1], A[6][1], A[9][1], A[7][1], A[3][1], A[1][1], A[8][1]
After HW Sorting: A[3][1], A[5][1], A[6][1], A[8][1], A[9][1], A[2][1], A[7][1], A[1][1], A[4][1]
ONLY Record swapped index: 3, 5, 6, 8, 9, 2, 7, 1, 4.

Step 3:
Input Sequence: A[3][2], A[5][2], A[6][2], A[8][2], A[9][2], A[2][2], A[7][2], A[1][2], A[4][2]
After HW Sorting: A[5][2], A[6][2], A[8][2], A[7][2], A[3][2], A[9][2], A[4][2], A[1][2], A[2][2]
ONLY Record swapped index: 5, 6, 8, 7, 3, 9, 4, 1, 2.
The final index is the answer.
* Swap the original whole number in these sorting steps is unnecessary.

Figure 7. Super Radix Sort: 88-digit integer SW LSD radix- 4,294,967,296 (radix- 232) sort with 32-bit HW sorter mixed sorting.

Level-1 Level-2 Level –3 sub-sorter
stage 1 stage 1 stage 2 stage 1 stage 2 stage 3

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

6-stage pipeline
Figure 8. A three-level bitonic sorter. Pipeline this type
circuit can get higher hardware sharing and throughputs.

Parameter Old design New design

Range Fixed k-digit 2 32 × k - digit

Layout cost 1
No change

(Slight modification)

Hardware reusing 0 High

Table 5. New design has high hardware reusing.

 IV. CONCLUDING REMARK
This paper discusses on effectively solving arbitrary

long digit integer sorting problem by HW/SW co-design
under Area x Time2 (AT2) price-performance constraint.
The work introduces a two-level (multi-level) sort
architecture can attain the object: an accomplished fixed-
digit (k-digit) hardware sorter implements first level
sorting, software programmed LSD radix (radix 2k) sort
implements second level sorting.

As Table 5 shows, by HW/SW co-design and reuse
methodology, the proposed mixed super radix sorting
architecture makes accomplished hardware sorters more
flexible and useful: It is time to put a hardware sorter on a
common commercial CPU or network processor.

REFERENCES
[1] M. Afghahi, “A 512 16-b Bit-serial Sorter Chip,” IEEE J. Solid-

State Circuits, vol. 26, pp. 1452–1457, Oct. 1991.
[2] B. Ahn and J. M. Murray, “A Pipelined, Expandable VLSI Sorting

Engine Implemented in CMOS Technology,” in Proc. IEEE Int’l.
Symp. on Circuits and Systems, 1989, pp. 134–137.

[3] S. G. Akl, Parallel Sorting Algorithms. Reading, New York:
Academic Press, 1985.

[4] K. E. Batcher, “Sorting Networks and Their Applications,” in Proc.
AFIPS 1968 Spring Joint Computer Conference, pp. 307–314, Apr.
1968.

[5] G. Baudet and D. Stevenson, “Optimal Sorting Algorithms for
Parallel Computer,” IEEE Trans. Computers, vol. 27, pp.84–87,
Jan. 1978.

[6] R. Beigel and J.Gill, “Sorting n Objects with a k-sorter,” IEEE
Trans. Computers, vol. 39, pp.714–716, May 1990.

[7] G. Bilardi and F. P. Preparata, “A Minimum Area VLSI Network
for O(log n) Time Sorting,” IEEE Trans. Computers, vol. 34,
pp.336–343, May 1985.

[8] T. C. Chen, Vincent Y. Lum, and C. Tung, “The Rebound Sorter:
An Efficient Sort Engine for Large File,” in IEEE Proc. 4th Int’l
Conf. on Very Large Data Bases, pp. 312–318, Sep. 1978.

[9] R. Cole and A. R. Seigel, “Optimal VLSI Circuits for Sorting,”
JACM, vol. 35, pp.777-809, 1988.

[10] Edward. H. Friend, “Sorting on Electronic Computer Systems,”
JACM, vol. 3, pp.134-168, 1956.

[11] C. A. R. Hoare, “Quicksort,” Computing Journal, vol. 5, pp. 10–
15, 1962.

[12] M. Keating and P. Bricaud, Reuse Methodology Manual. Reading:
Kluwer, 1998.

[13] D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting
and Searching. Reading: Addison-Wesley, 1973.

[14] J.-G. Lee and B.-G. Lee, “Realization of Large-scale Distributors
Based on Batcher Sorters,” IEEE Trans. Communications, vol. 47,
pp. 1103–1110, July 1999.

[15] T. Leighton, “Tight Bounds on The Complexity of Parallel
Sorting,” IEEE Trans. Computers, vol. 34, pp. 344–354, Apr. 1985.

[16] G. S. Miranker, Luong Tang, and Chak-Kuen Wong, “A ‘Zero-
Time’ VLSI Sorter,” IBM J. Research & Development, vol. 27, pp.
140–148, Mar. 1983.

[17] S. Olariu, M. C. Pinotti, and S. Q. Zheng, “How to Sort N Items
Using a Sorting Network of Fixed I/O Size,” IEEE Trans. Parallel
and Distributed Sys., vol. 10, pp 487–499, May 1999.

[18] B. Parhami and D.-M. Kwai, “Data-driven Control Scheme for
Linear Arrays: Application to a Stable Insertion Sorter,” IEEE
Trans. Parallel and Distributed Sys., vol. 10, pp 23–28, Jan. 1999.

[19] H. S. Stone, “Parallel Processing with the Perfect Shuffle,” IEEE
Trans. Computers, vol. 20, pp.153–161, Feb. 1971.

[20] C. D. Thompson, “Area-Time Complexity for VLSI,” in Proc. 11th
Annual ACM Symp. on Theory of Comp., pp. 81–88, Apr. 1979.

[21] C. D. Thompson, “The VLSI Complexity of Sorting,” IEEE Trans.
Computers, vol. 32, pp.1171–1184, Dec. 1983.

[22] N. H. E. Weste and K. Eshraghian, Principle of CMOS VLSI
Design, 2nd Ed., Reading: Addison–Wesley, 1993.

[23] H. Yasuura, N. Takagi, and S. Yajima, “The Parallel Enumeration
Sorting Scheme for VLSI,” IEEE Trans. Computers, vol. 31,
pp.1192–1201, Dec. 1982.

[24] S. Q. Zheng, S. Olariu, and M. C. Pinotti, “A Systolic Architecture
for Sorting an Arbitrary Number of Elements,” in Proc. 1997 3rd
Int. Conf. Algorithms and Architectures for Parallel Processing,
pp. 113 -126, 1997.

HW / SW
Pure Common CPU

/ Radix Sort
Pure Common CPU
/ Quick Sort [11]

CPU &
One 32-bit HW Sorter*

/ Super Radix Sort

CPU &
One 64-bit HW Sorter*

/ Super Radix Sort

CPU &
One 256-bit HW Sorter*

/ Super Radix Sort

Running time
(Avg. case)

m × O(N) m × O(N log N) m / 32 × Td. m / 64 × Td. m / 256 × Td.

* If the HW sorter is an N (log 2 N)2 – comparator bitonic processor, the order of Td is O((log 2 N)2).
Table 4. The performance order comparison between original architectures and new mixed architectures.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

