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Abstract–– The coming of multimedia era and information 
security era indicates that must process longer digit integer 
data. Previous sort researches focus on pure performance of 
large amount of finite fixed digit/bit number. This paper 
discusses on effectively solving arbitrary long digit integer 
sorting problem by HW/SW co-design under the Area×Time2 
(AT2) price-performance constraint. The work proposes 
multi-level (two-level) sort architecture to attain the object: 
an accomplished fixed-digit (k-bit) hardware sorter 
implements the first or basic level sorting, software 
programmed radix 2k sort implements the second or higher 
level sorting. By Super Radix Sorting HW/SW co-design and 
reuse techniques, the work makes fixed-digit HW sorters 
more flexible and useful. 
 

Index Term –– HW/SW co-design, Reusable & Embedded 
Cores, Sorting, Radix Sort, Technology Independent 
Methodologies, System-on-a-Chip (SoC), VLSI design. 

 

 1. INTRODUCTION 

Sorting is one of the most important problems in 
computer science. Many fundamental processes in 
computing and communication systems require sorting of 
data. Sorting network play a key role in the areas of 
parallel computing, multi-access memories and 
multiprocessing [3], [4], [5], [6], [11], [13], [14], [19]. 

Compare and swap elements of data are vital for 
sorting, as depicted in Fig. 1. But if someone needs to 
process very long digit integer sorting, then directly design 
a corresponding digit integer hardware sorter, the 
comparators and networks will become very huge. The 
circuit schematics of 1, 2, 4, and 16 bit magnitude 
comparators are depicted in Fig. 2. And about bus, if it is 
designed for 32-digit integer, every bus represents 32-bit 
line. And if it is designed for 64-digit integer, every bus 
represents 64-bit line. That means it needs double wire 
structures and areas. 

More importantly, circuit cost/complexity of a (2k)-
bit comparator are not only twice than a k-bit comparator, 
as shown in Table 1. Also, the ability of CMOS circuit 
fan-out is limited; it still needs to add some additional 
buffers in the comparator circuits. 
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Figure 1. Compare & swap elements are vital for sorting 
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  (a) 1-bit magnitude comparator.         (b) 2-bit comparator. 
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(c) 4-bit comparator.                   (d) 16-bit comparator.  

Figure 2. The Circuit of magnitude comparators. 
 

 

magnitude 
comparator 

1-bit 2-bit 4-bit 16-bit 

CMOS Cost 
(gate count) 12 P + 12 N 39 P + 39 N 87 P + 87 N 399P + 399N 

Table 1. Circuit cost/complexity of a long bit/digit 
comparator are more higher than a short bit/digit one. 



 
In Table 2, some sorter chip designs had shown 

hardware expandable properties [1], [2], [8]. But they are 
not good enough for arbitrary long digit integer sorter 
design. The time performance of a fixed-digit (k-bit) 
hardware sorter is often better than a same digit software 
sort program, as displayed in Table 3. But a pure hardware 
sorter still has higher area cost and some restrictions, so it 
is not popular yet on common commercial CPUs. 

Base on the physical considerations, the author 
focuses on effectively solving arbitrary long digit integer 
sort problem by HW/SW co-design under Area-Time2 
(AT2) cost-performance trade-off constraint [20], [21]. 
Several AT2-optimal sorting networks under different 
word length models have been proposed in [7], [9], [15], 
and [17]. 

For embedded systems, a uniprocessor software 
solution is often not applicable due to the insufficient I/O 
and performance, while realizing multiprocessor sorting 
methods on parallel computers is much too expensive with 
respect to area cost and power consumption. 

When the trends of data processing migrate from 32-
bit to 64-bit, 128-bit or uncertainly higher, a fixed-digit 
pure HW sorter cannot content demands alone. All of the 
sorting algorithms or circuits in this paper are based on 
commonly known algorithms and structures. But make an 
accomplished hardware sorter reusable [12], make a pure 
HW sorter more flexible and balance its cost-performance, 
are very valuable and necessary. 

This paper is organized as follows. Section 2 briefly 
introduces the basic LSD radix sort algorithm. Then a 
cost-benefit balanced multi-level (two-level) HW/SW 
mixed sort architecture is given and discussed in Section 
3. Finally conclude the major findings and outline the 
future work. 

 II. STRAIGHT RADIX SORT ALGORITHM 
This approach begins with the least significant key 

first, and is known as LSD (Least Significant Digit) sort. 
Following the sort on a key, the piles are put together to 
obtain a single pile that is then sorted on the next 
significant key. This process is continued until the pile is 
sorted on the most significant key [13]. And the sorted 
sequence is obtained. 

Complexity As shown in Fig. 3, it takes n steps to 
put all the elements in queue AUX, and d steps to initialize 
the queues Q[i]. The main loop of the algorithm, which is 
executed m times, pops each element from AUX and 
pushes it into one of the Q[i]s. 

It also concatenates all the Q[i]s together. So the 
overall running time of the algorithm is O(m n). But if m 
is limited or small, it can be ignored. So the time 
complexity of the algorithm is O(n), this is a common 
condition under a common CPU. 
 

m number 
single sorter chip design 

Function blocks of 
one-sorter cell 

Cost of each functional block 
(CMOS transistor gate count) 

Number of 
cells 

Number of 
clock cycles 

16-bit  
Enumeration Sorter [23] 

(1982) 

Two 16-bit data registers 
One 16-bit comparator 
One 8-bit counter 

256P + 256N 
399P + 399N 
136P + 136N 

m 2 N 

16-bit VLSI Sorter [16] 
(1983) 

Two 16-bit data registers 
One 16-bit comparator 
Two 16-bit 2-way multiplexers 

256P + 256N 
399P + 399N 
64P + 64N 

m / 2 4 N 

16-bit Rebound Sorter [8] 
(1978 [8], 1989 [2]) 

Two 8-bit data registers 
One 8-bit comparator 
Two 8-bit 2-way multiplexers 

128P + 128N 
195P + 195N 
32P + 32N 

m 2 N 

16-bit Bit-Serial Sorter [1] 
(1991) 

One 1-bit comparator 
One 16-bit shift register 
Two 1-bit 2-way multiplexers 
Two 1-bit delay elements 

12P + 12N 
452P + 452N 

4P + 4N 
2P + 2N 

m N + 1 

 

Table 2. Chip Comparison of m 16-bit hardware sorter designs. 

Design Area Perf. (A) Time Perf. (Td) 

Uniprocessor 
Heapsort log N N (log 2 N)2 

(1 + log 2 N) – processor 
Mergesort (log 2 N)2 N log 2 N 

(log 2 N) 2 – processor 
Bitonic Sort (log 2 N)3 N 

N–processor Bitonic Sort on 
Mesh N (log 2 N)2 sqrt(N) 

N–processor Bitonic Sort on 
Shuffle-Exchange Net [19] N2 / (log 2 N)2 (log 2 N)3 

N (log 2 N)2 – Comparator 
Bitonic Sort N2 / log 2 N (log 2 N)2 

N2  comparators 
Bubble Sort N log 2 N N 

Table 3. Area-Time Bounds for the finite and fixed bit/digit 
number sorting problem [21]. 



III. A M ULTI-LEVEL MIXED ARCHITECTURE: 
SUPER RADIX SORT 

Figure 3 also displays an LSD radix-10 sorting 
example using linked allocation [9]. But when the radix is 
very large, linked list allocation will become ineffective.  

From this example, the benefits of LSD radix sort are 
directly unfolded: (1) the key size can be changed easily; 
(2) there is no recursive function call, no stack size 
problem. For solving arbitrary long digit integer sorting 
problem under cost-performance trade-off constraint, the 
LSD radix benefits will be extended to the utmost edge. 

And because of very long digit integer, using bit field 
structure to reduce memory requirement, and accelerate 
sort process, is necessary. As depicted in Fig. 4, a two-
level HW/SW mixed sort architecture are proposed: an 
accomplished fixed-digit (k-bit) hardware sorter 
implements the first/bottom level sorting, software 
programmed LSD-radix (radix 2k) sort implements the 
second/higher level sorting by way of CPU. Thus sort 
operation will appear in assembly codes, as Fig. 5 shows. 

It can directly handle maximum 232 × k-digit integers 
sorting job (if 32 is the length of common register). If 
k=16, it can handle max 232 × 16 digit integer sorting job. 
If the number of digit is still higher then the quota, similar 

multi-level mixed sort architecture can be considered. Of 
course, if the input sequence is also arbitrary long, some 
special design have provided solutions [24]. Or the 
sequence is separated into several pieces, and then merges 
them to get the total result after sorting. 

Because the bit length of numbers is very long, 
compare two numbers than directly swap them is very 
ineffective [18]. An indirect method -- only record 
swapped indices and hold them in cache is a good idea. 

If the system only has an common CPU and the bits 
of the longest number is m, and the sort algorithm is radix 
sort, the average overall running time of the proposed 
method is m × O(N). But if the system has an 
accomplished fixed-digit (k-bit) hardware sorter on the 
system and the bits of the longest number is m, the overall 
running time of the proposed method becomes m / k × Td. 
If the HW sorter is N (log 2 N)2 – Comparator Bitonic 
Sorter, the overall running time is m / k ×  O( (log 2 N)2 ). 
Some comparisons are shown in Table 4. 

The proposed HW/SW mixed super radix sorting 
architecture can process and change HW/SW partitioning 
ratio easily, as displayed in Fig. 6, to get a cost-benefit 
balanced flexible HW/SW mixed design. And the 
accomplished fixed-digit (k-bit) hardware sorter can 
choose any your favor or your own design. 

Figure 3. Basic straight radix sort algorithm and a radix-10 sorting example. 

  Algorithm Straight_Radix_Sort (A[ ], n, k) 
  (* Input : A[ ](an array of integer, each with k digits, in the rage 1 to n). 
     Output : A[ ] ( the array in sorted order). *) 
  begin 
       Assume that all elements are initially in a auxiliary queue AUX; 
       (* The use of AUX is for simplicity; it can be implemented by Array A *) 
 
       for  i:= 1  to d do 
       (* d is the possible digits; d = 10 in case of decimal numbers *) 
              Initialize queue Q[i] to be empty; 
 
       for  i:= k downto d do 
            while AUX is not empty do 
                  Pop x from AUX; 
                  d := the i-th digit of x; 
                  Insert x into Q[d]; 
 

            for  j:= 1 to d do 
                  Insert Q[j] into AUX; 
   
       for  i:= 1  to n do 
            Pop A[ i] from AUX; 
   
  end. 

A Radix -10 Sorting Example: 
 
232, 321, 213, 231, 111, 112, 132, 123, 221 
1S ( 321, 231, 111, 221 
2S ( 232, 112, 132 
3S ( 213, 123 
 
321, 231, 111, 221, 232, 112, 132, 213, 123 
10S ( 111, 112, 213 
20S ( 321, 221, 123 
30S ( 231, 232, 132 
 
111, 112, 213, 321, 221, 123, 231, 232, 132 
100S ( 111, 112, 123, 132 
200S ( 213, 221, 231, 232 
300S ( 321 
 
Result: 111, 112, 123, 132, 213, 221, 231, 232, 321 
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(a) Sort step 1. 
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(b) Sort step 2. 
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(c) Sort step 3 and complete the work. 

 
Figure 4. Two-level HW/SW mixed sort architecture. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Why does not instruction SORT appear in 
instruction sets of nowadays? 
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Figure 6. Impact and challenge of hardware/software 
co-design trade-off. 

 
 
Figure 7 demonstrates a super radix sort: 88-digit 

integer SW LSD radix-4,294,967,296 (radix-232 ) sort with 
32-bit HW sorter mixed sorting, it needs 3 steps. And it is 
processed by 88-digit integer SW LSD Radix-65,536 
(Radix-216 ) sort with 16-bit HW sorter mixed sorting, it 
will needs 6 steps. If the hardware sorter can be easily 
decomposed to several stages then pipeline, the hardware 
sorter can get more higher hardware sharing and 
throughputs, as Fig. 8 depicts.  

DATA SEGMENT 
NUM   DB   ............. 
............... 

DATA ENDS 
.......................... 
 
CODE SEGMENT 

.......................... 
SORT_START: 

MOV   ESI, OFFSET NUM ; source address 
MOV   EBX, 88D ; digit of number = 88 
MOV   EDX, 9D  ; there are 9 numbers to be sorted 
SORT 
......................... 

CODE ENDS 



 

 Tag[X]     num[X][2]                                                  num[X][1]                                                num[X][0] 
Origin:  [1]   00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000 

  [2]   10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000 
  [3]   00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100 
  [4]   00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010 
  [5]   00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011 
  [6]   00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000 
  [7]   00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000 
  [8]   00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100 
  [9]   00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000 

 
Step 1:  [4]   00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010 

  [5]   00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011 
  [2]   10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000 
  [6]   00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000 
  [9]   00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000 
  [7]   00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000 
  [3]   00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100 
  [1]   00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000 
  [8]   00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100 

 
Step 2:  [3]   00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100 

  [5]   00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011 
  [6]   00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000 
  [8]   00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100 
  [9]   00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000 
  [2]   10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000 
  [7]   00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000 
  [1]   00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000 
  [4]   00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010 

 
Step 3:  [5]   00000000 0000000000000000 0000000000000000 0000010100001000 0000000000000000 0000001100110011 

  [6]   00000000 0000000000000000 0000000000000001 0000100010000000 0000000000000100 0010100000010000 
  [8]   00000000 0000000000000000 0000000100100000 0000001000010100 0010001000101000 0000001010000100 
  [7]   00000000 0000000000000001 0001010000001000 0000000100101000 0000000101000000 0000000000111000 
  [3]   00000000 0000010111110000 0000000000000000 0000000010101010 0000010101000000 0101100000001100 
  [9]   00000000 0001000010101000 0000100001110000 0000100000011000 0000000000001111 0000000001100000 
  [4]   00000011 0111100000000100 1100000011110000 0001110000010010 0000000000000000 0000000000000010 
  [1]   00000110 0100000010010000 1010000000010100 0010101000000000 0001000000101000 0001010101010000 
  [2]   10101000 0010101010101000 0000101010001010 0100000010101011 0000000000000010 0000000000000000 

 
Step 1: 
Input Sequence:     A[1][0], A[2][0], A[3][0], A[4][0], A[5][0], A[6][0], A[7][0], A[8][0], A[9][0] 
After HW Sorting: A[4][0], A[5][0], A[2][0], A[6][0], A[9][0], A[7][0], A[3][0], A[1][0], A[8][0] 
ONLY Record swapped index: 4, 5, 2, 6, 9, 7, 3, 1, 8. 
 
Step 2: 
Input Sequence:     A[4][1], A[5][1], A[2][1], A[6][1], A[9][1], A[7][1], A[3][1], A[1][1], A[8][1]  
After HW Sorting: A[3][1], A[5][1], A[6][1], A[8][1], A[9][1], A[2][1], A[7][1], A[1][1], A[4][1] 
ONLY Record swapped index: 3, 5, 6, 8, 9, 2, 7, 1, 4. 
 
Step 3: 
Input Sequence:     A[3][2], A[5][2], A[6][2], A[8][2], A[9][2], A[2][2], A[7][2], A[1][2], A[4][2] 
After HW Sorting: A[5][2], A[6][2], A[8][2], A[7][2], A[3][2], A[9][2], A[4][2], A[1][2], A[2][2] 
ONLY Record swapped index: 5, 6, 8, 7, 3, 9, 4, 1, 2. 
The final index is the answer. 
* Swap the original whole number in these sorting steps is unnecessary. 

 
Figure  7. Super Radix Sort: 88-digit integer SW LSD radix- 4,294,967,296 (radix- 232 ) sort with 32-bit HW sorter mixed sorting. 



 

Level-1             Level-2                       Level –3 sub-sorter 
stage 1      stage 1     stage 2     stage 1     stage 2      stage 3 

 
stage 1     stage 2     stage 3      stage 4     stage 5      stage 6 

6-stage pipeline 
Figure 8. A three-level bitonic sorter. Pipeline this type 
circuit can get higher hardware sharing and throughputs. 

 
Parameter Old design New design 

Range Fixed k-digit 2 32 × k - digit 

Layout cost 1 
No change 

(Slight modification) 

Hardware reusing 0 High 

Table 5. New design has high hardware reusing. 
 

 IV. CONCLUDING REMARK 
This paper discusses on effectively solving arbitrary 

long digit integer sorting problem by HW/SW co-design 
under Area x Time2 (AT2) price-performance constraint. 
The work introduces a two-level (multi-level) sort 
architecture can attain the object: an accomplished fixed-
digit (k-digit) hardware sorter implements first level 
sorting, software programmed LSD radix (radix 2k) sort 
implements second level sorting. 

As Table 5 shows, by HW/SW co-design and reuse 
methodology, the proposed mixed super radix sorting 
architecture makes accomplished hardware sorters more 
flexible and useful: It is time to put a hardware sorter on a 
common commercial CPU or network processor. 
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HW / SW 
Pure Common CPU 

/ Radix Sort 
Pure Common CPU 
/ Quick Sort [11] 

CPU & 
One 32-bit HW Sorter* 

/ Super Radix Sort 

CPU & 
One 64-bit HW Sorter* 

/ Super Radix Sort 

CPU & 
One 256-bit HW Sorter* 

/ Super Radix Sort 

Running time 
(Avg. case) 

m × O(N) m × O(N log N) m / 32 × Td. m / 64 × Td. m / 256 × Td. 

* If the HW sorter is an N (log 2 N)2 – comparator bitonic processor, the order of Td is O((log 2 N)2). 
Table 4. The performance order comparison between original architectures and new mixed architectures. 
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