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Abstract— In this paper, we propose an approach for the syn- the knowledge of problem composition.
thesis of heterogeneous (embedded) systems, while exploiting ahi- The idea of PFA is to start exploring the Pareto-fronts by
erarchical problem structure. Particular to our approach is that  mapping the leaves in a given hierarchical specification. Later,
we explore the set of so-calledPareto-optimal solutionsi.e., opti-  these Pareto-fronts are combined to generate the Pareto-front
mizing multiple objectives simultaneously. Since system complex- on higher hierarchical levels. This way, we reduce the explo-
ity grows steadily leading to giant search spaces which demand ration time. But we will show that the constructed front might
for new strategies in design space exploration, we propogtareto-  not be the true Pareto-front. Nevertheless, while using only a
Front Arithmetics (PFA) using results of subsystems to construct small fraction of time, we are able to find a substantial number
implementations of the top-level system. This way, we are able of Pareto-optimal solutions.
to reduce the exploration time dramatically. An example of an The concept of PFA was already mentioned in [7] and for-
MPEG4 coder is used to show the benefit of this approach in real- malized in [1]. While [7] only shows experimental results,
life applications. Abraham et al. [1] discuss a very special kind of search space
which possesses certain monotonicity properties that we show
do not hold in SoC design.
|. INTRODUCTION The rest of the paper is organized as follows: We start with
) o ] o .. anintroduction to system synthesis. The characteristics of hi-
_ Simultaneously optimizing multiple conflicting objectiveSg s chical design spaces of embedded systems are shown in
like power consumption, implementation cost, etc. becom&syction 111, The novel approach of Pareto-Front Arithmetics
more and more important in SoC design. Since it is possible {g; fat design space exploration is outlined in Section IV. Sub-
implement different funcuqns of the s_ystem on different hardéequently, we propose an algorithm based on PFA and uncer-
ware components, the design space is very complex. The qugg ghjectives in order to improve the quality of the design
tion which function has to be performed by which hardwareqints ‘We capture the results (Section V) of these approaches

component on the discussed conditions is a multi-objective ogs; the example of an MPEG4 coder which is the running ex-
timization problem which can be formalized and is often callegmme in this paper.

system synthesjg]. Moreover, the basic problems are to find
anallocationof components and to findtandingof functions
to components while regarding data dependencies. Our main [l. SYSTEM SYNTHESIS

goal is to formalize these tasks in order to be able to understand h K of hesis | find th f optimal
the complexity of finding optimal allocations and bindings. The task of system synthesis is o find the set of optima

Due to the large complexity of the design space, heurist{@‘E‘SibIe impl_ementat_ions for a given specification. Here, an
optimization techniques are mostly used to solve the Optimizé{pplementatmn consists of two parts ([10]):

tion problem. Different heuristic optimization techniques are 1 theallocation« is the set of all used hardware resources
discussed in the literature for non-hierarchical system synthe- jike processors, IP cores, etc. as well as the set of imple-
sis (see [2, 5]). In this paper, we propd3areto-Front Arith- mented tasks.

metics(PFA) to deal with the increased complexity in the prob-
lem of finding optimal solutions, the so-call®dreto-set PFA

is based on a hierarchical model of embedded systems [10].

This model allows the specification of design alternatives CExampIe 1 We use the model of a so-callegecification

the appllcatlon_ algorithm as well as alternatlyes of _dlffere raph(see also [10]) in order to specify embedded systems.
hardware architectures. In contrast to other hierarchical mo

X e " specification graph consists of three main components:
els (see [4, 3]), this model supports the specification of re-

source constraints. Not only that this hierarchical approach e The problem graply, describing the behavior of the sys-
helps designers to cope with complexity, but it also captures tem modeled by a process graph.

*Supported in part by the German Science Foundation (DFG), Project ® Th.e architecture graply, models the set of possible ar-
SFB 614 “Selbstoptimierende Systeme des Maschinenbaus”. chitectures.

2. thebinding 3 determines the hardware resource used for
the execution of each task in the allocation.
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order to restrict the combinatorial search space, it is useful to
\ p=0 \p=100 \p=10 \p=200 |p=10 /p=300 /p=0 ,-p=100 /p=0 determine the set of feasible allocations and bindings, With this
‘ R \ ‘ ! ! S ’ knowledge, we define an implementation as a pairs).

Q Network The Task of System Synthesis With the model introduced

£ N 7 p=0 previously, the task of system synthesis can be formulated as
FPGA2 y Scene an optimization problem.
p=700 o RISC1 p=0
67500 - i p=450 c=0 . .
SB . —— Definition 1 (System Synthesis)The task ofsystem synthe-
p=s0 : ' b sisis the following multi-objective optimization problem:
c= =400
) cL FPGA2 minimize o(a, 3),
FPOAL [ e . RISC2 bi ) (. )
p=600 ’ p=400 subject to:
¢=1000 c=800 « is a feasible allocation,
Fig. 1 Implementation of an MPEG4 coder. All vertices and edges drawn [ is a feasible binding,
solid describe an allocation. The binding is given by the dashed edges. ci(a,8) >0, Vie{l,...,q}

The constraints oa and 3 define the set of valid implemen-
tations.Additionally, there are functions,: = 1,...,q, that
determine the set of feasible solutions.

Normally, the objective functiono is n-dimensional, i.e.,
we optimize multiple objectives simultaneously. Furthermore,
The example introduced here and used throughout the pthere are; constraints:;, i = 1,.. ., q. All possible allocations

per is an MPEG4 coder. The problem graph of the MPEG4 and bindings3 span the design space. Only thesedesign

coder is shown at the top of Fig. 1. We start with a given scer@intsz = (a, ) € X that represent a feasible implementa-

which is decomposed (DL) into audio/visual objects (AvOYion and that satisfy all constraints, are in the set of feasible

Each AVO is coded by an appropriate coding algorithm (codsolutions, or in short in théeasible setalled Xy C X. The

ing layer, CL). In a next step (Access Unit Layer, AL), the datinage ofX is defined a§” = o(X) C R", where the objective

are provided with time stamps, data type (audio, video), etéinctiono on the setX is given byo(X) = {o(z) | = € X}.

In a last operation (Flexible Multiplexer) it is possible, e.g., toAnalogously, thebjective spacés denoted by = o(X).

group streams with the same quality of service requirements. Since we are dealing with multi-objective optimization
The target architecture for the problem graph is shown aproblems, there is generally not only one global optimum, but

the bottom of Fig. 1. The architecture consists of four funca set of so-calletPareto-point48].

tional resources, two programmable RISC processors, two field

programmable gate arrays (FPGAs), and a single shared buBefinition 2 (Pareto-optimality) A feasible implementation

Additionally, the processor RISC1 is equipped with two spd-= (a, ) € X is said to be Pareto-optimal, if there is no

cial ports. The dashed edges between the two graphs are thiher design poini = (a, 3) € X¢ which dominates it, i.e.,

additional mapping edges. For example, operation DL can b&; € X; : i = i, wheré

executed only on RISC1.

e The user-defined mapping constraints, call@adpping
edgesF,,, relate tasks and resources in the form: "can
be implemented by".

The mapping edges are annotated with additional power B i > i (dominatey if o(i) < o(4)
consumptions which arise when this particular mapping edges i = i (weakly dominatgs if o(i) < o(i) B
is part of the binding. Furthermore, all resources in Figure 1 i ~ 1 (isindifferenttg if o(i) £ o(i) A o(i) # o(3).

are annotated with allocation cost and power consumptions.

These values have to be taken into account if the corresponthe set of all Pareto-optimal solutions is called tPereto-

ing resource is used in an implementation. optimal set or for short thePareto-setX,. An approxima-
Consider the case that the operation CL in Figure 1 igion of the Pareto-seX, will be termedquality setX, subse-

mapped onto the resource RISC2. All other operations aguently.

non-ambiguously bound onto resources. The dashed mapping

edges shown in Figure 1 indicate a feasible binding if the alExample 2 An example of a two-dimensional objective space

location is given by the two RISC processors, the shared bus, given in Figure 4(a). Assume that the objectivgsand

and the two external interfaces. 0o are both to be minimized. There are five Pareto-optimal

points,ps1, P32, P33, P34, andpss. The Pareto-set is given by

Due to data dependencies, a binding could be infeasible. fds1, P32, P33, P34, P35 . The remaining points are all domi-

binding is called feasible if it guarantees that data communhated by at least one Pareto-optimal solution.

cations imposed by the problem graph could by established by

the allocated resources. Furthermordeasible allocations 1The relations € {=, <, <, >, >} are defined aso(i) o o() iff Vj =

y =y SNy Dy

an allocationx that allows at least one feasible bindiggIn  1,...,n:0;() 0 0;(7)



@ ® as the decomposition operator, see also [10]):
(=

«, VIC) ® (g5, MPEG4) ® (gs, H.261
— — — With the definitions given above, we use the notatiofys, g)
to denote the partial design space regarding the partial specifi-
Avdacods ions cation(gs, g). Furthermore, lefX,(gs, 9,) and X¢(gs, g,) de-

'S note the Pareto-set and the feasible set of specification ggaph
o while meeting the imposed constraiats: (¢1, ¢a, . .., cq), re-
Fig. 2. Complete functional specification of the MPEG4 coding layer. Spective|y_}/f(gS’ gp) is the objective space regardi(yl57 gp)

Hierarchical Design Space A typical design space for an
I11. HIERARCHICAL SYSTEM SYNTHESIS embedded system exploration consists very often of many in-
feasible solutions. The probability of finding a feasible im-
By looking at the MPEG4 standard, one can see that the coplementation ,,ad hoc” is nearly zero. Here, we present a fast
ing layer consists of several different coding schemes whickpproach which relies strongly on the hierarchical decomposi-
cannot be expressed in the given specification model. In dien of a system.
der to model these refinements, here, we introduce a hierar\We consider the case of composing a top-level design by
chical model. Thishierarchical specification grapls based solutions of its subsystems. The exploration of the solutions
on the (non-hierarchical) specification graph described in thef the subsystems and the composition of these solutions is
previous section and the concepttoérarchical graphg10].  calledhierarchical design space exploratiohe three main
Mapping edges in the hierarchical specification graph map leafivantages for using hierarchical design space exploration are:
vertices of the problem graph to leaf vertices of the architec-
ture graph. An example of a hierarchical specification graph is1- The size of each subsystem’s design space is smaller than
shown in Figure 3. the top-level design space.

2. The evaluation effort for each subsystem design is low

Example 3 Figure 2 shows possible refinements of the coding  pecause of the smaller complexity of the subsystem.
layer. There are two possible codings: audio and visual cod-

ing, i.e., CL.G = {AudioCoder, VideoCoder}. The audio
coder subgraph consists of only one vertexdioCoder.V =

{vac} and no edges\udioCoder.E = {}. In the next level
of the hierarchy, we can refine,. by a single subgraph

NaturalSound. Due to space limitations, we omit the detailSypaham et al. define necessary and sufficient conditions of
of the different coding schemes. The six leaf graphs can h&, composition function of the objectives which guarantee
refined with the non-hierarchical model. Pareto-optimality for the top-level system depending on the
Pareto-optimality of its subsystems [1]. For our problem we
can formulate these conditions as: A given decomposition
©(gs, gp) Of a top-level specificatiofiys, g,) is called (weak

3. The number of evaluated top-level design points is a small
fraction of the original search space. This is due to the fact
that a valid implementation is only composable of valid
solutions of its subsystems.

In the following we use the notatiofys, g) to denote gar-
tial specificationrwhereg is any subgraph in the problem graph

of the given specificatiogs. (gs, g) is obtained by removing ¢ strong)monotonicif the top-level Pareto-seX., (4., g, ) is
R o959

all vertices and subgraphs from the problem graph leaving o 'gifven by the composition of the Pareto-sats(g. ¢.) for all

g and all its associated subgraphs. To guarantee a meanifg; I . .
e . stibsystemsgs, ;) € ©(gs, gp). This is true if the composi-
ful specification, all unconnected mapping edges are remov . T8 IPJ . )

ion function of each objective is a monotonic function.

from the specification graph, too. Furthermore, vertices in the

: . L . Although this result is important and interesting, the op-
architecture graph which are notincident to any mapping ecjgt‘lar‘nization goals in SoC design unfortunately do not possess
will also be deleted.

Obviouslv. th ial ificati i nds t these monotonicity properties as will be shown later. Hence,
lously, the partial Specitica :@.S’gp) COrresponas 10\ cannot assume that a Pareto-optimal top-level design is
the original specificatiorys with g, being the original prob-

4 : . ._composed of Pareto-optimal subsystem implementations.
lem graph. In the following, we denote this particular parUaF P P y P

specification asop-level specification o _ . _ o
With the notion of a partial specification, we can decompos@bjective Space We consider a three-dimensional objective
our system: Adecompositior® (g, g,) of a top-level specifi- SPace which is defined by the most important objectives for

cation g is a partition ofg, into disjunctive partial specifica- SOC design: the cost, the overall power consumption and the
tions. flexibility of an implementation.

Implementation Cost: Theimplementation costost (i) for
Example 4 The decomposition of our MPEG4 codgrgiven — a given implementation= («, 3) is given by the sum of costs
in Figure 2 into its leaf specifications is given by (Here, we usef all allocated resources.
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Example 5 Again, we look at Example 1. In order to calcu- P R b %«
late the implementation cosbst(i), we have to compute the 2 P, . s
set of allocated resources. With this set we calculate the imple-' 0 Pos 0 oo
mentation cost of this implementatian P op
38
cost(i) = cost(RISC1) + cost(RISC2) + cost(SB) +
cost(Network) + cost(Scene) 0y
= 7504800+ 50+ 0+ 0= 1600 Fig. 4. Example Pareto-Front Arithmetics operations (a) union, (b)

" . . maximum, and (c) addition of objectives of Pareto-points.
Now, we can show that the composition function of the imple-

mentation cost is indeed a non-monotonic function.

Theorem 1 The composition function for the objective cost othe number of used leaf graphs of the problem grgphFor

an embedded system is nhon-monotonic. the problem graph in Figure 2 we obtain a maximum flexibil-
_ o _ ity of g(CL) = 6 by using the CELP, MPEG2, HILN, VTC,

Proof 1 We prove this theorem by contradiction: Given thepeG4, and H.261 coder in our implementation. For a com-

specification graphg, depicted in Figure 3. Let the al- prepensive introduction to the flexibility of an embedded sys-
location cost forr; and r, be 200 and 100, respectively. jem see [6].

The cost objective for the Pareto-optimal design regarding
the cost of allocated resources of the subsystems are given

by cost(X,(gs,91)) = {(100)} and cost(Xp(gs,g2)) = IV. HIERARCHICAL DESIGN SPACE EXPLORATION
{(200)}. When considering subsystefy, g1) alone, we

would aIIocz_ate resource, as a cost-minimal implementation. Front ArithmeticPFA) in design space exploration exploiting
When considering subsystefa, g2) alone, the resource, . . . e

o= . . . the hierarchical structure of the underlying specifications.
would determine its cost-optimal implementation. By com-

bining both implementations, we obtain an implementation of ) .

the top-level desigrigs,g,). Due to the allocation of both A- Pareto-Front Arithmetics

resources, we get implementation costeft(X;(gs, 91)) ® The inputs to Pareto-Front Arithmetics are the qual-
cost(Xp(gs, 92)) = 300 for the combined implementation jty sets from the mutually disjunctive partial specifica-
which is obviously suboptimal asst(X(gs, gp)) = 200. B tions (g, g1), (gs, g2); - - - » (gs» gn ). TWO partial specifications

. . s, J1), (gs, g2) are mutually disjunctive iff; N g, = (). Here,
Power Consumption: The overall power consumption \(/ge go)ns(igdeg t)aach partial )gpec]:ificationfzs a? non-hierarchical

gowr(]i) of a g|\;en implementation = ((;" [TI) 'S” appro(;qmated s§ecificati0n associated with a leaf graph of the problem graph.
y the sum of power consumption of all allocated resourcqy ey tq optimize such a partial specification, we use evo-

plus the additional power consumption annotated at the maﬂ'tionary algorithms (EA) as described in [2]. The resulting

ping edges. guality sets are then used by the PFA to construct a quality set
Example 6 The implementation described in Example 1 posfor the top-level specificatiofys, gs-gp)-
sesses the following overall power consumption: Figure 4 shows three possible operations used by PFA.
The first operation (Figure 4(a)) is the union of two or more
Pareto-fronts, i.e., each Pareto-optimal solution is added to
the resulting set. All points not dominated in the resulting
set are Pareto-optimal. The second operation is to take the
maximum of each objective of two (or more) points (Fig-
The third objective is the reciprocal of the flexibility of an im-ure 4(b)). Here, each Pareto-optimal pojnt is combined
plementation [10]: with each Pareto-optimal solutign;. The resulting objectives
Flexibility: Without loss of generality, we only treat sys-(o1,02) = (maz(o1(p1:),01(p2;)), max(02(p1;), 02(p2;)))
tems throughout this paper where the flexibiljtyg, ) equals are filtered regarding Pareto-optimality..

This section proposes a novel approach, nanigyeto-

pow(i) = pow(RISC1) + pow(RISC2) + pow(SB) +
pow(Network) + ... + pow((Cs, Network))
= 450+400+504+0+040-+ 100+ 10 +
200 + 10 + 300 + 0 4 100 4+ 0 = 1520



P, %
11 oo
% o] o O
P x S o oo
12 p X I — o &——6—0

14 o
[e]
o 01 T a %i o
2 ! o
jEm— RESS SPPS e
p X /] coooo
21 o § ¢
« d
22 p X %
B p 0, 0y
25
0, Fig. 6. Dominance in Case of Property Intervals. Here; ke but we do not

Fig. 5. Example Pareto-Front Arithmetics operations using uncertain know if ¢ >- d or d- c.

objectives.

Generally, we can define an uncertain objecti®y a prop-
erty interval[o}, oy]. In this paper, we only consider discrete

Figure 4(c) outlines the addition of the objective of two Orobjectives represented by positive integers. Hence, we restrict

more Pareto-points: Each Pareto-optimal solufignis com- oy uncertain objective by € [0}, 0,] N Z. We restrict our-
bined with each poinp,;. Here, the resulting objectives arese|ves to the case that the lower and upper bounds are defined
calculated as the sum of the objectives of the subsystems, i&s,follows:

0k (p3z) = ok (p1i) + or(p2j) for k =1, 2.

More formally, PFA operations can be defined as: o1((95, 9:), (95, 95)) = max(a1((gs, 9:)), 01((95 95)))

ou((gs, i), (gs,95)) = ou((gs, gi)) + 0u((gs, 95))
o="h(y1,y2,...,yn), Wherey; = o(z;) V1< j<n
Unfortunately, by using property intervals, our definitions

The objectives used in optimization of embedded systems &i@r domination become meaningless (Figure 6). In Figure 6
more complex due to resource sharing, power consumptidine different design points are represented by discrete property
being dependent on the binding, etc. Consequently, most iotervals. An actual design point is one of the points shown in
these operations are non-monotonic. Hence, we cannot clagach interval. Clearly, all (actual) pointsdérare dominated by
Pareto-optimality for the implementations in the resulting optiany actual point irb. Thus, we say > e. Unfortunately, we
mality set when using PFA in general. But note: Even if we deannot assume that>- d or d > c, since there are actual de-
not construct the best solutions, we are able to prodoel  sign points inc andd which are worse i, or o, respectively.
implementations in less time by using PFA. This is due to the These problems arise when two property intervals overlap.
fact that we avoid the NP-complete computation of a feasibl€his is also shown in Figure 6. According to [9], we use the
binding at higher hierarchical levels. notion of probabilistic dominancéor Pareto-optimality. Here,

Section V shows a case study using PFA. we consider the case of uniform distributed design points, i.e.,
each discrete point € P in a given property intervaP is with
the same probability the actual design point. Furthermore, we
assume that all objectives are statistically independent.

To get a better approximation of the Pareto-front, we have FOr any two design pointg andb, andm statistically inde-
to prevent the algorithm described above from rejecting godefndent objective functions, o, . ..., om the probability that
points. We propose an improvement of the PFA as describgodom'nateg) weakly is given by (see [9]):
above in a sense that the quality of the results increases by m
still benefiting from short exploration times. This is done by Pla = b] = H Ploi(a) < 0i(b)],
considering a lower and upper bound of the objectives, e.g., =t
the implementation cost of a system that is composed of twavhere P[o;(a) < o;(b)] denotes the probability that the ob-
subsystems can be restricted by the maximum implementatiigietive valueo;(a) of design point is less or equal than the
cost of the subsystems and the sum of those cost. The mas@responding objective valug(b) of design pointb. Here,
mum of the cost of the two subsystems corresponds to the cd4@ assume a uniform distribution of the objectives within the
were both subsystems share the same resource (e.g., IP Coqé?perty.mtervals. Hence, the probabili§jjo;(a) < 0i(b)] is
while the sum of the cost model the fact that both subsysten% en as.

B. PFA with Uncertain Objectives

are implemented using dedicated resources. 0 it 0iu(b) < on(a)
Figure 5 shows the concept of PFA using so-calieder- 1 if  om(a) < ou(b)
tain objectives The objectiveso;, 0, are uncertain. Both 3 selon (@),00m (@)] Trn else

objectives = 1,2) are given byog(ox(p1i), ok(p2j)) = _ _
[maz(ok (p1i), 0k (P2;)), 0k (P1i) + 0k (p2;)]. Here,[or,04] de-  With P[j < 0i(b)] = X0, )55 srmmmr=enmyra- THe first wo
notes a so-callegroperty intervalthat is defined by its lower cases are obvious and correspond to the case when both prop-
o, and its uppeb,, bound. erty intervals do not overlap. The third case, is simply the



probability thato;(a) has a certain value multiplied with the 1o - P o0
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probability thato; (b) takes a greater or equal value. 09 P, Cloag ) 90
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Example 7 Considering the property intervals given in Fig-*1 >~ "~ SO0, 00
ure 6, we get probabilistic dominance values like: ZZ: ¥ gt
o e
) ) 1s oo COE), 00%)
Plarb] = 3-(2:3+43)-2-G3+2+hm1sm% o o
Pbra = 1-(3434)-1.3-14+2+2)~2286% 02h e

0.1
In order to narrow our search space, we reject points which are

dominated with a greater probability than a given, user speci- o _ _
. - Fig. 7. Coverage of the Pareto-optimal implementations found after a given
fied probability bouncb,, .-

number of generations compared to the Pareto-set. While PFA produces
better results as a non-hierarchical approach, we see that Pareto-Front

Example 8 With Example 7 and a probability bound of arithmetics with uncertain objectives (PFI 33% and 45%) outperforms the

Pmax = 20%, we reject the poind since it is dominated with a original PFA if a reasonable probability bounsh(ax > 33%) is chosen.

probability 0f22.86%. Furthermore, by setting the probablility boundu@a.x = 45%, we reach full
coverage of the Pareto-set.

With this approach, we narrow our search space but still re-

gard a great number gfood points. Nevertheless, if we use

a probability bound,,,. it still may happen that we reject a

Pareto-optimal solution with a probability ®f— p;,ax.

+ + + + + + + + + + + +
100 200 300 400 500 600 700 800 900 1000 1100 1200 t

Using the multi-objective evolutionary algorithm SPEA2
(see [11]) (with a crossover probability pf = 0.25, a mu-
tation probability ofp,, = 0.2, an archive size ofP;| = 70,
and a population sizg?| = 300) the Pareto-set for the partial
specification of the leaf graphs of the problem graph of Fig-

. . ) . . ure 2 were constructed. The calculation timand number of
This section presents first results obtained by using our ne

; - ) . ) erations$ are given below:
techniques in hierarchical design space exploration presemiédq 9

V. CASE STUDY

in this paper. Figure 2 shows the complete functional specifi- CELP | AAC | HILN | VTC | Image | H.261
cation for our MPEG4 coder. There are six leaf graphs, each r 2s | 19.6s| 600.4s| 2s | 450.4s| 116.6s
representing a different coding algorithm. Our goal is to im- ¢ 1 3 99.4 1 62.4 18.4

plement at least one of these algorithms with the objective to
minimize both cost and power. A. Pareto-Front Arithmetics
As described in section I, we also need the architecture on
which we can execute the tasks given by the prob|em graph_The times given above show that the eXploration of the de-
Here we use the same architecture template for all subgrapBiIn space of small leaf graphs may already be very time con-
Due to space limitations, we omitted the detailed specificatiot¥ming. Thus, we cannot expect to explore the full flat design
of the leaf graphS, the architecture graph as well as the ma‘.ﬁpace within a reasonable amount of Computation time. As de-
ping edges. For a full description of the case study see [wigribed in Section IV, we propose Pareto-Front Arithmetics for
The search space for the example used in this paper consist§ast design space exploration as follows:
more thar22% points. With the results for each leaf graph, we can start a quick
As due to complexity reasons, we do not know the trugonstruction £ 1s for the given example) of our quality set
Pareto-set, we compare the quality sets obtained by each afy after each generation Since this computation time is
proach against the quality set obtained by combining all the& order of magnitude smaller than the time needed for explor-
results and taking the Pareto-set of this union of optimal point§g the top-level design space (as experiments have shown),
This set possesses 38 Pareto-optimal design points. A goéis approach seems to be a fast method of approximating the

measure of comparing two quality setsand B is then to Pareto-sef,.
compute the so-calletbverageC(A, B) = [{be B|3ac A:arb}| For our example, we obtained a coveragexo¥8% of the

B . .. .
Obviously, a coverage @f(A, B) = 1 correspond‘s lto the fact Pareto-set (see Elgure 7). Th|§ is also the maximum coverage
that all elements i3 are weakly dominated by at least onelVe can expect, since this quality set was constructed from the
Pareto-sets of the leaf graphs. Furthermore, using Pareto-Front

element ofA. On the other hand, a coveragef4, B) = 0 Arithmeti it d fast 850 i
means that none of the elementsAris weakly dominated by rithmetics, our results converged fast 850 generations).

the elements ofl.
When using PFA to construct a quality set, we have to  B. Pareto-Front Arithmetics with Uncertain Objectives

rithm like [2] each time. uniform distribution of all design points in the property inter-
vals. Figure 7 shows that the Pareto-Front Arithmetics using
2. Apply Pareto-Front Arithmetics to these fronts. uncertain objectives produces better results if points dominated



at least by 33% are rejected. The Pareto-Front Arithmetid2areto-optimal implementations of the top-level system. This
with uncertain objectives yields slightly better resuts§5%) approach has proven to find a substantial number of Pareto-
than the original Pareto-Front Arithmetics. Nevertheless, byptimal and additional feasible implementations while reduc-
using uncertain objectives the computation times after eadhg the exploration time dramatically. A second approach
generation increases by a factor of approximately 10. based on PFA and uncertain objectives improves the quality
On the other hand, if we use a threshold of 20% our resf solutions once more. The penalty for this improvement lies
sults are really poor< 20%, not shown in Figure 7). But in the slightly increased exploration time.
also the computation time goes down to 0.2 s. Finally,
with a threshold of 45% we compute the true Pareto-set
(C(o(XP500"), 0(Xp)) = 100%). Since the number of inves-
tigated points increases disproportionately with the thresholgj] s. G. Abraham, B. R. Rau, and R. Schreiber. Fast Design Space
we compare a remarkable fraction of the possible combina- Exploration Through Validity and Quality Filtering of Subsys-
tions of the subsystems. This fact is reflected in the increased tem Designs. Technical report, Hewlett Packard, Compiler and

computation time 10 min.) after each generation. Architecture Research, HP Laboratories Palo Alto, July 2000.
[2] T. Blickle, J. Teich, and L. Thiele. System-Level Synthesis Us-

) ) ing Evolutionary Algorithms. In R. Gupta, editdesign Au-
C. Non-Hierarchical EAs tomation for Embedded Syster8s pages 23-62. Kluwer Aca-

. demic Publishers, Boston, Jan. 1998.
In a last step, we compare our two new approaches againgf "'’ chatha and R. Vemur. MAGELLAN: Multiway

a non-hierarchical approach. In this non-hierarchical explo- * 5 gware-Software Partitioning and Scheduling for Latency
ration algorithm, we explore the design spaces individually for  minimization of Hierarchical Control-Dataflow Task Graphs.
all 2¥ — 1 possible combinations whefeis the total number In Proc. CODES'01, Ninth International Symposium on Hard-
of leaf subgraphs in the problem graph. Therefore, we perform ware/Software Codesig@openhagen, Denmark, Apr. 2001.

six different exploration runs for each individual leaf subgraph[4] L. A. Cortés, P. Eles, and Z. Peng. Hierarchical Modeling and
() = 15 runs for combinations that select exactly two leaf sub- ~ Verification of Embedded Systems. Rioc. Euromicro Sympo-
graphs, etc. All in all, there a2 — 1 = 63 combinations of sium on Digital Systems DesigWarsaw, Poland, Sept. 2001.

leaf sub h h | leaf sub his cR [5] R. Dick and N. Jha. MOGAC: A Multiobjective Genetic Al-
eaf subgraphs, where at least one leaf subgraph is closen. == g ihm for Hardware-Software Cosynthesis of Distributed Em-

For each of these 63 cases we apply the EA for a certain  peqged Systems. KEEE Transactions on Computer-Aided De-
number of generations for each combinationo obtain the sign of Integrated Circuits and Systems 17(§®ges 920-935,
quality set of the different leaf graph selections. Since we use 1998.
the same number of generations for each combination, we sirff] C. Haubelt, J. Teich, K. Richter, and R. Ernst. System Design for
ulate the case were each combination is selected with the same Flexibility. In C. D. Kloos and J. da Franca, editoPspceedings
probability. With the given archiveF, ;,, we are able to con- of Design, Automation and Test in Europages 854-861, Paris,

: . France, Mar. 2002. IEEE Computer Society.
struct the quality set of the top-level design, denoted’ﬂj}?, [7] J. R. Josephson, B. Chand?asekaran, {A Carroll, N. lyer,

by simply taking the union of all archiveB; ;. of the combi- B. Wasacz, G. Rizzoni, Q. Li, and D. A. Erb. An Architec-
nations and calculating the Pareto-optimal points in the union. ture for Exploring Large Design Spaces. Broceedings of the

Figure 7 shows the result compared with the Pareto-set of our National Conference of Al (AAAI-98)ages 143-150, Madison,
particular problem. The exploration time by using this non-  Wisconsin, July 1998.

hierarchical EA is nearly 1 day. Thus, we waste most of tha8l V. Pareto. Cours dEconomie Politiquevolume 1. F. Rouge &

i i i ; ; ; Cie., Lausanne, Switzerland, 1896.
f{;)tirgﬁlsjtatlon time by trying to improve suboptimal |mplemen-[9] J. Teich. Pareto-Front Exploration with Uncertain Objectives.

. In Proc. First International Conference on Evolutionary Multi-
For our particular problem, we see that both Pareto- (yiterion Optimization Zurich, Switzerland, Mar. 2001. In Lec-
Front Arithmetics with or without uncertain objectives are  ture Notes in Computer Science (LNCS), Vol. 1993, pp. 314-

superior to the non-hierarchical exploration. By using 328, Springer, 2001.

the flattened model, the coverage of the Pareto-front [$0] J. Teich, C. Haubelt, S. Mostaghim, F. Slomka, and A. Tyagi.
C(O(Xg,rizoo)ﬂ(xp)) ~ 52%. However, as in the case of Tech_nlqges for Hierarchical Design Space Exploration and their
Pareto-Front Arithmetics with uncertain objectives, it should ~APplication on System Synthesis. Technical Report 1/2002, In-

be possible to find all Pareto-optimal solutions by using this ;tgg;‘ib%?;e’&?&ig;egégg EE and IT, University of Paderborn,
non-hierarchical EA. [11] E. Zitzler, M. Lauma’nns, and L. Thiele. SPEA2: Improving

the Strength Pareto Evolutionary Algorithm. Technical report,
Swiss Federal Institute of Technology (ETH) Zurich, 2001. TIK-
Report 103. Department of Electrical Engineering.
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VI. CONCLUSIONS

To handle the increasing complexity of embedded systems,
we proposed Pareto-Front Arithmetics for fast design space ex-
ploration using results of subsystems to approximate the set of

2Note that this method is in general not a feasible way to go as the number
of EA runs grows exponentially with the number of leaf graphs.
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