
Branch Predictor Design and Performance Estimation
for a High Performance Embedded Microprocessor

Abstract - AE64000 is a 64-bit embedded processor targeting
high-end embedded applications such as HDTV, DVD, and 3D
graphics. To achieve a higher performance for the AE64000, we
design a branch predictor for the processor, and find the
optimum parameters for the design through cycle-accurate
simulations on SpecINT benchmarks and embedded
applications (Dhrystone and Whetstone).

In AE64000 branch prediction is complicated by the
Instruction Folding Unit (IFU) of the processor front-end. By
predicting on a Pre-PC in the IFU rather than using a PC in the
pipeline core, we can effectively eliminate branch misprediction
penalty on a correct prediction. We have developed the
AE64000 simulator to evaluate the performance of the designed
branch predictor, and selected the optimum branch predictor
configuration by considering cost-effectiveness as well as by
analyzing the results generated from AE64000 simulator. The
selected branch predictor has been implemented in Verilog and
is added to AE64000 pipeline.

I. Introduction

AE64000 is a 64-bit high-performance microprocessor
that Advanced Digital Chips (ADC) Inc. is developing for
performance-demanding embedded applications. The
processor has a 5-stage (IF-ID-EXE-MEM-WB) in-order
pipeline and separate 8KB instruction and 8KB data caches.
AE64000 processor implements the EISC (Extendable
Instruction Set Computer) ISA developed by ADC Inc. for
an embedded environment.

To reduce code size, EISC uses 16-bit fixed length
instructions but can manipulate long immediate data by
using a special instruction called LERI. Although the code
of EISC can be denser than that of CISC or RISC, the
overall performance can be degraded because the use of
LERI instructions can increase the number of overall
instructions. To avoid this performance degrade, AE64000
has instruction folding unit (IFU) which effectively
processes all LERI instructions and passes the remaining
instructions to pipeline core. Because IFU needs 2 clock
cycles to remove LERI instructions and branch instructions
are executed in ID stage, a taken branch causes 3-cycle

branch misprediction flush, which can substantially degrade
the performance of AE64000 pipeline. To achieve a higher
performance for the AE64000 at low cost, we conclude that
branch prediction is one of the most effective
microarchitecture techniques and must be employed in
AE64000 pipeline. In this paper we design a branch
predictor for the AE64000, and evaluate the performance of
the predictor compared to original AE64000 pipeline.

To validate the performance of the designed predictor and
also to select the optimum design parameters, we have
developed a cycle-accurate AE64000 simulator and ran
simulations on two Integer SPEC95 applications, Dhrystone,
and Whetstone benchmarks. Our performance improvements
to AE64000 are two-folds. First, by careful redesign of the
AE64000 pipeline, we could reduce the branch miss
prediction penalty from 3 cycles to 2 cycles, which results in
about 10% performance increase to AE64000 without any
cost. Second, from the simulation results we found that the
last-time predictor with 4-entry TAC is the most
cost-effective and can improve the performance of AE64000
by additional 15% with only 3% extra hardware.

II. AE64000

Although AE64000 has a 5-stage in-order pipeline that is
similar to DLX [5], the IFU of AE64000 operates like
additional stages (called IFU stages) as detailed in Section
II.A.

A. Front End of AE64000 Pipeline

Although AE64000 is a 64-bit processor, it uses 16 bit
fixed-length instructions to reduce code size. To support
operands of any size, EISC has a special instruction called
LERI. A single LERI instruction can designate a 12-bit
immediate data. Therefore, a 64-bit operand is divided into 6
LERI instructions. To prevent the performance degrade
caused by processing additional LERI instructions,

Sang-hyuk Lee, Il-kwan Kim, and Lynn Choi

The Department of Electronics and Computer Engineering
Korea University
Seoul , 136-701

Tel : +82-2-3290-3896
Fax: +82-2-921-0544

E-mail : {hyukii, bitinno, lchoi}@korea.ac.kr

AE64000 has a special component called IFU at the
front-end of the pipeline. IFU detects and processes all the
LERI instructions by restoring long immediate data from
consecutive LERI instructions to a special register called ER,
and propagates the remaining (LERI-free) instructions to the
pipeline core. IFU fetches 4 instructions at a time and has
buffers to store 12 instructions. IFU needs 2 clock cycles for
folding LERI instructions. One clock cycle is used for a PPC
update, and the other clock cycle for instruction folding. If a
branch instruction is recognized in ID stage, branch
misprediction penalty (we can say that AE64000 assumes all
branches are not taken) is 3 clock cycles.

Fig. 1 shows a code example of a branch instruction and its
pipeline diagram. CMP instruction sets the branch condition
at EXE stage that is forwarded to ID stage where a branch
target address is calculated at the same cycle. If the decided
branch condition is taken (misprediction), the ADD
instruction in IF stage as well as all the instructions in the
IFU are flushed and the next instructions are fetched from
the calculated target address.

Fig. 1. Branch Execution

B. Issues in Branch Prediction for AE64000

There are two issues that complicate the branch
prediction for AE64000. First, since four instructions are
fetched at a time into IFU, multiple branch instructions can
be fetched every cycle. However, a previous study[6] shows
that branches occupy only 24% and 5% of dynamic
instruction count in integer and floating-point benchmarks
respectively. Furthermore, because AE64000 uses LERI
instructions, the density of branch instructions is even
smaller compared to other processors. Therefore, in case two
or more branch instructions are fetched at the same time, in
our proposed predictor, we predict only the first taken
branch and ignore later branches. In this way, multi-way
branch prediction [3] can be avoided. In addition, one study
shows that the additional gain that can be achieved by
multi-way branch prediction is negligible [3].

The second issue is at which pipeline stage branch
prediction should be performed. There are two choices. One
is to predict a branch using a PPC in the IFU at IFU1 stage.
And, the other is to predict a branch using a PC in the
pipeline core at IF stage. It turns out that the branch
prediction with PC has a branch penalty of 2 clock cycles
due to updating PPC and folding target instructions in IFU
even if the branch prediction succeeds. However, the branch
prediction with PPC enables IFU to fetch an instruction from
the predicted target without a penalty. Therefore, we propose
branch prediction with PPC.

Fig. 2. Diagram of Branch Predictor for AE64000

C. Reducing Branch Misprediction Penalty for AE64000

After carefully analyzing the AE64000 pipeline, we found
that we can reduce the branch misprediction penalty from 3
cycles to 2 cycles. This can be achieved by updating PPC at
the same cycle that PC is updated by adding a multiplexer in
IFU.

III. Branch Prediction for AE64000

Fig. 2 is the block diagram of AE64000 pipeline with the
proposed branch predictor. We separate branch predictor
with target address cache to use area more effectively since
BPT and TAC can have different number of entries. In the
following, we describe the execution of a branch instruction
in each pipeline stage.

A. IFU stage

In IFU stage, the recognition of a branch and the
prediction of target address and branch condition for the
branch are performed.

When an I-cache is accessed in IFU stage, PPC is sent to
branch prediction table (BPT) and target address cache
(TAC) for branch prediction. A TAC hit implies the
existence of a branch among the 4 instructions fetched. And,
if the output of BPT is taken, then TAC supplies branch
target address to PPC to fetch instructions from the predicted
target address at the next cycle.

Since 4 instructions are fetched at a time, we need to
determine which instruction is a branch. To do that, the tag
field in TAC includes the complete branch address including
the lower 3 bits, which is omitted in PPC. On a prediction,
this is propagated to IFU, and used to find a branch among 4
instructions. In addition, this is used to mark the

corresponding branch instruction in the instruction buffer.
Since PPC can be updated from the predicted target, on a

branch prediction, the next branch to be predicted must be a
later instruction after the target. In other words, a branch
before the target should not be predicted as a branch. For
this, a comparator is used as shown in Fig. 3 to check
whether a predicted branch is before or after the target.
The predicted branch condition and the predicted target

address should be verified by comparing them with the
result of a real branch execution in the pipeline core.
Therefore, the predicted branch target address is stored in
Predicted Target Address Buffer (PTAB) of IFU, which can
contain up to 3 predicted target addresses. When a predicted
taken branch instruction is propagated from IFU to the
pipeline core, its predicted target address in PTAB is also
sent out to the pipeline core. And, both the predicted target
address and the predicted branch condition are compared
with actual target address and branch condition later in ID
stage.

Fig. 3. Predicted Target Buffer and Comparator

B. IF stage

In IF stage, both the taken bit (which indicates a taken
branch) and the predicted target address are propagated to ID
stage. Also, the value of PC is updated with the predicted
target address at the next cycle.

C. ID stage

In ID stage, the confirmation of a branch condition, the
verification of a predicted target address, and updating of
BPT and TAC are performed.

The branch condition was decided at the EXE stage of a
previous compare instruction and forwarded to the ID stage
of the branch instruction. The actual target address is
calculated in ID stage. Then, both the target address and the
branch condition are compared with predicted target address
and predicted branch condition (taken). If either a branch is
not taken or the actual target address is different from
predicted values, a branch misprediction occurs, and
instructions in IF and IFU buffers as well as predicted target
addresses in PTAB are flushed. And, a redirection occurs
from the actual target address. The result (success or failure)
of a branch prediction, the addresses of both the branch
instruction and the actual target are sent to BPT and TAC to
modify the information in BPT and TAC.

IV. AE64000 simulator
We have developed a cycle-accurate AE64000 simulator

to evaluate the additional performance gained by the branch
predictor and to determine the optimal design parameters for
the branch structures in terms of both cost and performance.

In the following, we simulate the following three
AE64000 configurations.

1. The original AE64000 without a branch predictor
2. The optimized AE64000 pipeline without a branch

predictor (with a modification to reduce branch
misprediction penalty from 3 cycles to 2 cycles)

3. The optimized AE64000 with a branch predictor

A. Organization of the simulator

Fig. 4 shows the organization of the AE64000 simulator.
The AE64000 simulation model consists of memory, cache,
core, and the added branch predictor. The AE64000 compiler
translates a benchmark into the memory-mapped AE64000
binaries by using the addresses of RAM, ROM and stack
pointer set by user, which is an input to the simulator.

The simulation model is flexible enough to parameterize
the various configurations of predictors such as types of
branch predictors, size, associativity, and replacement policy
(LFU, LRU) of the prediction structures.

Fig. 4. The block diagram of AE64000 simulator

B. Simulated branch predictors

Three kinds of branch predictors are simulated, namely,
last-time predictor[5], bimodal predictor[1], and g-share
predictor[1]. The last-time branch predictor shown in Fig.5
is organized in much the same way as branch target buffer
[2]. All the predictors are accessed through PPC in the IFU.

Fig. 5. The last-time branch predictor

V. Performance evaluation and analysis

We assume a cache miss penalty of 4 clock cycles. We
also assume that indirect branches are not predicted to
reduce the predictor size in an embedded environment. Total
of 1 billion instructions are simulated for each benchmark.

A. Benchmarks and Results

We simulate Compress and Go applications from

SPECInt95 benchmarks, and a complete suite of Dhrystone
and Whetstone benchmarks. Dhrystone and Whetstone are
small programs used for embedded processors’ test.

Table 1 shows the performance improvement gained by
reducing branch misprediction penalty from 3 cycles to 2
cycles on AE64000 pipeline.

Classification 3-cycle misprediction penalty 2-cycle misprediction penalty

Compress 0.6787 0.7429
Go 0.6905 0.7322

Dhrystone 0.6500 0.7222
Whetstone 0.6325 0.7109

Table 1. IPC on different branch miss prediction penalty

By decreasing the miss penalty, IPC increases by as little
as 6% in Go application and up to 12% increase in
Whetstone benchmark, resulting in 10 % performance
improvement on average. This implies that a single cycle
reduction on branch miss prediction can affect the
performance of AE64000 substantially.

Fig. 6 shows IPC versus the number of TAC entries for
last-time branch predictor. The bimodal and g-share branch
predictor is not as good as the last-time predictor in
cost-effectiveness, thus those results and analyses are not
shown in this paper. Note that the branch prediction hit rate
combines both branch prediction hit rate (condition
prediction) and TAC hit rate (target address prediction). As
we expected, IPC increase as we increase the number of
TAC entries.

Fig. 6. IPC of last-time predictor

VI. Conclusion

In estimating the hardware cost, we assume 6 NAND

gates per bit for BPT and 3K NAND gates for the remaining
control part of the added branch predictor. 160K NAND
gates are used for the AE64000 pipeline. The
cost-effectiveness is defined by the % of performance
increase in IPC (dIPC) divided by the % of added hardware
cost (dCost) compared to the original AE64000 pipeline.

Fig. 7 shows the average cost-effectiveness of last-time
predictor as the number of TAC entries increases. The
4-entry fully associative TAC shows the best
cost-effectiveness in the figure.

Fig. 8 represents the ratio when the designed components
are added. The blue color represents the average 10% IPC
improvement made by the optimization of reducing branch

misprediction penalty from 3 to 2 cycles. The light blue
color represents the additional IPC increase made by 4-way
set-associative 4-entry TAC.

In the optimized pipeline with the last-time predictor, the
required cost is about 3500 gates in this configuration. This
implies that we can improve the performance of AE64000
pipeline by about 25% with only 3% extra hardware cost.

Fig. 7. Cost-effecitiveness Fig. 8. Performance ratio

of last-time predictor due to each component

Summary

In this paper, we proposed a branch predictor optimized
for AE64000. To validate the design and evaluate the
performance improvement possible by the design, we have
developed a cycle-accurate simulator for the processor.
From the simulation analysis, we conclude that the last-time
predictor with 4-entry TAC shows the best performance per
cost among the predictors we considered. With a 3% extra
hardware cost, we could improve the performance of
AE64000 by about 25% (about 10% by reducing the branch
misprediction penalty with a careful redesign of the
processor front-end and about 15% by adding the branch
predictor we proposed).

References

[1] S.McFarling, "Combining Branch Predictors", DEC
WRL Technical Note TN-36, June 1993
[2] Brian K.Bray, M.J.Flynn, “Strategies for branch target
buffers”, Proceedings of the 24th Annual International
Symposium on Microarchitecture, September 1991
[3] T.Y.Yeh, D.Marr, Y.Patt, “Increasing the Instruction
Fetch Rate via Multiple Branch Prediction and a Branch
Address Cache”, in proceeding of the 1993 International
Conference on Supercomputing, 1993
[4] John L Hennessy, David A Patterson, “Computer
Architecture: A Quantitative Approach” 2nd edition,
published by Morgan Kaufmann, 1996
[5] T.Y.Yeh and Y.N.Patt, “Alternative Implementations of
Two-Level Adaptive Branch Prediction”, in Proceedings of
the 19th Annual ACM/IEEE International Symposium on
Computer Architecture, 1992
[6] The Standard Performance Evaluation Corporation,
http://www.specbench.org

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

