
Branch Predictor Design and Performance Estimation 
for a High Performance Embedded Microprocessor 

 
 
Abstract - AE64000 is a 64-bit embedded processor targeting 
high-end embedded applications such as HDTV, DVD, and 3D 
graphics. To achieve a higher performance for the AE64000, we 
design a branch predictor for the processor, and find the 
optimum parameters for the design through cycle-accurate 
simulations on SpecINT benchmarks and embedded 
applications (Dhrystone and Whetstone). 

In AE64000 branch prediction is complicated by the 
Instruction Folding Unit (IFU) of the processor front-end. By 
predicting on a Pre-PC in the IFU rather than using a PC in the 
pipeline core, we can effectively eliminate branch misprediction 
penalty on a correct prediction. We have developed the 
AE64000 simulator to evaluate the performance of the designed 
branch predictor, and selected the optimum branch predictor 
configuration by considering cost-effectiveness as well as by 
analyzing the results generated from AE64000 simulator. The 
selected branch predictor has been implemented in Verilog and 
is added to AE64000 pipeline. 
 
 

I. Introduction 
 

AE64000 is a 64-bit high-performance microprocessor 
that Advanced Digital Chips (ADC) Inc. is developing for 
performance-demanding embedded applications. The 
processor has a 5-stage (IF-ID-EXE-MEM-WB) in-order 
pipeline and separate 8KB instruction and 8KB data caches. 
AE64000 processor implements the EISC (Extendable 
Instruction Set Computer) ISA developed by ADC Inc. for 
an embedded environment. 

To reduce code size, EISC uses 16-bit fixed length 
instructions but can manipulate long immediate data by 
using a special instruction called LERI. Although the code 
of EISC can be denser than that of CISC or RISC, the 
overall performance can be degraded because the use of 
LERI instructions can increase the number of overall 
instructions. To avoid this performance degrade, AE64000 
has instruction folding unit (IFU) which effectively 
processes all LERI instructions and passes the remaining 
instructions to pipeline core. Because IFU needs 2 clock 
cycles to remove LERI instructions and branch instructions 
are executed in ID stage, a taken branch causes 3-cycle 

branch misprediction flush, which can substantially degrade 
the performance of AE64000 pipeline. To achieve a higher 
performance for the AE64000 at low cost, we conclude that 
branch prediction is one of the most effective 
microarchitecture techniques and must be employed in 
AE64000 pipeline. In this paper we design a branch 
predictor for the AE64000, and evaluate the performance of 
the predictor compared to original AE64000 pipeline.  

To validate the performance of the designed predictor and 
also to select the optimum design parameters, we have 
developed a cycle-accurate AE64000 simulator and ran 
simulations on two Integer SPEC95 applications, Dhrystone, 
and Whetstone benchmarks. Our performance improvements 
to AE64000 are two-folds. First, by careful redesign of the 
AE64000 pipeline, we could reduce the branch miss 
prediction penalty from 3 cycles to 2 cycles, which results in 
about 10% performance increase to AE64000 without any 
cost. Second, from the simulation results we found that the 
last-time predictor with 4-entry TAC is the most 
cost-effective and can improve the performance of AE64000 
by additional 15% with only 3% extra hardware. 
 
 

II. AE64000 
 

Although AE64000 has a 5-stage in-order pipeline that is 
similar to DLX [5], the IFU of AE64000 operates like 
additional stages (called IFU stages) as detailed in Section 
II.A.  

 
A. Front End of AE64000 Pipeline 

Although AE64000 is a 64-bit processor, it uses 16 bit 
fixed-length instructions to reduce code size. To support 
operands of any size, EISC has a special instruction called 
LERI. A single LERI instruction can designate a 12-bit 
immediate data. Therefore, a 64-bit operand is divided into 6 
LERI instructions. To prevent the performance degrade 
caused by processing additional LERI instructions, 
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AE64000 has a special component called IFU at the 
front-end of the pipeline. IFU detects and processes all the 
LERI instructions by restoring long immediate data from 
consecutive LERI instructions to a special register called ER, 
and propagates the remaining (LERI-free) instructions to the 
pipeline core. IFU fetches 4 instructions at a time and has 
buffers to store 12 instructions. IFU needs 2 clock cycles for 
folding LERI instructions. One clock cycle is used for a PPC 
update, and the other clock cycle for instruction folding. If a 
branch instruction is recognized in ID stage, branch 
misprediction penalty (we can say that AE64000 assumes all 
branches are not taken) is 3 clock cycles.  

Fig. 1 shows a code example of a branch instruction and its 
pipeline diagram. CMP instruction sets the branch condition 
at EXE stage that is forwarded to ID stage where a branch 
target address is calculated at the same cycle. If the decided 
branch condition is taken (misprediction), the ADD 
instruction in IF stage as well as all the instructions in the 
IFU are flushed and the next instructions are fetched from 
the calculated target address.  

 
Fig. 1.  Branch Execution 

 
 

B. Issues in Branch Prediction for AE64000 
 

There are two issues that complicate the branch 
prediction for AE64000. First, since four instructions are 
fetched at a time into IFU, multiple branch instructions can 
be fetched every cycle. However, a previous study[6] shows 
that branches occupy only 24% and 5% of dynamic 
instruction count in integer and floating-point benchmarks 
respectively. Furthermore, because AE64000 uses LERI 
instructions, the density of branch instructions is even 
smaller compared to other processors. Therefore, in case two 
or more branch instructions are fetched at the same time, in 
our proposed predictor, we predict only the first taken 
branch and ignore later branches. In this way, multi-way 
branch prediction [3] can be avoided. In addition, one study 
shows that the additional gain that can be achieved by 
multi-way branch prediction is negligible [3]. 

The second issue is at which pipeline stage branch 
prediction should be performed. There are two choices. One 
is to predict a branch using a PPC in the IFU at IFU1 stage. 
And, the other is to predict a branch using a PC in the 
pipeline core at IF stage. It turns out that the branch 
prediction with PC has a branch penalty of 2 clock cycles 
due to updating PPC and folding target instructions in IFU 
even if the branch prediction succeeds. However, the branch 
prediction with PPC enables IFU to fetch an instruction from 
the predicted target without a penalty. Therefore, we propose 
branch prediction with PPC. 

 
Fig. 2. Diagram of Branch Predictor for AE64000 

 
C. Reducing Branch Misprediction Penalty for AE64000 
 

After carefully analyzing the AE64000 pipeline, we found 
that we can reduce the branch misprediction penalty from 3 
cycles to 2 cycles. This can be achieved by updating PPC at 
the same cycle that PC is updated by adding a multiplexer in 
IFU.  
 
 

III. Branch Prediction for AE64000 
 

Fig. 2 is the block diagram of AE64000 pipeline with the 
proposed branch predictor. We separate branch predictor 
with target address cache to use area more effectively since 
BPT and TAC can have different number of entries. In the 
following, we describe the execution of a branch instruction 
in each pipeline stage. 

 
A.  IFU stage 

In IFU stage, the recognition of a branch and the 
prediction of target address and branch condition for the 
branch are performed. 

When an I-cache is accessed in IFU stage, PPC is sent to 
branch prediction table (BPT) and target address cache 
(TAC) for branch prediction. A TAC hit implies the 
existence of a branch among the 4 instructions fetched. And, 
if the output of BPT is taken, then TAC supplies branch 
target address to PPC to fetch instructions from the predicted 
target address at the next cycle.  

Since 4 instructions are fetched at a time, we need to 
determine which instruction is a branch. To do that, the tag 
field in TAC includes the complete branch address including 
the lower 3 bits, which is omitted in PPC. On a prediction, 
this is propagated to IFU, and used to find a branch among 4 
instructions. In addition, this is used to mark the 



corresponding branch instruction in the instruction buffer.  
Since PPC can be updated from the predicted target, on a 

branch prediction, the next branch to be predicted must be a 
later instruction after the target. In other words, a branch 
before the target should not be predicted as a branch. For 
this, a comparator is used as shown in Fig. 3 to check 
whether a predicted branch is before or after the target. 
The predicted branch condition and the predicted target 

address should be verified by comparing them with the 
result of a real branch execution in the pipeline core. 
Therefore, the predicted branch target address is stored in 
Predicted Target Address Buffer (PTAB) of IFU, which can 
contain up to 3 predicted target addresses. When a predicted 
taken branch instruction is propagated from IFU to the 
pipeline core, its predicted target address in PTAB is also 
sent out to the pipeline core. And, both the predicted target 
address and the predicted branch condition are compared 
with actual target address and branch condition later in ID 
stage. 

 
Fig. 3.  Predicted Target Buffer and Comparator 

 
B.  IF stage 

In IF stage, both the taken bit (which indicates a taken 
branch) and the predicted target address are propagated to ID 
stage. Also, the value of PC is updated with the predicted 
target address at the next cycle. 

C.  ID stage 

In ID stage, the confirmation of a branch condition, the 
verification of a predicted target address, and updating of 
BPT and TAC are performed.  

The branch condition was decided at the EXE stage of a 
previous compare instruction and forwarded to the ID stage 
of the branch instruction. The actual target address is 
calculated in ID stage. Then, both the target address and the 
branch condition are compared with predicted target address 
and predicted branch condition (taken). If either a branch is 
not taken or the actual target address is different from 
predicted values, a branch misprediction occurs, and 
instructions in IF and IFU buffers as well as predicted target 
addresses in PTAB are flushed. And, a redirection occurs 
from the actual target address. The result (success or failure) 
of a branch prediction, the addresses of both the branch 
instruction and the actual target are sent to BPT and TAC to 
modify the information in BPT and TAC. 
 
 

IV. AE64000 simulator 
We have developed a cycle-accurate AE64000 simulator 

to evaluate the additional performance gained by the branch 
predictor and to determine the optimal design parameters for 
the branch structures in terms of both cost and performance. 

In the following, we simulate the following three 
AE64000 configurations. 
 

1. The original AE64000 without a branch predictor 
2. The optimized AE64000 pipeline without a branch 

predictor (with a modification to reduce branch 
misprediction penalty from 3 cycles to 2 cycles) 

3. The optimized AE64000 with a branch predictor 
 
A.  Organization of the simulator 
 

Fig. 4 shows the organization of the AE64000 simulator. 
The AE64000 simulation model consists of memory, cache, 
core, and the added branch predictor. The AE64000 compiler 
translates a benchmark into the memory-mapped AE64000 
binaries by using the addresses of RAM, ROM and stack 
pointer set by user, which is an input to the simulator.  

The simulation model is flexible enough to parameterize 
the various configurations of predictors such as types of 
branch predictors, size, associativity, and replacement policy 
(LFU, LRU) of the prediction structures. 
 

 
Fig. 4.  The block diagram of AE64000 simulator 

 
B.  Simulated branch predictors 
 

Three kinds of branch predictors are simulated, namely, 
last-time predictor[5], bimodal predictor[1], and g-share 
predictor[1]. The last-time branch predictor shown in Fig.5 
is organized in much the same way as branch target buffer 
[2]. All the predictors are accessed through PPC in the IFU. 
 

 
Fig. 5.  The last-time branch predictor 

 
 

V. Performance evaluation and analysis 
 

We assume a cache miss penalty of 4 clock cycles. We 
also assume that indirect branches are not predicted to 
reduce the predictor size in an embedded environment. Total 
of 1 billion instructions are simulated for each benchmark. 
 
A.   Benchmarks and Results 

We simulate Compress and Go applications from 



SPECInt95 benchmarks, and a complete suite of Dhrystone 
and Whetstone benchmarks. Dhrystone and Whetstone are 
small programs used for embedded processors’ test.  

Table 1 shows the performance improvement gained by 
reducing branch misprediction penalty from 3 cycles to 2 
cycles on AE64000 pipeline. 

 
Classification 3-cycle misprediction penalty 2-cycle misprediction penalty 

Compress 0.6787 0.7429 
Go 0.6905 0.7322 

Dhrystone 0.6500 0.7222 
Whetstone 0.6325 0.7109 

Table 1.  IPC on different branch miss prediction penalty 
 

By decreasing the miss penalty, IPC increases by as little 
as 6% in Go application and up to 12% increase in 
Whetstone benchmark, resulting in 10 % performance 
improvement on average. This implies that a single cycle 
reduction on branch miss prediction can affect the 
performance of AE64000 substantially.  

Fig. 6 shows IPC versus the number of TAC entries for 
last-time branch predictor. The bimodal and g-share branch 
predictor is not as good as the last-time predictor in 
cost-effectiveness, thus those results and analyses are not 
shown in this paper. Note that the branch prediction hit rate 
combines both branch prediction hit rate (condition 
prediction) and TAC hit rate (target address prediction). As 
we expected, IPC increase as we increase the number of 
TAC entries.  

 
 

Fig. 6.  IPC of last-time predictor 
 
 

VI. Conclusion 
 
In estimating the hardware cost, we assume 6 NAND 

gates per bit for BPT and 3K NAND gates for the remaining 
control part of the added branch predictor. 160K NAND 
gates are used for the AE64000 pipeline. The 
cost-effectiveness is defined by the % of performance 
increase in IPC (dIPC) divided by the % of added hardware 
cost (dCost) compared to the original AE64000 pipeline. 

Fig. 7 shows the average cost-effectiveness of last-time 
predictor as the number of TAC entries increases. The 
4-entry fully associative TAC shows the best 
cost-effectiveness in the figure.  

Fig. 8 represents the ratio when the designed components 
are added. The blue color represents the average 10% IPC 
improvement made by the optimization of reducing branch 

misprediction penalty from 3 to 2 cycles. The light blue 
color represents the additional IPC increase made by 4-way 
set-associative 4-entry TAC. 

In the optimized pipeline with the last-time predictor, the 
required cost is about 3500 gates in this configuration. This 
implies that we can improve the performance of AE64000 
pipeline by about 25% with only 3% extra hardware cost. 

 
Fig. 7. Cost-effecitiveness   Fig. 8. Performance ratio 

of last-time predictor     due to each component 
 
 

Summary 
 

In this paper, we proposed a branch predictor optimized 
for AE64000. To validate the design and evaluate the 
performance improvement possible by the design, we have 
developed a cycle-accurate simulator for the processor. 
From the simulation analysis, we conclude that the last-time 
predictor with 4-entry TAC shows the best performance per 
cost among the predictors we considered. With a 3% extra 
hardware cost, we could improve the performance of 
AE64000 by about 25% (about 10% by reducing the branch 
misprediction penalty with a careful redesign of the 
processor front-end and about 15% by adding the branch 
predictor we proposed).  
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