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Abstract—In this paper, we propose a scalable word-based
crypto-processor that performs modular multiplication based
on modified Montgomery algorithm for finite fields GF(P) and
GF(2m). The unified crypto-processor supports scalable keys of
length up to 2048 bits for RSA and 512 bits for elliptic curve
cryptography (ECC). Further extension of the key length can be
done easily by enlarging the memory module or using the exter-
nal memory resource. With the proposed parity prediction tech-
nique, our pipelined crypto-processor achieves a 512-bit RSA en-
cryption rate of 276 Kbps and a 160-bit ECC encryption rate of
73.3 Kbps for a 220MHz clock rate.

I. I NTRODUCTION

With the rapid advance in communication technology, more
and more applications such as e-commerce and wireless net-
working are appearing. Protecting the sensitive information
when transmitted along the insecure communication channel
has become essential. Various cryptographysystems have been
investigated to prevent the information from snooped. Public-
key cryptography, such as RSA algorithm [1], Elliptic Curve
Cryptography (ECC) [2,3], DSA and Diffie-Hellman (DH) key
exchange algorithm [4], plays a vital role in modern security
system.

Most of the public key cryptography relies heavily on the
finite field or modular multiplication which is the crucial part
for high performance hardware for system applications, such
as VPN (Virtual Private network), SSL (Secure Socket Layer),
etc. In 1985, Montgomery proposed a modular multiplica-
tion algorithm to avoid iterative divisions, which is suitable
for VLSI implementation [5]. Further improvement and modi-
fication of Montgomery algorithm can be found in [6,7]. Most
of the conventional works mainly focused on the ASIC design.
The efficient systolic array architectures for specific operand
size have been investigated. As the key size of the cryptogra-
phy growing with the demand of security system, the ASIC
implementations suffer from the hardware complexity. Re-
cently, scalable architectures for modular multiplication have
been considered [8, 9] to trade off between performance and
area overhead. A scalable multiplier architecture for finite field
GF(P) andGF(2m) was proposed in [10], which supports the
basic multiplication for both ECC and RSA within the same
hardware module.

In this paper, we propose a scalable crypto-processor for

both RSA and ECC. Our pipelined dual-field crypto-module
supports finite field multiplication over bothGF(P) and
GF(2m). A parity prediction technique is presented to com-
pensate pipeline stalls by the data dependency from the origi-
nal algorithm, which simplifies the controller’s design and fur-
ther speeds up the computation of the finite field and modular
multiplication. In addition, efficient dual-field adder and sub-
tractor are used to accomplish modified Montgomery multipli-
cation for the support of both RSA and ECC operations.

II. WORD-BASED MULTIPLICATION ARCHITECTURE WITH

PARITY PREDICTION

Let P= (Pw�1;Pw�2; : : : ;P0)r be a large prime number with
w digit in radix r, wherer = 2k, andk is the word width. Let
B= (Bw�1;Bw�2; : : : ;B0)r andA= (Am�1;Am�2; : : : ;A0)2 are
two large integers, which satisfym= wk and 0� A;B < P.
Let Bj

i be the ith bit in the jth word of B. For simplicity,
Bj

i:::k denotes a series of bits fromith to kthin the jth word
of B. The word-based radix-2 Montgomery algorithm over
GF(P) is shown in Fig. 1(a), using the carry-save form to
represent the intermediate results. Similarly the word-based
Montgomery algorithm overGF(2m) is shown in Fig. 1(b), in
which A(x);B(x) 2 GF(2m) andP(x) is the irreducible poly-
nomial.

In Fig. 1(a),fCout;C0g = fC0;0g represents a bitwise left-
shift of C0, andCout is the one-bit carry digit. The algorithm
performs shifting instead of conventional division, resulting in
a fast implementation for modular multiplication. However,
due to the data dependency of the algorithm shown in Fig. 2(a),
the processing unit (PU) which computesCj +Sj +ai �Bj has
to wait until the result ofCj+1+Sj+1+ ai�1 �Bj+1+ parity �
Pj+1 is generated. As a result, an extra pipeline stall exists be-
tween each column of PUs, which degrades the performance
[10]. An extra constant 2�m will be introduced after the Mont-
gomery multiplication stage, i.e.,M = A �B � 2�m modP. In
addition,M is in the range of[0;2P). A final reduction is thus
required to ensure that 0�M �P. Therefore, improved Mont-
gomery algorithm with two’s complement numbers [7] is used
in our design to prevent pipeline stalls by the sign digits, which
is discussed in the following section.

A parity prediction module(PPM) is implemented to predict

theparity, (i.e.,S(t)T;0 in Fig. 1) and to compensate the pipeline
stall, where the time instance is denoted as the superscript with



WMMp(A;B;P) // A;B2 GF(P)
f C0 = S0 = 0,Cout = 0;

for( i = 0 to (m�1)) f // modular multiplication
(C0

T ;S
0
T ) = ai �B0+C0+S0;

fCout;C0
Tg= fC0

T ;0g;

parity= S(0)
T;0;

(C0;S0) = parity�P0+C0
T +S0

T ;

S(0)
w�2:::0 = S0

w�1:::1;
for( j = 1 to (w�1)) f
(Cj

T ;S
j
T ) = ai �Bj +Cj +Sj ;

fCout;C
j
Tg= fCj

T ;Coutg;
(C( j) ;S( j)) = parity�P( j) +Cj

T +Sj
T ;

fSj
w�2:::0;S

j�1
w�1g= fSjg;

g
g
if (A �B> 0) f // final adjustment

for( i = 0 to (w�1)) f
(Ci

;Si ) =Ci +S(i) �Pi ;
g

return M = (C+S);
g

(a)
WMM2m(A(x);B(x);P(x))
f M(x) = 0;

for( i = 0 to (m�1)) // finite-field multiplication
M0(x) =M0(x)+ai �B0(x);
parity= M0

0(x);
M0 = M0+ parity�P0;
M0

w�2:::0 =M0
w�1:::1;

for( j = 1 to (w�1)) f
M j (x) =M j (x)+ai �Bj (x);
M j (x) =M j (x)+ parity�Pj (x);
fM j

w�2:::0;M
j�1
w�1g= fM j (x)g;

g
return M(x);

g
(b)

Fig. 1. The word-based radix-2 Montgomery multiplication algorithms over
(a) GF(P) and (b)GF(2m).

parentheses and the bit position is denoted as the subscript.

For example,S(t)T;0 is the least significant bit (LSB) ofST gen-
erated at time instancet. From the data dependency shown in

Fig. 3,S(t)T;0 =S(t�1)
1 �C(t�1)

0 �(b0ai). SinceC(t�1)
0 =P0 �S

(t�1)
T;0

andP0 = 1 (becauseP is a prime),C(t�1)
0 = S(t�1)

T;0 . In addi-

tion, S(t�1)
1 =C(t�1)

T;0 �S(t�1)
T;1 �P1. Therefore,S(t)T;0 = S(t�1)

1 �

C(t�1)
0 � b0ai = (C(t�1)

T;0 �S(t�1)
T;1 �P1)�S(t�1)

T;0 � b0ai , where

C(t�1)
T;0 andS(t�1)

T;1 can be computed using the outputs at time

instant(t �2) andS(t�1)
T;0 . Combining the parityS(t�1)

T;0 at time

(t �2), we can generate the parityS(t)T;0 at time(t �1), which
can then be applied immediately at time(t). The resultant data
flow graph is then shown in Fig. 2(b), where the add-on func-
tional blockZ represents the parity prediction module. Thus
the pipeline stall can be eliminated.

To realize the function ofY in Fig 2(c), our PU consists of
a dual-field adder (DFA) array for bothGF(P) andGF(2m), a
sign-bit generator (SG) and a PPM. Figure 4 shows the circuit
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Fig. 2. Data flow graph of word-based modular multiplication (a) without
parity prediction; (b) with parity prediction. (c) The signal description of each
PU and (d) the block diagram of the projected architecture.
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Fig. 3. The data dependency of parityS(t�1)
T;0 andS(t)
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of a PU without the PPM circuitry. The DFA array is based
on the work in [10]. The hardware architecture of our crypto-
module is shown in Fig. 5, which is obtained from Fig. 2(d)
using the projection vector~d = (0;1).

The PPM generates a new parity whenever the least signifi-
cant word (LSW) ofB is processed, and latches the parity until
the most significant word (MSW) is done. The SG is enabled
(enable= 1) when the MSW ofB is processed, performing the
proper sign extension. The function is summarized as follows:

Input Output

C(w�1)
k�1;in S(w�1)

k�1;in sout C(w�1)
k�1;out S(w�1)

k�1;out
0 0 sin 0 0
0 1 sin 0 1
1 0 sin 1 0
1 1 0 0 0

Whenever a new modular multiplication is started, operand
B will be applied sequentially from the LSW to the MSW.B(0)

will be applied two times so that the PPM in PU1 will generate
the parity. From the 2nd towth clock cycles, the PUs process
the data in sequence. This procedure will proceed until the
LSW of B reaches PUn. If the number of PUs,n, is large than
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Fig. 5. The architecture of the scalable word-based dual-field crypto-module.

w, the output of PUn can be fed back immediately to PU1, oth-
erwise an extra buffer is required to store the temporary data
until PU1 is available. The total computation time,CC (clock
cycles), is summarized as follows,

CC =

�
(w+1)+(n�1)+(dm

ne�1) �n; if w � n,
(w+1)+(n�1)+(dm

ne�1) �w; otherwise,

Using the proposed parity prediction, the total computation
time can be reduced by(dm

n e� 1) � n+ (n� 1) clocks when
w� n and by(n�1) clocks otherwise, as compared with that
in [10, 11]. The area overhead of the PPM and SG is approxi-
mately 4% as compared with DFA array.

In addition to the PUs, an extra stage is needed to ensure that
the result is within the range of(�P;P). The relation between
the output of PUn, O, and the final result,R, is given as

R=

8>><
>>:

O�P; if A> 0;B> 0;
O�B; if A< 0;B> 0;
O; if A> 0;B< 0;
O+B�P; if A< 0;B< 0:

Such part of function can be easily implemented by a dual-
field adder/subtractor.

The function of final adjustment can be extended to support
the finite field addition and subtraction both forGF(P) and
GF(2m), which are also the basic operations to compute ECC.
To ensure that the result of two’s complement addition and sub-
traction is within the range of(�P;P), the resultRwith respect

to the given operandA andB has the following adjustment,

R=

8>><
>>:

A+B�P; if A> 0;B> 0;
A+B; if A> 0;B< 0;
A+B; if A< 0;B> 0;
A+B+P; if A< 0;B< 0;

for addition overGF(P). Similarly for subtraction over
GF(P), the resultR will be

R=

8>><
>>:

A�B; if A> 0;B> 0;
A�B�P; if A> 0;B< 0;
A�B+P; if A< 0;B> 0;
A�B; if A< 0;B< 0:

Fig. 6 shows the block diagram of the dual-field
adder/subtractor array. To support different arithmetic op-
erations, the multiplexers are implemented to select proper
operands for the DFA array. Note that sinceP is a prime,
P0=1 and the LSB of its two’s complement is also 1. Similarly
cout = 1 when subtracting byB. The addition and subtraction
overGF(2m) is simply the bitwise exclusive-OR operation. In
addition, a pipelined carry lookahead adder (CLA) is used to
convert the result of modular addition, subtraction or multipli-
cation from redundant carry-save form to the irredundant form.
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Fig. 6. The circuit of Dual-Field Adder/Subtractor array.
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Fig. 7. The overall architecture of our crypto-processor.

III. T HE CRYPTO-PROCESSORARCHITECTURE

The overall architecture of the crypto-processor core is
shown in Fig. 7. There is an I/O interface for transferring the
data from and to the on-chip bus with standard protocol. There-
fore, the crypto-processor can be easily plugged into a sys-
tem chip. The crypto-controller manages the information ex-
change from the I/O interface and the different cryptographic



TABLE I
COMPARISONS ON AREA AND PERFORMANCE(512-BIT RSA).

Year Gate # Clock Tech. Clock Baud NB NB Scalable
Count Cycles Rate /Gate Count Key Length

Yang [6] 1998 74K 390K 0.6µm 125M 164K 286K 3.9 N
Su [7] 1999 76K 510K 0.6µm 100M 100K 174.8K 2.3 N

Hong [12] 2002 77K 530K 0.6µm 300M 289K 512K 6.7 N

Hsieh (8-bit) [13] 1999 4.5K 6.5M 0.6µm 125M 10.5K 18.6K 2.37 Y
Lin (16-bit) [8] 2001 13.1K 810K 0.35µm 125M 79K 79K 6 Y
Ours (32-bit) 2002 40K 405K 0.35µm 220M 276K 276K 6.9 Y

operations of both RSA and ECC. When a cryptographic pro-
cess begins, the controller will access the necessary multipli-
cand, multiplier and the prime or irreducible polynomial into
the memory module. Proper microinstructions are generated
from the crypto-controller and fed into the RSA/ECC con-
troller. Then the RSA/ECC controller will access the dual-field
crypto-module for proper data flow. The RSA/ECC controller
also assigns each memory block as a read or write buffer dur-
ing the encryption and decryption. The dual-field controller
selects eitherGF(P) or GF(2m) arithmetic operations in the
crypto-module. There are 16 PUs with 32-bit word in the
crypto-module. The memory module consists of 2048Kb�6
two-port memory blocks as the register files to store the in-
termediate codeword. Additional 2048Kb�2 FIFOs are used
as the buffer to store the temporary data when the key length
is greater than 512 bits. The key length is scalable by 32-bit
words. As a result, the overall crypto-processor is capable
of processing 2048-bit RSA and 512-bit ECC cryptography.
However, it is extensible simply with a larger memory mod-
ule, or using external memory resource as the buffer.

IV. COMPARISONS

Table I compares different designs of the 512-bit RSA cryp-
tography with normalized clock rate and baud rate, where the
NB represents the normalized baud rate with respect to 0.35µm
technology. The first three ASIC designs are systolic array
design, while the design in [12] requires no broadcasting sig-
nal and achieves the best NB per gate for RSA. The last three
designs are processor-based implementations. Our crypto-
processor achieves the highest performance with the measure-
ment of the NB per gate, regardless the scalability and the max-
imum key length that are the outperformance of the proposed
design. The NB is 276 Kbps by a standard cell-library design
flow using 0.35µmtechnology with 40K gates and a 220MHz
clock rate from synthesis result. In addition, the pipelined
crypto-processor is unified for both RSA and ECC with scal-
able key length. For ECC computation, projective coordinates
are used to reduce the requirement of the modular inversion in
affine coordinates. The resultant baud rate of 160-bit ECC is
73:3 Kbps forGF(P) and 65:9 Kbps forGF(2m).

V. CONCLUSIONS

We have presented a new scalable and unified crypto-
processor based on a modified Montgomery algorithm for both
RSA and ECC. Effective pipeline architecture is implemented

to perform the modular multiplication, addition and subtrac-
tion overGF(P) andGF(2m), which are the basic operations
in RSA and ECC. The word-based crypto-processor supports
scalable keys of the length up to 2048 bits for RSA and 512 bits
for ECC. The key length can be increased easily with a larger
memory module or using external memory resource, without
affecting the overall architecture. Using a 0.35µmCMOS tech-
nology, our crypto-processor achieves a 512-bit RSA encryp-
tion rate of 276 Kbps and a 160-bit ECC encryption rate of
73.3Kbps for a 220MHz clock rate.
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