
Applications of Adaptive Computing Systems
for Signal Processing Challenges

Brian Schott, Peter Bellows, Matthew French, and Robert Parker
USC Information Sciences Institute

3811 North Fairfax Drive, Arlington, Virginia 22203

Adaptive computing systems use FPGAs for custom hardware
acceleration in high performance and real-time applications.
Unlike single purpose dedicated hardware approaches, the reus-
able nature of the technology introduces system design tradeoffs
that must balance processing density, memory, and I/O band-
width, not to mention more subtle issues such as ease of pro

-

gramming, debugging, and physical integration into real-world
systems. This paper describes results from the DARPA-funded
SLAAC project, which developed three generations of adaptive
computing systems for a diverse set of challenging signal proc-
essing applications.

I. Introduction

The System Level Applications of Adaptive Computing
(SLAAC) project1 was funded to investigate scalable adaptive
computing systems in the context of Defense signal process-
ing. SLAAC was organized around a diverse collection of
challenge applications that guided the hardware and software
development. These applications were Synthetic Aperture
Radar Automatic Target Recognition (SAR/ATR), SONAR
Beamforming, Wide-band RF Receiver Processing, Hyper-
spectral Image Processing, AEGIS Electronic Counter Meas-
ures, and Infrared Automatic Target Recognition (IR/ATR).
The challenge applications were selected to stress ACS sys-
tems in different dimensions such as computational density,
memory bandwidth, memory access latency, I/O bandwidth,
and end-to-end latency. The problems varied in size from a
single FPGA board to potentially tens of racks of equipment.
Form factor was also a concern because most application de-
velopment was to be performed at universities where it would
be costly to replicate entire end-to-end embedded systems.
Our goal was to support development on inexpensive com-
modity workstations and quickly retarget to rugged embedded
systems. We didn’t expect to be successful in all challenge
areas, but considered that the diversity of requirements would
lead to more general-purpose adaptive computing systems.

In this paper, we describe SLAAC hardware and software
development over the past five years. In Section II, we define
the SLAAC scalable system architecture and discuss two ref-
erence implementations. Section III describes three genera-
tions of ACS hardware. Application results are given in Sec-
tion IV. Our paper concludes with future work in Section V.

1 Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and
Rome Laboratory, Air Force Material Command, USAF, under agreement number
F30602-97-1-0222. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
Rome Laboratory, or the U.S. Government."

II. System Architecture

In the late 1980’s, research laboratories began building
custom computing machines from newly developed Field
Programmable Gate Arrays (FPGAs). One archetypal recon-
figurable computer was Splash-2, developed from 1991 to
1994 at the IDA Supercomputing Research Center [1]. The
machine had 16 Xilinx 4010 FPGAs in a systolic linear array.
Each FPGA had one 512Kbyte SRAM. A programmable
crossbar also connected the FPGAs, controlled by one addi-
tional FPGA. Up to 16 boards could be chained together for
an array of 256 elements. Splash-2 demonstrated impressive
speedups over workstations and even supercomputers for ap-
plications that mapped well to systolic processing [2].

Splash 2 introduced a number of features that made FPGA
computing systems easier to program. These included:

1. High-level VHDL simulation and synthesis devel-
opment with a synchronous clock for user designs.

2. In-system FPGA configuration for rapid prototyping.
3. Variable clock for application–tuned performance.
4. Direct host access to setup/debug onboard memories.
5. In-system FPGA flip-flop readback support for sin-

gle-step hardware debugging at runtime.
Splash-2 defined the standard programming environment for
commercial FPGA-based systems that followed. When the
SLAAC project began in 1997, the “ease of programming”
features were highly regarded by our application developers.
However, the systolic architecture had performance limita-
tions that didn’t map well to all applications of interest. We
wanted to design a SLAAC system with more flexibility for
data movement. Similarly, although a “synchronous system”
view was convenient for VHDL coding, a global clock was
not practical for large systems. To meet these requirements,
we designed a network-centric architecture for adaptive com-
puting systems and developed two reference implementations.

II.A. ACS System Programming Model

Our distributed ACS architecture defines a system of hosts,
nodes, and channels in a network. A host is an application
process responsible for allocating nodes, configuring chan-
nels, and controlling the system. A node is a computational
resource such as an FPGA board. Channels are asynchronous
data streams connecting nodes and hosts over the network.
Channels have endpoints, usually FIFOs on an FPGA boards
and buffer queues on hosts. Figure 1 portrays a conceptual
view of two independent ACS systems in a network.

Our distributed system presents a programming model that
has several advantages for application developers. First,
streaming data through an FPGA board using FIFOs is a

common technique. Chaining multiple FPGA boards together
with channels is a fairly simple extension. Second, it allows
ACS systems to scale to very large sizes with flexible topolo-
gies. Application designers are encouraged to decompose
problems into smaller modules, which can be separately
coded and tested. A full-sized system need only be assembled
during final integration. Third, it is easier to exploit coarse-
grained parallelism by replicating modules for independent
data processing. Additional hardware resources can be allo-
cated dynamically based on load. Fourth, a network-
distributed system can be partitioned among multiple users or
applications simultaneously. Monolithic FPGA system archi-
tectures rarely have this level of flexibility even today.

Figure 1 ACS System View

II.B. SLAAC Reference Platforms

Although the ACS programming model was designed to
make very few assumptions about the underlying implemen-
tation, the SLAAC project had aggressive demonstration tar-
gets on real systems. Our core development team had to bal-
ance the needs of graduate students doing application studies
at universities against the performance density requirements
of Defense embedded systems. Our approach was to construct
two hardware reference platforms in these two domains such
that it was relatively easy to transition from one to the other.

The Research Reference Platform (RRP) was defined as a
cluster of FPGA-accelerated workstations. The RRP was in-
tended for application development in a research lab or data
processing center where cost and ease of programming are of
more concern than density. This system implementation
builds on two separate high performance computing domains
— cluster computing, where large parallel clusters are con-
structed from low-cost workstations, and FPGA hardware
accelerators such as the Pamette [3]. The RRP was a marriage
of these two ideas. It had the advantage of being an inexpen-
sive development platform that tracked advances in high-
speed networking, workstations, and adaptive computing
systems, making it very accessible to application developers.

In order to support our programming model, we developed
an API for controlling FPGA boards in a workstation cluster,
called the ACS API. The ACS API has system creation func-
tions for defining topologies of accelerator nodes and chan-
nels between nodes, memory access functions for reading and
writing to onboard memories, channel functions for streaming

data through the system, and convenience functions for node
configuration, readback, and clock management. The ACS
runtime library was implemented in C++ with a C-callable
front-end. It borrowed heavily from the Message Passing In-
terface (MPI) standard. It operated seamlessly in an existing
MPI application using a private communicator or encapsu-
lated MPI calls to provide a simplified programming interface
from a single host. The ACS runtime library supports many
different PCI-based boards. It is further described in [4].

The Deployable Reference Platform (DRP) was defined to
be an embedded counterpart to the RRP. It was a VME system
appropriate for real world processing where ruggedness,
computing density, power, weight, and volume were the
driving metrics. In place of workstations, we modified a CSPI
M2621‘ VME board as shown in Figure 2. It had two
PowerPC‘ 603 processors, onboard 1.2Gb/sec Myrinet‘
networking, and two PowerPC bus connectors. It supported
the VxWorks‘ real-time OS and also MPI.

Figure 2 M2621 6U VME Carrier

Because the RRP and DRP were defined for completely dif-
ferent environments, it was essential to define compatibility
requirements to ensure that applications developed on the
RRP could be easily retargeted to the DRP. We defined the
platforms as source-code-compatible by porting the ACS API
to the DRP. We also required that the DRP be FPGA bitfile-
compatible with the RRP. This eliminated risks of failure that
arise when changing synthesis targets.

III. SLAAC Hardware Development

Under SLAAC, we developed three generations of ACS ac-
celerators. Each incorporated the latest FPGA technology,
new research ideas, and lessons learned from earlier systems.

III.A. The First Generation: SLAAC-1 and SLAAC-2

The first two SLAAC boards were developed in parallel in
1998 to ensure that they remained bitfile compatible.
SLAAC-1 is a PCI FPGA accelerator board and SLAAC-2 is
VME-based accelerator, yet they are fundamentally identical.

III.A.1. SLAAC-1 PCI Board

As shown in Figure 3, SLAAC-1 has one user programma-
ble Xilinx 4085 (X0) and two 40150s (X1 and X2), for a total
of 750K user programmable logic gates. They are organized

in a ring for systolic processing and have a shared bus called
the crossbar. The busses are 72-bits wide, nominally intended
for 64-bit data with 8-bit control tags. Streaming data enters
and exits from two 64-bit FIFO interfaces on X0. There also
are two external I/O connectors on X1 and X2. Other busses
not shown include lines for LEDs, handshakes, resets, global
tristates, clocks, configuration, and readback.

Figure 3 SLAAC-1 Architecture Diagram

SLAAC-1 has ten independent banks of 256Kx18bit
SRAM memory operating at up to 100 MHz. The SRAMs
feature zero-bus turnaround, permitting a read or write every
clock without idle cycles. We chose to trade narrower memo-
ries for more memory ports because the number of independ-
ent memory accesses per clock drove the performance on
some of our applications. The organization of the memories
and major bus connections were deliberately designed to al-
low the FPGAs to be logically divided into ten “Splash-2-
like” virtual processing elements for ease of programming.
They were carefully floorplanned for efficient user designs.

The interface chip (IF) is a Xilinx 4062 that boots from
PROM. It has a 32-bit 33 MHz PCI interface. It manages a
configuration cache for the user FPGAs, provides application
clock control using a programmable clock generator with
frequencies from 391 kHz to 100 MHz, and implements the
FIFOs visible from X0. IF also manages the 40-bit external
memory bus that maps all user memories into the host address
space. This feature guarantees a stable path to the memories
for initialization, debugging, and readout. For each memory, a
pair of transceivers isolates the address/control and data lines
from the external memory bus during normal operation.

Figure 4 SLAAC-1 Photo

A picture of SLAAC-1 is shown in Figure 4. It is a standard
full-sized PCI card. From left to right, the large BGA chips
are IF, X0, X2, and X1. The six connectors along the top and
bottom of the board support memory daughter cards (not

shown). On the back of the SLAAC-1 (not shown) are four
high-speed external I/O connectors, two each for X1 and X2.
Eleven SLAAC-1 boards were produced in March 1999.

III.A.2. SLAAC-2 VME Board

As shown in Figure 5, SLAAC-2 is nearly identical except
that the basic design is duplicated. The only additions are two
40-pin busses that interconnect the two halves. These pins
correspond with external I/O in SLAAC-1. SLAAC-2 at-
taches to a dual-PowerPC VME carrier produced by CSPI.
Each PowerPC on the carrier controls half of SLAAC-2. One
design update was that the IF chips were upgraded to Xilinx
4085s to accommodate the non-multiplexed 64-bit PowerPC
buses. Other modifications were made to save space on the
board, such as combining the power supply and boot PROM.

Figure 5 SLAAC-2 Block Diagram

The only compromise for density was the elimination of the
external memory bus, thereby preventing direct host access to
the onboard SRAMs. However, since SLAAC-1 and SLAAC-
2 are bitfile compatible, our conclusion was that application
debugging should happen on the RRP and therefore the mem-
ory buss was not essential on the DRP. The only issue for the
application designer was that the memories would have to be
loaded from within the user design. Figure 6 is a photo of
SLAAC-2. Six user FPGAs are visible. Two interface FPGAs
on the back are not shown. The horizontal PowerPC bus con-
nectors that interface to the CSPI carrier are visible. Three
SLAAC-2 boards were produced in March 1999.

Figure 6 SLAAC-2 Photo

III.B. The Second Generation: SLAAC-1V

Our second-generation development occurred in 1999 and
2000. Our application designers were eager to take advantage
of the new Xilinx Virtex FPGAs because of their improved
logic density and large block SRAMs [6]. They also wanted
to experiment with fast runtime reconfiguration. SLAAC-1V
was designed to explore these new features, yet remain
source-code compatible with SLAAC-1. A VME version was
considered and dismissed because embedded systems were
migrating to rack-mounted workstations in our applications.

The SLAAC-1V architecture is shown in Figure 7. It had
three Virtex 1000 FPGAs (X0, X1, and X2), for a total of 3M
logic gates. As with SLAAC-1, the FPGAs are connected by a
72-bit ring and a crossbar bus. Bus exchange switches allow
each FPGA to connect to either the crossbar or an external I/O
connector. SLAAC-1V has ten 256Kx36-bit SRAMs com-
patible with SLAAC-1 except that they are twice as wide.
External host access to the memories was implemented using
bus exchange switches. The memory bus exchange switches
are also available to user designs to swap memory banks be-
tween FPGAs, enabling fast double buffering.

SLAAC-1V doesn’t have a separate host interface chip
(IF). Instead, all system control logic including the PCI inter-
face consumes 20% of X0. The remaining 80% is available
for applications. The purpose for merging interface logic into
X0 was to explore tools for combining fixed cores (interfaces)
with dynamically changing binaries (applications) using run-
time partial reconfiguration. The interface provides high-
speed Direct Memory Access (DMA), host memory access,
data buffering, clock control (including single-stepping and
frequency synthesis from 1 to 200 MHz), and user-
programmable interrupts. X0 boots from flash memory to a
safe default configuration with interface logic but no user
application. A separate Virtex 100 (CC) provides FPGA con-
figuration control, with 6MB of SRAM and FLASH configu-
ration cache. When the board is powered, the CC loads the
default X0. The host can then configure all three FPGAs di-
rectly over the PCI bus, or from the cache. CC can perform
partial reconfiguration of all devices, and can also do read-
back for cycle-by-cycle debugging. SLAAC-1V is designed
to maximize configuration performance. All devices can be
reprogrammed in about 15ms.

64/66 PCI

X0

X1 X2

CC

User

InterfaceIF

X0

72

72 72

72

X XX

60

S F

Figure 7 SLAAC-1V Block Diagram

SLAAC-1V has achieved 32/33 PCI transfer rates of over

1 Gbit/s (125 MB/s), which is very near theoretical maxi-
mum. Using the Xilinx 64-bit 66MHz core we have measured
2.2 Gbit/s, which was limited by the host chipset. X0 has two
64-bit FIFO interfaces to the host. The DMA controller lo-
cated in the interface part of X0 can transfer data to these
FIFOs as well as the onboard SRAMs. The DMA controller
load-balances input and output FIFOs. It also has scat-
ter/gather DMA capability for efficient transfers of many
small buffers such as are found in networking applications.

Figure 8 SLAAC-1V Photo

SLAAC-1V is shown in Figure 8. It is a full-sized 64-bit
PCI card. The three large chips are X0, X1, and X2. Memo-
ries and switches are on daughter cards not shown. The verti-
cal connector near the left is the X0 external connector. We
built about 40 SLAAC-1V boards in 2000 and 2001 and dis-
tributed them widely in the research community.

III.C. The Third Generation: Osiris

Osiris was developed in 2001 for the computational density
of Xilinx Virtex-II [7]. It incorporates all of our lessons
learned from SLAAC-1 and SLAAC-1V. As shown in Figure
9, Osiris is a very simple architecturally. It has one large user-
programmable Virtex-II 6000 chip (XP) rated at 6M gates and
a Virtex-II 1000 (IF) interface. One lesson learned from
SLAAC-1V was to carefully optimize memory performance,
in both bandwidth and depth. Osiris has ten banks of
512Kx36-bit 250Mhz SRAM and two SODIMM sockets sup-
porting up to 2 GB of PC133 SDRAM. We found that the bus
exchange switches significantly limited SLAAC-1V memory
performance. With Osiris, all memories connect directly to
the FPGA. Host memory access uses fast, transparent arbitra-
tion logic that is inserted into XP.

IF
XC2V1000

SODIMM

SODIMM

XP
XC2V6000

64/66 PCI
64/66 PMC

10 @ 512Kx36
200MHz SRAMS

Figure 9 Osiris Block Diagram

A second lesson learned from SLAAC-1V was that com-
bining interface logic and user logic in the X0 FPGA was
difficult in practice. Implementation tools never matured to
the point where two independent FPGA bitfiles could be

merged together dynamically. Osiris has a dedicated interface
chip (IF), similar to SLAAC-1, which provided PCI-32/33
(3V), PCI-64/66, and PCI-X standards. Furthermore, Osiris
added a second PCI interface on IF, a standard PCI Mezza-
nine Card (PMC) connector for commercial external I/O and
processor cards. IF actually bridges the two PCI busses; the
left-hand interface connects to the host and the right-hand
interface connects to PMC. This enables the unique capability
of allowing a host to control the PMC daughter card directly
with standard device drivers, and let the PMC card transfer
data directly to XP at full bandwidth without traversing the
host PCI bus. This also allows the user FPGA design to be
ignorant of data source. XP gets data from FIFOs on IF re-
gardless. This is an excellent feature for design testing.

Figure 10 Osiris Photo

Osiris is shown in Figure 10. The large chip in the center is
XP surrounded by 10 SRAMs. Two SODIMM sockets (one
on back not shown) are to the right of XP. Centered over the
PCI connector is IF. Between IF and XP is the set of four
connectors that make up the PMC interface. Osiris obeys the
no-fly-zone specification for PMC. About 30 Osiris boards
were produced in 2002. Osiris was licensed to Atlantic Coast
Telesys and is presently being produced commercially [8].

IV. Application Results

SLAAC was organized around a number Defense challenge
applications that collectively guided the core technology de-
velopment. They were selected to stress new ACS systems in
a number of processing dimensions. We introduce the chal-
lenge problems and summarize their results below.

IV.A. SAR/ATR Challenge

The SAR/ATR challenge was to accelerate target recogni-
tion algorithms for Joint STARS radar. The processing goal
was two megapixels per second of sustained bandwidth for 30
target types at a performance density of 500X the 1996 base-
line system. We focused on two key components: Focus Of
Attention (FOA), and Contamination Distribution Indexer
(CDI). FOA is an adaptive quantization algorithm specified in
an image morphology language called CP4L. Sandia National
Laboratories had a requirement to change the morphology
scripts without a hardware designer. We developed a compiler
tool that generated custom image morphology processors
from CP4L. The resulting tool compiled custom SLAAC-1
binaries in seconds. FOA achieved the rate of 46 megapixels,
which is 10X workstation performance.

The CDI module extends the capabilities for detection in
the face of camouflage, concealment, and deception. We

achieved 40X the throughput of a single embedded PowerPC
(10X a Quad PowerPC Multicomputer). The final end-to-end
SAR/ATR system performance on a Sun Ultra 60 with
SLAAC-1V was 1.09 megapixels. The estimated performance
for a Sun Blade 1000 as host was 2.5 megapixels. Details of
this application study can be found in [9] and [10].

IV.B. SONAR Application Domain Challenge

The SONAR challenge problem was to accelerate a
matched-field beamforming application for submarine SO-
NAR tracking systems. This application was considered an
ideal ACS challenge problem, because conventional wisdom
at the time indicated that SONAR was beyond the capabilities
of FPGAs. It violated three of the marker characteristics of
successful FPGA applications: 1) small data elements, usually
8-bit or smaller, 2) simple arithmetic and logic operations,
and 3) minimal control logic. We started with feasibility
studies on algorithms provided by the Naval Undersea War-
fare Center (NUWC). On the chosen matched field algorithm,
a SLAAC-1 at 50Mhz reached the workstation equivalent of
between four and five GOPS, a speedup of 42X over conven-
tional processors. Details can be found in [11], [12], and [13].

IV.C. Electronic Counter Measures Challenge

The Electronic Countermeasures Assessment (ECMA) Sig-
nal Processing Subsystem provides for detection and analysis
of countermeasures and jamming signals in the AEGIS
AN/SPY-1 shipboard phased array radar system. The original
ECMA system consists of 35 different application specific
electronic modules, filling an entire six-foot high, nineteen-
inch wide frame. Our goal was a volumetric reduction with
identical functionality. We replicated the entire ECMA proc-
essing system on a single SLAAC-2 board, achieving a 95%
volume reduction with identical waveforms.

IV.D. Wide-Band RF Challenge

The Wide-Band RF Challenge was selected to look at high
streaming bandwidth. Los Alamos identified the Digital Re-
ceiver Component Library for this challenge. It has a set of
common signal processing ASIC functions. Our goal was to
accelerate a channelized detector to achieve 100 megasamples
per second. Six components were implemented: 32–channel
Polyphase Filter Bank, 32–channel FFT, Statistical Detection
Algorithm, Direct Digital Frequency Synthesizer, Adaptive
Decimation, and Log CORDIC. They achieved the 100-
megasamples rate. Additional results can be found in [14].

IV.E. Hyperspectral Imagery Challenge

The goal of the Hyperspectral Imagery Challenge was to
examine how ACS systems could be applied to large image
data cubes. The Rapid Feature Identification Project (RFIP)
and Accelerated Image Processor using Machine Learning
(POOKA) application demonstrated an evolvable hardware
approach to feature recognition for multispectral imagery.
After training, the SLAAC-based POOKA system demon-
strated two orders of magnitude speedup. Additional details
of this application can be found in [15], [16], and [17].

IV.F. IR/ATR Challenge Problem

The Infrared Automatic Target Recognition algorithm was
developed at Night Vision Laboratories to enable a real-time
image cueing system for M1 tanks at night. The system
needed to process 180-degree views of high-resolution im-
agery at 10 Hz. The system also had to be small enough to fit
in two VME slots. The algorithm had a 6-level decision tree,
with the top level (Round 0) representing 90% of the compu-
tation. Our partitioning specified a SLAAC-2 VME board in
one slot entirely for Round 0 and the second slot with a COTS
PowerPC board for the other rounds. Our application team
used SLAAC-1 to develop the sparse template hardware algo-
rithm. The approach compiled all Round 0 templates into a
single adder tree. This was demonstrated on SLAAC-1 at a
clock rates needed to achieve the required 100ms window on
the end-to-end system. Results are reported in [18].

V. Conclusions and Future Work

The SLAAC project was funded to investigate scalable
adaptive computing system architectures and apply them to a
variety of Defense applications. We developed two reference
implementations of our network-centric architecture: the Re-
search Reference Platform as a commodity workstation clus-
ter with PCI-based FPGA accelerators, and the Deployable
Reference Platform as an embedded FPGA-accelerated VME
multicomputer. Our hardware development produced four
board designs, which tracked commercial FPGA technology
advances, yet remained backwards compatible. This is a dis-
cipline we wish commercial FPGA board vendors would
adopt. SLAAC hardware technology demonstrated significant
performance density improvements across a wide variety of
demanding applications. In general, this is because we struck
a good balance between the number of memory banks, mem-
ory bandwidth, logic density, and I/O bandwidth and didn’t
attempt to optimize for only one application.

In future systems, our team will investigate tighter integra-
tion with commodity networking for cluster acceleration. In
our current architecture, the host system bus can be the band-
width bottleneck when moving data from the network to the
FPGA board. The ideal place for computation acceleration is
between the network and the host processor. The Osiris ar-
chitecture is optimized for this role. We can offload network
data efficiently from the PMC card directly to the user FPGA,
yet retain our general distributed ACS programming model.

VI. Acknowledgements

SLAAC funded a large multidisciplinary research team
with investigators at Brigham Young University, Lockheed
Martin Government Electronic Systems, Los Alamos Na-
tional Laboratory, Sandia National Laboratories, Virginia
Tech, UCLA, and USC Information Sciences Institute. We
would like to thank Peter Athanas, Brian Bray, Maya Gok-
hale, Brad Hutchings, Mark Jones, Kevin McCabe, Brent
Nelson, Rick Pancoast, Ronald Riley, John Villasenor, Mike
Wirthlin, and a host of graduate students, computer scientists,
and engineers inside and outside of the SLAAC team who
contributed to the success of this project. We would also like

to thank the DARPA program managers from Jose Munoz to
Bob Reuss for guidance during this project.

VII. References

[1] J.M. Arnold, D.A. Buell, and W.J. Kleinfelder, Splash 2
FPGAs in a Custom Computing Machine, IEEE Com-
puter Society Press, Los Alamitos, California, 1996.

[2] J.M. Arnold et al., The Splash 2 Processor and Applica-
tions, Proceedings of International Conference on Com-
puter Design, CS Press, Los Alamitos, CA, 1993.

[3] L. Moll and M. Shand, Systems performance measure

-

ment on PCI Pamette, Proceedings of IEEE Symposium
on Field-Programmable Custom Computing Machines,
(FCCM'97), April 1997.

[4] M. Jones, et al., Implementing an API for Distributed
Adaptive Computing Systems, IEEE Proceedings
FCCM’99, Napa, CA, April 1999.

[5] CSPI Inc., M2641 Multicomputer Data Sheet, 1999,
http://www.cspi.com/multicomputer/index.htm.

[6] Xilinx Inc., Virtex Data Sheet, 2002,
http://www.xilinx.com/literature/index.htm.

[7] Xilinx Inc., Virtex-II Data Sheet, 2002,
http://www.xilinx.com/literature/index.htm.

[8] Atlantic Coast Telesys, CoreTech Division, 2002,
http://www.actcsd.com/CoreTech

[9] S. Hemmert and B. Hutchings, An Application-Specific
Compiler for High-Speed Binary Image Morphology,
Proceedings of IEEE FCCM’01, Napa, CA, 2001.

[10] M. J. Wirthlin, S. Morrison, P. Graham and B. Bray, Im-
proving Performance and Efficiency of an Adaptive Am-
plification Operation Using Configurable Hardware,
Proceedings of IEEE FCCM’00, Napa, CA, 2000.

[11] P. Graham and B. Nelson, FPGA-Based SONAR Proc-
essing, Proceedings of FPGA'98, Monterey, CA, 1998.

[12] B. Hutchings, B. Nelson, GIGA OP DSP on FPGA, Pro-
ceedings ICASSP 2001, Salt Lake City, UT, 2001.

[13] B. Nelson, Configurable Computing and SONAR Proc-
essing - Architectures and Implementations, Proceedings
ASILOMAR 2001.

[14] J. Arrowood, K. McCabe, K. Ruud, and M. Dunham, An
Economical 40 MHz Universal Software Radio Using a
Hybrid Approach, Proceedings High Performance Em-
bedded Computing Workshop, Boston, MA, 2000.

[15] D. Lavenier, J. Theiler, J. Szymanski, M. Gokhale, and J.
Frigo, FPGA Implementation of the Pixel Purity Index
Algorithm, SPIE 2000, Nov. 2000.

[16] M. Leeser, et al., Applying Reconfigurable Hardware to
the Analysis of Multispectral and Hyperspectral Imagery,
SPIE 2001.

[17] R. Riley, and N. Manukian, Atmospheric correction of
hyperspectral imagery by statistical spectral smoothing,
Image and Signal Processing for Remote Sensing VII, S.
B. Serpico, Editor, Proceedings of SPIE Vol. 4541
(2002).

[18] J. Jean, X. Liang, B. Drozd, and K. Tomko, Accelerating
an IR Automatic Target Recognition Application with
FPGAs, Proceedings of IEEE FCCM’99, April 1999.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

