

VCore-based Platform for SoC Design

Yoichi Onishi, Michiaki Muraoka, Makoto Utsuki, Naoyuki Tsubaki

Semiconductor Technology Academic Research Center (STARC)
Shin-Yokohama 3-chome, Kohoku-ku, Yokohama, 222-0033, Japan

TEL : 045-478-3300, FAX : 045-478-3299
{onishi, muraoka, utsuki, tsubaki}@starc.or.jp

Abstract

The reuse-based design paradigm is the key to improve the
design productivity of SoCs (System on a Chip). However, SoC
designers have difficulty in using conventional IPs (Intellectual
Property) because they don’t have enough variability, it is
difficult to customize them. In this paper, we propose the
variability of VCores (Virtual Cores) and show VCores are
superior to IPs for system-level design property. Based on
VCores, we have developed a VCore-based platform. We show
the SoC design productivity will be improved by using VCores
and the VCore-based platform.

1. Introduction

High integration of LSIs has brought design complexity
more than before. In this situation, design reuse and raising
the level of abstraction are the keys to improve the design
productivity of SoCs. IPs have been used as design property
up to now. However, its abstraction level is usually RT
(Register Transfer)-level or less than that, so IPs are not
suitable for system-level design property which is usually
described using C-based languages and refined to SoCs with
top-down methodology. In addition, conventional IPs have a
problem that their variability is very limited. When
considering the variability, we should take account of both
functionalities and structures. However, since IPs can only
vary their structures partly, it is difficult for SoC designers to
customize and reuse them. Moreover, this causes another
problem that IPs which are different as chalk and cheese are
generated one after another, and this makes it difficult to
handle them. In these circumstances, we have proposed
VCores as system-level design property and VCDS (Virtual

Core Design System) as a top-down design system for SoCs
[1,2].

The feature of VCore modeling is their variability. While
IPs have very limited variability (e.g. bit width), VCores can
vary both functionalities and structures. VCores realize this
variability using 3-tier models. There are three types of
VCores, that is, method/algorithm variable models called
“Source”, structure variable models after being fixed
method/algorithm called “Generic” and models called
“Type” whose method/algorithm and structures are both
fixed. SoC designers can vary VCores’ functionalities and
structures by changing the relations between the 3-tier
models.

 Besides, we have developed a VCore-based platform to
manage VCores efficiently and promote reuse designs. The
VCore-based platform consists of (1) VCore entry support
system, (2) VCore utilization system, (3) Performance
estimation system and (4) VCore distribution system.

In this paper, we present the details of VCore variability
first. Second, we describe VCDB (VCore DataBase system)
and VCore-based platform that centers VCDB and integrates
tools for supporting VCore utilization. Finally, we discuss
the relation between reuse designs and SoC design
productivity and show VCores and the VCore-base platform
are effective in SoC designs.

2. VCores and design reuse

2.1 Requirements for system-level design property

The requirements for system-level design property are (1)
raising abstraction [3] and (2) improving reusability shown
in Fig.1. As regards abstraction, describing the function of

V C ores

Interface Synthesis
(V C D S System)

D escriptions with C -based
languages A bstraction

R eusability
Inter-Property

Inner Property
Functional V ariability

Structural V ariability

V C ores

B ehavioral Synthesis
(V C D S System)

D esign Property

Fig.1 Requirements for design property in system-level designs

property using C-based languages such as SystemC [4,5,6]
and SpecC [7,8,9] without considering the concrete
implementation of SoCs is a common approach. As for
reusability, we have to consider the flexibility of both
inter-property and inner property. But the flexibility of
inter-property should be coped with in SoC design systems,
such as interface synthesis tools. So we focus on the
reusability and the flexibility of inner property here. On
occasion when we consider the reusability of design property,
we have to keep in mind that there are two types of
reusability, that is, functionality and structures. However, as
a matter of reality, preparing all kinds of design property
with all possible functional and structural combinations in
advance is almost impossible. So we adopt an approach of
preparing functional and structural variable models (VCores)
and generating necessary property.

2.2 Classification of VCores and 3-tier models

VCores are system-level design property and the
information on VCores is described using VLEF (VCore
Library Exchange Format) that is mentioned later, and stored
in a VCore database after being compiled using VLEF
compiler.

In terms of abstraction, there are three types of VCores.
Functional VCores are used for the definition and the
verification of system-level designs. Hardware VCores are
used for the implementation of hardware parts of SoCs, and
Software VCores are used for software parts of SoCs. On the
other hand, there are also three types of VCores in terms of
variability, that is, Source, Generic and Type that are
mentioned in section 1. SoC designs with VCDS are
proceeded by selecting VCores that have appropriate
combinations of the abstraction and the variability.

Fig.2 shows a simple example of 3-tier models using sort

functions. In this case, Source is a set of sort algorithm.
Suppose you use two kinds of algorithm, quick sort and
bubble sort. The attribution of selected VCores is Generic.
The data size, which is a parameter of the VCore in this case,
is not decided at this phase. Next, you specify the size
parameter according to the specifications and Type whose
algorithm and parameter are fixed is decided.

Next example is a SoC design using the 3-tier models (see
Fig. 3). In this case, the SoC consists of two functional
VCores F1 and F2. (In Fig.3, initial letter F means functional
VCores, H means hardware VCores and S means software
VCores.) If the function of F1 is image compression, F1
Source is a set of image compression methods or algorithm
(e.g. MPEG1, MPEG2 etc.,). If you select a specific one
according to the SoC specifications, then F1 Generic is fixed.
The verifications for the system-level design are done at this
stage. Next thing you have to do is to determine hardware
implementation or software implementation. If you choose
hardware implementation at the request of the specifications,
H1 Generic corresponding to F1 Generic is selected. Finally,
by specifying the concrete structural parameters of H1
Generic (e.g. bit width), H1 Type, which is the final
implementation for F1 Source, is determined. Regarding F2
Source, if you choose software implementation, S2 Type is
the final implementation.

As just described, you can select or specify (1) hardware
or software implementation, (2) methods/algorithm and (3)
structural parameters dynamically by using VCores. For this
reason, VCore-based designs have the following features.

· It is possible to try several architectures in architecture
designs [10].
· Because you can generate necessary design property
according to the necessity, you do not have to store a lot of
design property that are similar but different.

 < V C o r e f o r S o r t >

< S O R T >
a s e t o f s o r t

a l g o r i t h m

V C o r e (S o u r c e)

Q u i c k _ S o r t
d a t a _ s i z e = u n d e c i d e d

B u b b l e _ S o r t
d a t a _ s i z e = u n d e c i d e d

V C o r e (G e n e r i c)

Q u i c k _ S o r t
d a t a _ s i z e = 8

B u b b l e _ S o r t
d a t a _ s i z e = 8

B u b b l e _ S o r t
d a t a _ s i z e = 1 6

V C o r e (T y p e)

.

.

.

S o r t P a r t
(F u n c t i o n & S t r u c t u r e v a r i a b l e)

O u t p u t p a r t
(S P E C f i x e d)

I n p u t p a r t
(S P E C f i x e d)

Fig. 2 VCores’ 3-tier model

· As the relations between the VCores (Source-Generic,
Generic-Type etc.) are easily modified using a VCore-based
platform tool mentioned later, it is easy to adopt new
methods or algorithm, or define new VCores.

In this way, VCore have enough abstraction levels and the
reusability, they are superior to conventional IPs as
system-level design property.

3. VCDB (VCore DataBase)

To manage and reuse property like VCores that are
flexible enough, a special database for VCores is required.
To achieve this purpose, we adopt an object-oriented
database and developed VCDB which consist of APIs
(Application Programming Interface) for handling VCores, a
VCore search system and utilities for managing the database.
Generally, VCDB is generated for each design site, so plural
number of VCDB exists. In Fig. 4, my_vcore.vcdb shows a
generated VCDB for one site. Information specified directly
to VCores are stored in my_vcore.vcdb. However, storing
documents such as specifications generated by a word
processor or other documents generated by various tools into
my_vcore.vcdb is not a sensible approach considering the
independency of VCDB from tools. For this reason, these
kinds of files are stored as attached files. In Fig.4,
my_vcore.dic manages the addresses of these files. Thus
VCDB can manage all kinds of information related to
VCores.

4. VCore-based Platform

To design SoCs efficiently using VCores, not only
database but also (1) VCore entry support system, (2) VCore
utilization system, (3) Performance estimation system and
(4) VCore distribution system are necessary. For this reason,
we have developed a VCore-based platform that centers
VCDB and integrates tools mentioned above. To be precise,
(1) a GUI-based VCore entry system, a VCore Library
Exchange Format VLEF and its compiler/reverse compiler,
(2) a Java-based Web system for using VCDB from remote
places, (3) an estimating system for VCore performance and

S p e c i f ic a t io n o f m e t h o d o f F 1

< A r c h it e c t u r e d e s ig n > < S y s t e m - le v e l d e s ig n >

S p e c i f ic a t io n o f p a r a m e t e r s o f

F 1

S o C

F 1 S o u r c e
S 1 G e n e r ic

H 2

S 2 G e n e r ic S 2 T y p e

H 1 T y p e

S p e c i f ic a t io n o f p a r a m e t e r s o f

F 2

S p e c i f ic a t io n o f m e t h o d o f F 2

: D e s ig n h ie r a r c h y

: G e n e r a t io n o f V C o r e

: S e l e c t io n o f im p l e m e n t a t io n

H 1

F 2 S o u r c e

Fig. 3 3-tier models in SoC design

...

attach1.doc attach3.ppt attach2.xls my_vcore.dic

/

project

my_vcore.vcdb

my_vcore.dir

Fig.4 Directory structure of VCDB

(4) a VCore distribution system and an IP import system into
VCDB using IP distribution protocols. Fig.5 shows the
system structure of the VCore-based platform.

4.1 VCore entry system

4.1.1 VCore Library Exchange Format (VLEF)

Registering VCores with a VCDB, it is desirable that
VCores have not only C-based behavioral descriptions but
also information on properties attached to VCores,
considering reuse and distribution. So we have developed
VLEF and its compiler/reverse compiler to define VCores
clearly. The basic structure of VLEF is shown in Fig.6.

4.1.2 VCore entry system

When registering, editing or searching VCores,
VCDBManager, which is a GUI-based VCore entry system,
is used. Since VCDBManager has a VLEF compiler/reverse
compiler, a VCore searching function and a display function
of information on VCores, SoC designers can easily register
and retrieve VCores using it. In addition, the edit of relations
between Source-Generic and Generic-Type can be carried
out using VCDBManager.

4.2 VCore utilization system

When using or distributing VCores, it is a common way to

access VCDB from distant places through Internet or
Intranet. To support this, we have developed Java-based Web
system. This function enables SoC designers to access

VCores from all over the world.

4.3 Performance estimation system

VCores have characteristic values that show their
performance (including area, speed and power). When
registering VCores or reconfiguring, it is desirable that
designers can estimate the values rapidly. To support this, we
have developed a RT-level rapid estimation tool on VCores

VCore Distribution

Browser

IP Import System/

VCore Distribution System
Remote Access

GUI-based VCore Entry System

V C D B

VLEF Compiler/

Reverse Compiler Web System

Performance Estimation

System

IP Database Internet/Intranet

VLEF

Fig. 5 VCore-based platform

VLEF
<Version>
<parameter definition>
<Macro definition>
<Unit metric definition>
<Unit type definition>
<Property type definition>
<Key type definition>
<File type definition>
<Complex type definition>
<Search list definition>
<VCDB property definition>
<VCDB attachment file definition>
<VCDB comment definition>
<VCore template definition>
<VCore template quotation>
<Calculation definition>
<VCore definition>
<Channel definition>
<Interface definition>

ENDVLEF

Fig. 6 VCore structure

performances and integrated it into the VCore-based
platform. When designers estimate performance of VCores,
RT-level descriptions output by behavioral synthesis tools
are used as input of the tool whose performance is 50-100
times faster than the de facto logic synthesis tool.

4.4 VCore distribution system

Regarding the distribution of design property, IP
distribution has been established. So when distributing
VCores, it is desirable to use the same protocols. The
VCore-based platform can distribute VCores and IPs using
the same protocols.

5. Analysis on reuse and design productivity

Table 1 shows how manpower on a SoC design changes

depending on the improvement of reuse overhead and the
efficiency of design methodology [11]. This table shows the
manpower won’t increase in spite of the increase of design
size of SoCs if the reuse overhead decreases at 30% per 3
years and also the manpower for new designs decrease at
30% per 3 years. Now, we adopt the improvement of reuse
overhead and the improvement of manpower for new
designs as two parameters and simulate by fixing one of the
two parameters within the framework of Table 1. Fig.7
shows the case that the improvement of manpower for new
design is fixed at 30% per 3 years and Fig. 8 shows the case
that the improvement of reuse overhead is fixed at 30% per
3years. As shown in Fig. 7, the improvement of reuse
overhead affects overall design manpower sharply. On the
other hand, Fig. 8 shows that if the improvement of

Table 1. The change of design productivity

 How to calculate

 Year

Explanation 1999 2002 2005 2011

(a) From 1999 ORTC Area ratio of logic gates to SoC(%) 80 50 35 15

(b) From 1999 ORTC Gate count(Mgates) 4 6.75 11.64 30.41

(c) Assumption Reuse rate of circuits(%) 20 50 70 90

(d) (a) * (b) New design parts of SoC(Mgates) 3.2 3.38 3.49 3.04

(e) 30%/3year (Assumption) Design manpower ratio to 1999 1 0.7 0.49 0.24

(f) (d) * (e) Substantial new design (Mgates) 3.2 2.37 1.71 0.73

(g) 30%/3year (Assumption)

Improvement of reuse overhead (%)

(Gate conversion) 50 35 24.5 12.01

(h) (b) * (c) * (g) Reuse resource(Mgates) 0.4 1.18 2 3.29

(i) (f) + (h) New design + reuse resource (Mgates) 3.6 3.55 3.71 4.02

 (i) / 3.6 * 10

Manpower (MY)

 (Assumption : 3.6Mgates(1999) requires 10 9.86 10.31 11.17

0

5

10

15

20

1999 2002 2005 2011
(Year)

M
an

po
w

er
 (M

Y
)

50% / 3 years

40% / 3 years

30% / 3 years

20% / 3 years

(c) : the s ame as Table1
(e) : fixed (30% /3 years)

(g) : parameter

Fig. 7 Soc design productivity

depending on the reuse overhead improvement

0

5

10

15

20

1999 2002 2005 2011
(Year)

M
an

po
w

er
 (M

Y
) 50% / 3 years

40% / 3 years

30% / 3 years

20% / 3 years

(c) : the same as Table1
(g) : fixed (30% /3 years)

(e) : parameter

Fig. 8 SoC design productivity depending

on the improvement of design efficiency

manpower for new designs is less than 30% per 3 years,
overall design manpower will increase and even if the
improvement rate is more than 30% per 3 years, the overall
manpower will be flatten. This means, in future SoC designs,
the design reuse is the key to improve design productivity.
Since we have given enough variability to VCores and
integrated tools into the VCore-based platform to reuse
VCore efficiently, VCores and the VCore-based platform are
precisely the reuse environment for SoCs.

6. Conclusion

In this paper, we presented the variability of VCores using
3-tier models first, and a database system (VCDB) for
managing VCores and the VCore-based platform for reuse of
VCores next. We also discussed the importance of the reuse
in SoC designs and show VCores and the VCore-based
platform are effective in the future SoC designs. To make the
VCore-based platform a more useful reuse system, the
enrichment of VCores is indispensable. So we are planning
to develop a abstraction system from conventional IPs to
VCores.

7. Acknowledgement

This work is sponsored by NEDO (New Energy and
Industrial Technology Development Organization) as VCDS
Project (SoC advanced design technology development
project).

8. References

[1] : M.Muraoka, “VCDS:Virtual Core based
 Design System”, ASP-DAC 1999.
[2] : M.Muraoka, H. Hamada, H. Nishi, T.Tada,
 Y.Onishi, T.Hosokawa, “VCore-based Design
 Methodology”, ASP-DAC 2003.
[3] : A. Gerstlauer, D. Gajski, “System-Level
 Abstraction Semantics”, Proceedings of the
 15th international symposium on System
 Synthesis, October 2002.
[4] : T. Grötker, S. Lio, G. Martin, S. Swan,
 “System Design with SystemC”,
 Kluwer Academic Publishers, 2002.
[5] : http://www.systemc.org.
[6] : D. Verkest, J. Kunkel, F. Schirrmeister,
 “System Level Design Using C++”,
 Proceedings of the conference on Design,
 Automation and Test in Europe, January
 2000.
[7] : A. Gerstlauer, R. Dömer, J. Peng, D. Gajski,
 “System Design: A Practical Guide with
 SpecC”, Kluwer Academic Publishers,
 2001.
[8] : http://www.specc.org.
[9] : http://www.cecs.uci.edu/~specc.
[10]: H. Nishi, M.Muraoka, R. Morizawa,
 H. Yokota, H. Hamada, “Synthesis for SoC

 Architecture using VCires”, ASP-DAC 2003.
[11] : 1999 JEITA STRJ Report.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

