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Abstract 
 

In this paper, we propose a novel architecture synthesis 
method for SoC using VCores. VCores are reusable and 
configurable high-level descriptions. An initial SoC 
architecture, which consists of a CPU, buses, and peripherals, is 
generated based on an architecture template. The hardware 
and software tradeoff is possible on the architecture model 
after assignment of software VCores or hardware VCores. The 
assignment is based on the results of the architecture’s 
performance estimation. We present a prototype of the 
synthesis for SoC architecture using VCores and an 
architecture level design experiment using this prototype. 
 
 
1. Introduction 
 

Reuse of high-level design intellectual properties is 
indispensable to reduce SoC (System-on-chip) design time. 
The VCDS (Virtual Core based Design System); a high-level 
design methodology using VCores (Virtual Cores) has been 
proposed [9] to address this problem. 

VCores are reusable and configurable high-level 
descriptions. There are three types of VCores. Functional 
VCores are abstract function of hardware and/or software 
which is used at the system level. Hardware VCores and 
software VCores are the cores actually used for the design of 
SoC architecture at the architecture level. In the VCDS, 
system designers define the system level functional model of 
a SoC using functional VCores based on the specifications 
of SoC. Functional verification is performed using a 
simulator. The hardware and software tradeoff is possible on 
the architecture model after assignment of software VCores 
or hardware VCores. 

It has been difficult for SoC designers to design and 
compare two or more architectures in a given product design 
period. In this paper we propose a novel architecture 
synthesis technique in VCDS, which performs architectural 
explorations in a short design time. The proposed 
architecture synthesis technique explores SoC architecture 
candidates by iteratively assigning software VCore and 
hardware VCore to the functional VCores present in the 
system level model specification. 

In the proposed architecture synthesis flow, the basic 
hardware architecture is initially generated from an 
architecture template. An architecture template consists of 

the declarations of architectural components such as CPUs, 
buses, I/O controllers, RTOS (Real Time Operating System); 
and the information on the dependencies among them. 
Software VCores or hardware VCores are effectively 
assigned to the functional VCores in a system level model, 
and communication methods between these VCores are 
generated. After VCore assignment and communication 
generation, the performance of generated architecture is 
estimated. Tradeoffs between software and hardware are 
performed by reassigning hardware VCore to the software 
VCore that is a part of performance bottlenecks. The 
generated architecture model is tuned up by optimizing the 
VCore's parameters. 

In order to evaluate the procedure of the proposed 
architecture synthesis, we have developed a prototype and 
have experimentally designed SoC architectures of a 
wearable computer. 

The rest of this paper is organized as follows. In the next 
section we discuss previous work on architecture exploration. 
In section 3, we describe the functional VCore, software 
VCore, and hardware VCore. In section 4 we describe what 
is an architecture template for basic architecture generation. 
The proposed architecture synthesis flow is illustrated in 
section 5. Section 6 shows a design experiment using the 
proposed synthesis technique. Conclusions are presented in 
section 7. 
 
 
2. Related work 
 

Many research works on hardware/software codesign 
have been proposed [1] [2] [4] [6] [13] [14]. COSYMA [14] 
firstly partitions software components from a system 
specification and then iteratively moves parts of software to 
hardware until timing constraints are satisfied. On the other 
hand, VULCAN [6] starts from a complete hardware 
solution and moves parts of the system to software until the 
performance constraints are fulfilled. POLIS [1] has focused 
on control-dominated applications with a processor and 
custom hardware. It is the base technology that has been 
implemented to a commercial tool. 

However, no research on hardware/software codesign 
using high-level design intellectual properties (IP) has been 
proposed. 

During the hardware/software codesign, both hardware 



and software components should be modeled at the same 
abstraction level such as the transaction level. Also, in order 
to properly evaluate an architecture we must use the same 
performance measurement units for both hardware and 
software. With a few exceptions, most of the proposed 
methodologies do not take into account the performance 
measurement unit differences between hardware and 
software. 

In order to address the above described problems we 
propose the concept of VCores and defined a methodology 
that uses it for architectural synthesis. 
 
 
3. VCores 
 

The VCDS uses three types of VCores for SoC design. 
Functional VCore is used for system level design of a SoC. 
Software VCore and hardware VCore are used to tradeoff 
the hardware and software architecture of a SoC. We explain 
the three types of VCores in the next sections. 
 
 
3.1 Functional VCore  
 

The functional VCore is a reusable functional-design 
element used at the system level design. It does not consider 
a particular software or hardware architectures. This means 
that it is not described considering the algorithms and the 
execution time on a target processor. 

The functional VCore has event type ports and data ports 
and data is delivered through their ports. 

The functional VCore consists of sequential operation 
parts and parallel operation parts. Functional VCore waits in 
a standby state until an event is received. Data transmission 
and reception between functional VCores is triggered by the 
event. Data transmission and reception consumes no time. 
This means that the functional VCore is defined as an 
untimed model.  

We actually described functional VCores using the SpecC 
language [5] for a design experiment. Sequential operations 
between functional VCores are derived from an input event; 
the “par” statement of SpecC language models a parallel 
operation between functional VCores. 
 
 
3.2 Software VCore  
 

The software VCore is a reusable high-level software 
element. It is used for modeling embedded software at the 
architecture level design. The algorithms and data structures 
of a software VCore are selectable. It is also independent of 
the instruction set of target processors. Software VCore is 
modeled taking into consideration restrictions of memory 
size and processing algorithm that differs from functional 
VCore. 

The Software VCore also has event type ports and data 
type ports. The Software VCore behaves sequentially or in 
parallel like a functional VCore. In parallel operation, 

synchronization is established by event input and output 
between software VCores. 

There exists a relationship between functionally 
equivalent functional and software VCores. The ports of a 
functional and software VCores that have the same 
functionality are one to one related. The ports of software 
VCore and the related ports of a functional VCore have to be 
almost equal except for their data type. The reason for this 
difference is that the data type is a parameter determined by 
a particular implementation. 

Software VCore has three characteristics: execution time, 
power consumption, and object code size. These 
characteristics are used for performance estimation at the 
architecture level design. The execution time and the power 
consumption of the software VCore are measured or 
calculated on an accurate processor, bus, and memory 
architecture model. The code size is determined by choosing 
a particular compiler and its optimization options for a 
processor. 
 
 
3.3 Hardware VCore  
 

The hardware VCore is a reusable functional element used 
at the high-level hardware design. Computation (processing) 
and input/output interface parts are separated. The 
computation algorithm of a hardware VCore can be 
reconfigured independently from the input/output interface 
part. 

The hardware VCore has data ports and data is delivered 
through their ports. 

The interface part of a VCores is synthesized by the 
hardware-hardware interface synthesis [10]. Behavioral 
synthesis tools are used to synthesize the computation part. 
There are restrictions for data types. Only integer type and 
their structures are allowed. Pointers are not allowed. 

There exists a relationship between functionally 
equivalent hardware VCore and software VCore. This 
relationship is used for reassigning software VCore that is 
performance bottleneck to the hardware VCore. 

The hardware VCore has three characteristics: area 
(transistor count) under a particular design rule, latency 
under a particular operation frequency, and power 
consumption under a particular CMOS device parameters. 
 
 
4. Architecture template 
 

The architecture of a SoC is usually designed by experts 
for every application domain such as cellular phones, digital 
still cameras, personal digital assistants (PDA), set-top 
boxes, network routers, etc. The architecture template is 
similarly designed by specialists for specific application 
domains.  

The architecture template has declarations of hardware 
and software components that, together, will constitute the 
architecture of a SoC. The hardware components are 
processors, buses, I/O peripherals, etc. The software  
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Figure 1. An example of the architecture template 
 
components are RTOSs, device drivers, development 
environments (such as compilers, debuggers, and instruction 
set simulators), etc. An example of architecture template is 
shown in Figure 1. 

The dependency between components is the design 
knowledge that enables a SoC designer to adequately and 
easily select hardware and software architecture 
components. 

For example, the ARM7XX processor and the AMBA bus 
can be chosen based on their dependency registered in the 
architecture template. The SH4 processor and the AMBA 
bus, however, cannot be chosen because the SH4 processor 
and the AMBA bus do not usually have a dependency, 
neither there is such dependency registered in the 
architecture template. The knowledge of dependencies 
between hardware/software components guarantees that an 
incorrect selection of components is never carried out. 

The description of how the hardware components are 
interconnected to form an architecture is also provided in the 
architecture template. This hardware interconnection 
description is reconfigurable, thus enabling the addition 
custom hardware. 

The architecture synthesis uses the architecture template 
in order to generate a basic hardware architecture (processor, 
bus, peripherals and their connections) of a SoC in a short 
time. 
 
 
5. Architecture synthesis flow  
 

Figure 2 shows the proposed architecture synthesis flow. 
In the VCDS, system designers define the system level 
functional model of a SoC using functional VCores based on 
the specifications of a SoC. Funcional verification is 
performed using a simulator. 

The system level model analysis receives the system level 
functional model and its test data (a functional VCore 
network and their test bench) designed at the system level. 
Probes are inserted to the system level functional model to 
calculate the computation and communication load between  
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Figure 2. Architecture synthesis flow 
 
functional VCores. It performs a simulation using the system 
level functional model with the input test data and outputs 
the log file as a result. The computation load is calculated as 
the number of times each functional VCore is executed per 
simulation from the log. The communication load is 
calculated as the integrated data transfer between functional 
VCores as an amount (bytes) of data per simulation. 

In the selection of an architecture candidate, an 
architecture template is chosen based, for example on the 
maximum performance of a processor or the maximum 
bandwidth of a bus. After selecting an architecture template, 
the designer chooses the hardware and software components 
such as the processor and busses based on their 
dependencies, which are registered in the architecture 
template. The interconnection between the chosen hardware 
components is reconfigured. 

In the VCore assignment step a software VCore or a 
hardware VCore are assigned to a functional VCore in order 
to trade off hardware and software, and to generate a model 
to estimate the architecture’s performance. The VCore 
assignment strategy is to first assign software VCores to the 
functional VCores. Then, by iteratively estimating the 
hardware performance, determine the hot spots. Finally, 
reassign hardware VCores to the appropriate software 
VCores in order to eliminate the hot spots.  

In the selection and generation of an interface between 
VCores, an abstract bus and a virtual device driver model 
(communication methods) are generated. The 
communication method between software VCore and 
hardware VCore is modeled as procedure of data 
transmission and reception. This procedure is the abstraction 
bus data transfer. Communication methods between VCores 
are refined to a synthesizable model. The interface synthesis 
tools support the synthesis of a single or burst bus transfer 
circuits from the synthesizable model. The communication 
method refinement is shown in Figure 3. 

The performance of the software and hardware 
architecture is estimated analytically using the characteristic 
of VCores. Since VCores may execute two or more times  
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during a test operation, we have to give the number of times 
a VCore executes. This number can be obtained from the 
result of the system level model analysis. The software 
VCore execution time is defined as the time interval 
between the start and the end of a process. It is measured by 
an instruction set emulator considering the RTOS. 

The performance estimation algorithm calculates the 
processing time of the hardware and software by multiplying 
the number of times of operation with the VCore’s latency 
(in the case of hardware VCores) or execution time (in the 
case of software VCores) characteristic to find bottlenecks. 

If the performance satisfies the design constraints, the 
HW/SW model description at the architecture level is 
generated. It consists of software VCores and hardware 
VCores. Furthermore the SoC’s hardware interconnection 
description is generated (HDL description). The hardware 
interconnection description is needed to connect the bus and 
the bus interface circuits for hardware VCores after interface 
synthesis. 

Explanation of the VCDS’s interface synthesis is out of 
the scope of this paper. We next present the VCore 
assignment and the architecture performance estimation in 
detail. 
 
 
5.1 VCore assignment 
 

In the VCore assignment step, software VCores or 
hardware VCores are assigned to the system level functional 
model (the functional VCore network) in order to trade off 
hardware and software. The system level functional model 
consists of functional VCores and direct communication 
interconnecting them. A direct communication is defined as 
a data exchange that is implementation independent. 

The processor is chosen at the architecture candidate's 
selection step using an architecture template. Software 
VCores are effectively assigned to the system level 
functional model as software that operates on the selected 
processor as shown in Figure 4. After assigning a software 
VCore to a functional VCore, a child software VCore that is  
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Figure 4. Assignment of software VCores to functional VCores 
 
a performance bottleneck, according to the results of the 
performance estimation, is assigned to a hardware VCore. 

Functional VCore and software VCore are designed to be 
functionally equivalent. Hardware VCores are also designed 
to be functionally equivalent to the leaf software VCores. A 
leaf VCore is defined as a VCore that cannot be further 
subdivided into other VCores. 

Each VCores port must have a one to one correspondence 
in order to enable the implementation of an automatic 
assignment of functional VCore to software VCore, and 
software VCore to hardware VCore. We present the 
formalization of VCore assignment procedure below. 
 
Preconditions: The communication methods between 
software VCore and hardware VCore, hardware and 
hardware VCores are registered into a VCore database. Also, 
the functional, software, and hardware VCores are registered 
into a VCore database.  
 
Definition 1: The system level model SLMi consists of a 
subset Fi of the functional VCore set F registered into a 
VCore database, a subset CFi of set CF that is the direct 
communication between functional VCores in Fi, and a set 
SPi of input/output ports.  
 
SLMi = {Fi, CFi, SPi}  
 
Definition 2: The hardware and software model ALMi at the 
architecture level consists of a subset Si of software VCore 
set S, a subset Hi of harware VCore set H, a set CMSSi of 
communication methods between software VCores in Si, a 
set CMSHi of communication methods between software 
VCore in Si and hardware VCore in Hi, a set CMHHi of 
communication methods between hardware VCores in Hi, 
and a set APi of input/output ports.  
 
ALMi = {Si, Hi, CMSSi, CMSHi, CMHHi, APi}  
 
 



Definition 3: The VCore assignment problem is defined as 
assigning the hardware VCores, software VCores, 
communication methods, and the ports into a system level 
model SLMi to satisfy design constraints (Ac, Tc, Wc). Ac, Tc, 
Wc are the area, the processing time, and the power 
consumption, respectively. Design constraints are satisfied 
by finding ALMi ⊂ ALM such that Ai<=Ac, and Ti <=Tc, 
and Wi <=Wc.  
 
VCore assignment procedure 1: Generate an ALM1 that 
implements all functions of SLM1 with software VCores. S1 
is a set of software VCores. CMSS1 is a set of 
communication methods between software VCores svci and 
svcj in S1, and AP1 is a set of port at the architecture level. 
 
ALM1 = {S1, CMSS1, AP1} 
 
VCore assignment procedure 2: A software VCore Sj   
(Sj ⊂ S1) and it is the performance bottleneck in ALM1, is 
assigned to hardware VCore Hj (Hj ⊂ H). Sj and Hj are 
functionally equivalent. As a result, CMSH2 

(CMSH2 ⊂ CMSH), which is a set of communication 
method between a software VCore and the hardware VCore, 
is generated. AP1 is refined into AP2 if the Hj communicates 
with hardware on the outside of ALM2. 
 
ALM2  = {S1-Sj, Hj, CMSS1-CMSSj, CMSH2, AP2} 
 
VCore assignment procedure 3: Search for the VCores that 
satisfies the design constraints (Ac, Tc, Wc) among the sets of 
ALM2; and determine the VCore elements; svci and hvci, the 
communication method elements, and the port elements. 
 
ALM3 = {svc1,svc2,..,svcl;hvc1,hvc2,..,hvcm;cmss1,cmss2,.., 
cmssr;cmsh1,cmsh2,.., cmsht; ap1, ap2,..,apn} 
 
Communication method refinement : We will show how 
communication method between VCores is refined by 
assuming that they are implemented in the SpecC language. 
The send and the receive communication methods between 
VCores can be specified using SpecC’s channel class. The 
channel class can be hierarchically defined such that data 
transfers can be refined from the functional transaction to a 
bus transaction. 
 
 
5.2 Performance estimation 
 

Performance estimation for hardware and software 
partitions is carried out using static analysis (such as the path 
traces analysis in a hardware and software model) or the 
dynamic analysis with simulators [3]. It is known that the 
performance estimation accuracy and speed have a trade-off 
relation.  

In architecture synthesis, we newly developed a static 
performance estimation tool to allow rapid iterations of 
hardware and software partitioning. In the architecture 
synthesis the performance of the generated software and 

hardware model is estimated by using the VCore 
characteristics. 

Performance is estimated using the characteristic of the 
leaf VCores. The designer must give the number of times a 
VCore is executed considering the test data because this 
number cannot be statically determined. 

Definition 4: The execution time tSVCi(CPUj,TDk) of a 
software VCore SVCi is defined as the execution time on the 
processor CPUj with input test data TDk.  
 

When actually measuring the execution time of a software 
VCore we assume the following: (a) software will be 
generated from a software VCore; (b) the kernel of an RTOS 
schedules the software that carry out concurrent operation 
when they are performed on the single CPU; (c) we assume 
that no events cause preemption during software execution. 
In the case of software model as shown in Figure 5, it can be 
calculated by the following expression.  
 
tsoc(CPUj,TDs) =α × (tsvc1(CPUj,TDk) + tsvc3(CPUj,TDk)× N3 

+ tsvc4(CPUj,TDk) +,…,+ tsvcm(CPUj,TDk)× Nm)   (1) 
 
where α  is a correlation coefficient between input test data 
TDs and TDk. The numbers of repetition times Nm in a parent 
VCore are set by a SoC designer. 
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Figure 5. Performance estimation example 

 
 
6. Architecture design experiment 
 

In order to evaluate the design flow of the proposed 
architecture synthesis, we have developed a prototype 
system that has the principal functions proposed in this 
paper.  

We experimentally designed a SoC architecture, which is 
embedded in a wearable computer (W-Com). The wearable 
computer has a videophone, a LCD, keys, etc. MPEG-4 
compression algorithm [8] is used for encoding pictures and 
sounds. The specification requires that QCIF size video be 
decoded at a rate of 30 FPS. 



In this experiment, we only designed the MPEG-4 
decoder and used a simple model (reduced function model) 
of MPEG-4 algorithms. All the function of this example 
were specified using functional VCores. The software and 
hardware models of the architecture design were also 
designed using software VCores and hardware VCores. The 
list of the software and hardware VCores of the example is 
shown in Table 1. 

Architecture components registered in the W-Com 
architecture template are the 32-bit MIPS-Lite processor 
(almost equivalent to the MIPS R3000 microprocessor [7]), 
the bus for MIPS-Lite and interface circuits to the peripheral 
controllers. 

We describe an example of hardware and software 
trade-off. In case 1 (W-Com1), we used the architecture 
template selecting the 32-bit MIPS-Lite processor, the 
MIPS-Lite bus, and µ ITRON Ver4.0 as the RTOS. In case 
2 (W-Com2), we also used the same architecture template 
selecting the MIPS-Lite processor, the MIPS-Lite bus, and 
µ ITRON Ver4.0 and transformed the IDCT (a part of 

MPEG-4 decoder) to a custom hardware. 
Firstly, an initial architecture for the W-Com was 

generated. Architectural components were chosen according 
to the dependency between components from the 
architecture template especially defined for this example. 
Secondly, software VCores were assigned to 10 functional 
VCores in the system level functional model. We estimated 
the performance of the architecture assigned the software 
VCore. Thirdly, the software VCore that is the performance 
bottleneck was determined using the performance estimation. 
In this experiment the bottleneck was the IDCT. The IDCT 
software VCore was further assigned to the hardware 
VCores. After the communication architecture was chosen,  
 

Table 1. List of VCores used in the experiment 
 

VCore 
name 

number 
of lines 
(SpecC) 

execution 
time 

 (10 –6sec) 
note 

MainM    1209  123 Main menu on a display 
Ephng   13183   18 Starts memory dial 
ShCut    2552   31 Set memory dial 

Arrive    1417  118 
Arrival function in video- 
phone 

Srmes    1657   30 Answering machine 

Srphg    594   18 
Transmission and reception 
on the telephone 

Mp4AS    753   21 MPEG-4 audio (simple) 
Mp4VS    1146   19 MPEG-4 video (simple) 
IndLED    358   39 LED control 
DiLCD     637   70 LCD control 
Memory   1852   18 Memory function 

IDCT(s)    228 1227 
Inverse discrete cosine 
transform  (software) 

IDCT(h)    217  125 
Inverse discrete cosine 
transform  (hardware) 

 

Table 2. Performance figures of the synthesized architectures 
 

architecture name 
area 

(mm2) 
processing time (sec)1 

W-Com1 1.14 36.6 

W-Com2 1.43 25.0 
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Figure 6. The principal part of the W-Com2 architecture 

 
communication methods between the VCores were 
generated. 

Table 2 shows the comparison of the two generated 
architectures. The processing time was estimated from the 
expression (1) using the VCore characteristics (execution 
time or latency) in Table 1. The area of the W-Coms was 
estimated from the hardware components characteristics 
(assuming that the components were pre-synthesized using 
STARC’s 0.13-micrometer design-rule standard cells [12]). 
The area of W-Com2 increases 25%; the processing time is 
reduced 32% in comparison with W-Com1. Figure 6 shows 
the principal part of the W-Com2 architecture. 

To design the RTL description for bus interface circuits of 
hardware VCore, we used the interface synthesis 
methodology introduced in reference [10]. For the 
generation of software from software VCores we used the 
software synthesis methodology introduced in reference 
[10]. 
 
 
7. Summary and Future work 
 

In this paper, the methodology for synthesizing SoC 
architectures using VCores is proposed. We showed through 
an experiment that the proposed method can explore 
different SoC architectures. Further evaluation of the 
performance estimation method is needed in order to the 
architecture synthesis methodology be of practical use. In 

                                                        
1 Processing time is the time interval measured from powering on the 
system until the display of the main menu and decoded video. 



order to raise the performance estimation accuracy we have 
to consider the overhead of the RTOS APIs and the device 
drivers. A simulation-based estimation which takes into 
account the interface of VCores will be developed in the 
VCDS project. 

We have a plan to develop an algorithm to select the best 
VCores from a VCore database considering their 
characteristics such as area, performance and power 
consumption. Using this algorithm we will be able to 
automate the VCore assignment step.  

The proposed architecture synthesis can only generate a 
SoC with single CPU. Future work also includes extending 
the architecture synthesis methodology to support multi- 
processors. 
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