
Synthesis for SoC Architecture using VCores

Hiroaki Nishi, Michiaki Muraoka, Rafael K. Morizawa, Hideaki Yokota, Hideyuki Hamada

Semiconductor Technology Academic Research Center (STARC)

Yusen Shin Yokohama Bldg,
3-17-2, Shin Yokohama, Kohoku-ku, Yokohama, 222-0033, Japan
E-mail: {nishi, muraoka, morizawa, yokota, hamada}@starc.or.jp

Abstract

In this paper, we propose a novel architecture synthesis
method for SoC using VCores. VCores are reusable and
configurable high-level descriptions. An initial SoC
architecture, which consists of a CPU, buses, and peripherals, is
generated based on an architecture template. The hardware
and software tradeoff is possible on the architecture model
after assignment of software VCores or hardware VCores. The
assignment is based on the results of the architecture’s
performance estimation. We present a prototype of the
synthesis for SoC architecture using VCores and an
architecture level design experiment using this prototype.

1. Introduction

Reuse of high-level design intellectual properties is
indispensable to reduce SoC (System-on-chip) design time.
The VCDS (Virtual Core based Design System); a high-level
design methodology using VCores (Virtual Cores) has been
proposed [9] to address this problem.

VCores are reusable and configurable high-level
descriptions. There are three types of VCores. Functional
VCores are abstract function of hardware and/or software
which is used at the system level. Hardware VCores and
software VCores are the cores actually used for the design of
SoC architecture at the architecture level. In the VCDS,
system designers define the system level functional model of
a SoC using functional VCores based on the specifications
of SoC. Functional verification is performed using a
simulator. The hardware and software tradeoff is possible on
the architecture model after assignment of software VCores
or hardware VCores.

It has been difficult for SoC designers to design and
compare two or more architectures in a given product design
period. In this paper we propose a novel architecture
synthesis technique in VCDS, which performs architectural
explorations in a short design time. The proposed
architecture synthesis technique explores SoC architecture
candidates by iteratively assigning software VCore and
hardware VCore to the functional VCores present in the
system level model specification.

In the proposed architecture synthesis flow, the basic
hardware architecture is initially generated from an
architecture template. An architecture template consists of

the declarations of architectural components such as CPUs,
buses, I/O controllers, RTOS (Real Time Operating System);
and the information on the dependencies among them.
Software VCores or hardware VCores are effectively
assigned to the functional VCores in a system level model,
and communication methods between these VCores are
generated. After VCore assignment and communication
generation, the performance of generated architecture is
estimated. Tradeoffs between software and hardware are
performed by reassigning hardware VCore to the software
VCore that is a part of performance bottlenecks. The
generated architecture model is tuned up by optimizing the
VCore's parameters.

In order to evaluate the procedure of the proposed
architecture synthesis, we have developed a prototype and
have experimentally designed SoC architectures of a
wearable computer.

The rest of this paper is organized as follows. In the next
section we discuss previous work on architecture exploration.
In section 3, we describe the functional VCore, software
VCore, and hardware VCore. In section 4 we describe what
is an architecture template for basic architecture generation.
The proposed architecture synthesis flow is illustrated in
section 5. Section 6 shows a design experiment using the
proposed synthesis technique. Conclusions are presented in
section 7.

2. Related work

Many research works on hardware/software codesign
have been proposed [1] [2] [4] [6] [13] [14]. COSYMA [14]
firstly partitions software components from a system
specification and then iteratively moves parts of software to
hardware until timing constraints are satisfied. On the other
hand, VULCAN [6] starts from a complete hardware
solution and moves parts of the system to software until the
performance constraints are fulfilled. POLIS [1] has focused
on control-dominated applications with a processor and
custom hardware. It is the base technology that has been
implemented to a commercial tool.

However, no research on hardware/software codesign
using high-level design intellectual properties (IP) has been
proposed.

During the hardware/software codesign, both hardware

and software components should be modeled at the same
abstraction level such as the transaction level. Also, in order
to properly evaluate an architecture we must use the same
performance measurement units for both hardware and
software. With a few exceptions, most of the proposed
methodologies do not take into account the performance
measurement unit differences between hardware and
software.

In order to address the above described problems we
propose the concept of VCores and defined a methodology
that uses it for architectural synthesis.

3. VCores

The VCDS uses three types of VCores for SoC design.
Functional VCore is used for system level design of a SoC.
Software VCore and hardware VCore are used to tradeoff
the hardware and software architecture of a SoC. We explain
the three types of VCores in the next sections.

3.1 Functional VCore

The functional VCore is a reusable functional-design
element used at the system level design. It does not consider
a particular software or hardware architectures. This means
that it is not described considering the algorithms and the
execution time on a target processor.

The functional VCore has event type ports and data ports
and data is delivered through their ports.

The functional VCore consists of sequential operation
parts and parallel operation parts. Functional VCore waits in
a standby state until an event is received. Data transmission
and reception between functional VCores is triggered by the
event. Data transmission and reception consumes no time.
This means that the functional VCore is defined as an
untimed model.

We actually described functional VCores using the SpecC
language [5] for a design experiment. Sequential operations
between functional VCores are derived from an input event;
the “par” statement of SpecC language models a parallel
operation between functional VCores.

3.2 Software VCore

The software VCore is a reusable high-level software
element. It is used for modeling embedded software at the
architecture level design. The algorithms and data structures
of a software VCore are selectable. It is also independent of
the instruction set of target processors. Software VCore is
modeled taking into consideration restrictions of memory
size and processing algorithm that differs from functional
VCore.

The Software VCore also has event type ports and data
type ports. The Software VCore behaves sequentially or in
parallel like a functional VCore. In parallel operation,

synchronization is established by event input and output
between software VCores.

There exists a relationship between functionally
equivalent functional and software VCores. The ports of a
functional and software VCores that have the same
functionality are one to one related. The ports of software
VCore and the related ports of a functional VCore have to be
almost equal except for their data type. The reason for this
difference is that the data type is a parameter determined by
a particular implementation.

Software VCore has three characteristics: execution time,
power consumption, and object code size. These
characteristics are used for performance estimation at the
architecture level design. The execution time and the power
consumption of the software VCore are measured or
calculated on an accurate processor, bus, and memory
architecture model. The code size is determined by choosing
a particular compiler and its optimization options for a
processor.

3.3 Hardware VCore

The hardware VCore is a reusable functional element used
at the high-level hardware design. Computation (processing)
and input/output interface parts are separated. The
computation algorithm of a hardware VCore can be
reconfigured independently from the input/output interface
part.

The hardware VCore has data ports and data is delivered
through their ports.

The interface part of a VCores is synthesized by the
hardware-hardware interface synthesis [10]. Behavioral
synthesis tools are used to synthesize the computation part.
There are restrictions for data types. Only integer type and
their structures are allowed. Pointers are not allowed.

There exists a relationship between functionally
equivalent hardware VCore and software VCore. This
relationship is used for reassigning software VCore that is
performance bottleneck to the hardware VCore.

The hardware VCore has three characteristics: area
(transistor count) under a particular design rule, latency
under a particular operation frequency, and power
consumption under a particular CMOS device parameters.

4. Architecture template

The architecture of a SoC is usually designed by experts
for every application domain such as cellular phones, digital
still cameras, personal digital assistants (PDA), set-top
boxes, network routers, etc. The architecture template is
similarly designed by specialists for specific application
domains.

The architecture template has declarations of hardware
and software components that, together, will constitute the
architecture of a SoC. The hardware components are
processors, buses, I/O peripherals, etc. The software

CPUs Compilers

Buses

Memories

I/O
peripherals

RTOSs

*MIPS-LiteA
*MIPS-LiteB
RTC
WDT
IRC

*bus for MIPS-Lite

*ROM
*Flash ROM
*SDRAM
*Memory cntls

*GCC
*Valen CC

W-Com bus
*CCD cntl.
*LCD cntl.
*LED cntl.
*MODEM cntl.
etc.

* ITRON
*VxWorks

: Dependency between elements

µ

Figure 1. An example of the architecture template

components are RTOSs, device drivers, development
environments (such as compilers, debuggers, and instruction
set simulators), etc. An example of architecture template is
shown in Figure 1.

The dependency between components is the design
knowledge that enables a SoC designer to adequately and
easily select hardware and software architecture
components.

For example, the ARM7XX processor and the AMBA bus
can be chosen based on their dependency registered in the
architecture template. The SH4 processor and the AMBA
bus, however, cannot be chosen because the SH4 processor
and the AMBA bus do not usually have a dependency,
neither there is such dependency registered in the
architecture template. The knowledge of dependencies
between hardware/software components guarantees that an
incorrect selection of components is never carried out.

The description of how the hardware components are
interconnected to form an architecture is also provided in the
architecture template. This hardware interconnection
description is reconfigurable, thus enabling the addition
custom hardware.

The architecture synthesis uses the architecture template
in order to generate a basic hardware architecture (processor,
bus, peripherals and their connections) of a SoC in a short
time.

5. Architecture synthesis flow

Figure 2 shows the proposed architecture synthesis flow.
In the VCDS, system designers define the system level
functional model of a SoC using functional VCores based on
the specifications of a SoC. Funcional verification is
performed using a simulator.

The system level model analysis receives the system level
functional model and its test data (a functional VCore
network and their test bench) designed at the system level.
Probes are inserted to the system level functional model to
calculate the computation and communication load between

System level
model

SoC’s top interconnection
description

Test bench

Satisfy for the
constraints? Yes

No

System level model
analysis

Performance
estimation

Bus architecture,
protocol definition

Architecture design data
(SpecC description)

Architecture
templates

Software VCores
Hardware VCores

Bus interface
protocol

Architecture candidate’s
selection

HW/SW partition
(VCore assignment)

Behavior

structure

VCore database

Figure 2. Architecture synthesis flow

functional VCores. It performs a simulation using the system
level functional model with the input test data and outputs
the log file as a result. The computation load is calculated as
the number of times each functional VCore is executed per
simulation from the log. The communication load is
calculated as the integrated data transfer between functional
VCores as an amount (bytes) of data per simulation.

In the selection of an architecture candidate, an
architecture template is chosen based, for example on the
maximum performance of a processor or the maximum
bandwidth of a bus. After selecting an architecture template,
the designer chooses the hardware and software components
such as the processor and busses based on their
dependencies, which are registered in the architecture
template. The interconnection between the chosen hardware
components is reconfigured.

In the VCore assignment step a software VCore or a
hardware VCore are assigned to a functional VCore in order
to trade off hardware and software, and to generate a model
to estimate the architecture’s performance. The VCore
assignment strategy is to first assign software VCores to the
functional VCores. Then, by iteratively estimating the
hardware performance, determine the hot spots. Finally,
reassign hardware VCores to the appropriate software
VCores in order to eliminate the hot spots.

In the selection and generation of an interface between
VCores, an abstract bus and a virtual device driver model
(communication methods) are generated. The
communication method between software VCore and
hardware VCore is modeled as procedure of data
transmission and reception. This procedure is the abstraction
bus data transfer. Communication methods between VCores
are refined to a synthesizable model. The interface synthesis
tools support the synthesis of a single or burst bus transfer
circuits from the synthesizable model. The communication
method refinement is shown in Figure 3.

The performance of the software and hardware
architecture is estimated analytically using the characteristic
of VCores. Since VCores may execute two or more times

SVC1
(Software
VCore)

HVC11
(hardware VCore)

SVC11
(software VCore)

SVC1
(Software
VCore)

SW Rapper
for HVC11
to insert to
SVC1

Communication
method

HVC11
(hardware VCore)

SVC1
(Software
VCore)

SW Rapper
for HVC11
to insert to
SVC1

Lower hierarchical
Method (Xbus)

Communication method (communication channel)

Refinement 1.

Virtual port

Procedure call

Refinement 2.

Virtual port

Virtual port Virtual port

Figure 3. Refinement of the interface model between VCores

during a test operation, we have to give the number of times
a VCore executes. This number can be obtained from the
result of the system level model analysis. The software
VCore execution time is defined as the time interval
between the start and the end of a process. It is measured by
an instruction set emulator considering the RTOS.

The performance estimation algorithm calculates the
processing time of the hardware and software by multiplying
the number of times of operation with the VCore’s latency
(in the case of hardware VCores) or execution time (in the
case of software VCores) characteristic to find bottlenecks.

If the performance satisfies the design constraints, the
HW/SW model description at the architecture level is
generated. It consists of software VCores and hardware
VCores. Furthermore the SoC’s hardware interconnection
description is generated (HDL description). The hardware
interconnection description is needed to connect the bus and
the bus interface circuits for hardware VCores after interface
synthesis.

Explanation of the VCDS’s interface synthesis is out of
the scope of this paper. We next present the VCore
assignment and the architecture performance estimation in
detail.

5.1 VCore assignment

In the VCore assignment step, software VCores or
hardware VCores are assigned to the system level functional
model (the functional VCore network) in order to trade off
hardware and software. The system level functional model
consists of functional VCores and direct communication
interconnecting them. A direct communication is defined as
a data exchange that is implementation independent.

The processor is chosen at the architecture candidate's
selection step using an architecture template. Software
VCores are effectively assigned to the system level
functional model as software that operates on the selected
processor as shown in Figure 4. After assigning a software
VCore to a functional VCore, a child software VCore that is

FVC1
(Functional

VCore)

VCDB
(VCore database)

System level functional model

Assignment of Software VCores to
functional VCores considering SoC’s
cost, performance, and power consumption.

FVC2
(Functional

VCore)

SVC1
(software VCore)

SVC2
(software VCore)

Architecture level model (Software model)

FVC2

SVC2
SVC2

Relation between a
FVC and SVCs

SVC2

Figure 4. Assignment of software VCores to functional VCores

a performance bottleneck, according to the results of the
performance estimation, is assigned to a hardware VCore.

Functional VCore and software VCore are designed to be
functionally equivalent. Hardware VCores are also designed
to be functionally equivalent to the leaf software VCores. A
leaf VCore is defined as a VCore that cannot be further
subdivided into other VCores.

Each VCores port must have a one to one correspondence
in order to enable the implementation of an automatic
assignment of functional VCore to software VCore, and
software VCore to hardware VCore. We present the
formalization of VCore assignment procedure below.

Preconditions: The communication methods between
software VCore and hardware VCore, hardware and
hardware VCores are registered into a VCore database. Also,
the functional, software, and hardware VCores are registered
into a VCore database.

Definition 1: The system level model SLMi consists of a
subset Fi of the functional VCore set F registered into a
VCore database, a subset CFi of set CF that is the direct
communication between functional VCores in Fi, and a set
SPi of input/output ports.

SLMi = {Fi, CFi, SPi}

Definition 2: The hardware and software model ALMi at the
architecture level consists of a subset Si of software VCore
set S, a subset Hi of harware VCore set H, a set CMSSi of
communication methods between software VCores in Si, a
set CMSHi of communication methods between software
VCore in Si and hardware VCore in Hi, a set CMHHi of
communication methods between hardware VCores in Hi,
and a set APi of input/output ports.

ALMi = {Si, Hi, CMSSi, CMSHi, CMHHi, APi}

Definition 3: The VCore assignment problem is defined as
assigning the hardware VCores, software VCores,
communication methods, and the ports into a system level
model SLMi to satisfy design constraints (Ac, Tc, Wc). Ac, Tc,
Wc are the area, the processing time, and the power
consumption, respectively. Design constraints are satisfied
by finding ALMi ⊂ ALM such that Ai<=Ac, and Ti <=Tc,
and Wi <=Wc.

VCore assignment procedure 1: Generate an ALM1 that
implements all functions of SLM1 with software VCores. S1
is a set of software VCores. CMSS1 is a set of
communication methods between software VCores svci and
svcj in S1, and AP1 is a set of port at the architecture level.

ALM1 = {S1, CMSS1, AP1}

VCore assignment procedure 2: A software VCore Sj
(Sj ⊂ S1) and it is the performance bottleneck in ALM1, is
assigned to hardware VCore Hj (Hj ⊂ H). Sj and Hj are
functionally equivalent. As a result, CMSH2

(CMSH2 ⊂ CMSH), which is a set of communication
method between a software VCore and the hardware VCore,
is generated. AP1 is refined into AP2 if the Hj communicates
with hardware on the outside of ALM2.

ALM2 = {S1-Sj, Hj, CMSS1-CMSSj, CMSH2, AP2}

VCore assignment procedure 3: Search for the VCores that
satisfies the design constraints (Ac, Tc, Wc) among the sets of
ALM2; and determine the VCore elements; svci and hvci, the
communication method elements, and the port elements.

ALM3 = {svc1,svc2,..,svcl;hvc1,hvc2,..,hvcm;cmss1,cmss2,..,
cmssr;cmsh1,cmsh2,.., cmsht; ap1, ap2,..,apn}

Communication method refinement : We will show how
communication method between VCores is refined by
assuming that they are implemented in the SpecC language.
The send and the receive communication methods between
VCores can be specified using SpecC’s channel class. The
channel class can be hierarchically defined such that data
transfers can be refined from the functional transaction to a
bus transaction.

5.2 Performance estimation

Performance estimation for hardware and software
partitions is carried out using static analysis (such as the path
traces analysis in a hardware and software model) or the
dynamic analysis with simulators [3]. It is known that the
performance estimation accuracy and speed have a trade-off
relation.

In architecture synthesis, we newly developed a static
performance estimation tool to allow rapid iterations of
hardware and software partitioning. In the architecture
synthesis the performance of the generated software and

hardware model is estimated by using the VCore
characteristics.

Performance is estimated using the characteristic of the
leaf VCores. The designer must give the number of times a
VCore is executed considering the test data because this
number cannot be statically determined.

Definition 4: The execution time tSVCi(CPUj,TDk) of a
software VCore SVCi is defined as the execution time on the
processor CPUj with input test data TDk.

When actually measuring the execution time of a software
VCore we assume the following: (a) software will be
generated from a software VCore; (b) the kernel of an RTOS
schedules the software that carry out concurrent operation
when they are performed on the single CPU; (c) we assume
that no events cause preemption during software execution.
In the case of software model as shown in Figure 5, it can be
calculated by the following expression.

tsoc(CPUj,TDs) =α × (tsvc1(CPUj,TDk) + tsvc3(CPUj,TDk)× N3

+ tsvc4(CPUj,TDk) +,…,+ tsvcm(CPUj,TDk)× Nm) (1)

where α is a correlation coefficient between input test data
TDs and TDk. The numbers of repetition times Nm in a parent
VCore are set by a SoC designer.

SoC
(Top)

SVC1
(leaf software

VCore)

SVC2
(parent software

VCore)

SVC3 SVC4

SVC3

A < B

SVC4

START

END

Loop
Count N3

tSVC4(CPUj,TDk)

tSVCi(CPUj,TDk):Execution time of SVCi on CPUj architecture with test data TDk

tSVC3(CPUj,TDk)

tSVC1(CPUj,TDk)

tSoC(CPUj,TDs)

Figure 5. Performance estimation example

6. Architecture design experiment

In order to evaluate the design flow of the proposed
architecture synthesis, we have developed a prototype
system that has the principal functions proposed in this
paper.

We experimentally designed a SoC architecture, which is
embedded in a wearable computer (W-Com). The wearable
computer has a videophone, a LCD, keys, etc. MPEG-4
compression algorithm [8] is used for encoding pictures and
sounds. The specification requires that QCIF size video be
decoded at a rate of 30 FPS.

In this experiment, we only designed the MPEG-4
decoder and used a simple model (reduced function model)
of MPEG-4 algorithms. All the function of this example
were specified using functional VCores. The software and
hardware models of the architecture design were also
designed using software VCores and hardware VCores. The
list of the software and hardware VCores of the example is
shown in Table 1.

Architecture components registered in the W-Com
architecture template are the 32-bit MIPS-Lite processor
(almost equivalent to the MIPS R3000 microprocessor [7]),
the bus for MIPS-Lite and interface circuits to the peripheral
controllers.

We describe an example of hardware and software
trade-off. In case 1 (W-Com1), we used the architecture
template selecting the 32-bit MIPS-Lite processor, the
MIPS-Lite bus, and µ ITRON Ver4.0 as the RTOS. In case
2 (W-Com2), we also used the same architecture template
selecting the MIPS-Lite processor, the MIPS-Lite bus, and
µ ITRON Ver4.0 and transformed the IDCT (a part of

MPEG-4 decoder) to a custom hardware.
Firstly, an initial architecture for the W-Com was

generated. Architectural components were chosen according
to the dependency between components from the
architecture template especially defined for this example.
Secondly, software VCores were assigned to 10 functional
VCores in the system level functional model. We estimated
the performance of the architecture assigned the software
VCore. Thirdly, the software VCore that is the performance
bottleneck was determined using the performance estimation.
In this experiment the bottleneck was the IDCT. The IDCT
software VCore was further assigned to the hardware
VCores. After the communication architecture was chosen,

Table 1. List of VCores used in the experiment

VCore
name

number
of lines
(SpecC)

execution
time

 (10 –6sec)
note

MainM 1209 123 Main menu on a display
Ephng 13183 18 Starts memory dial
ShCut 2552 31 Set memory dial

Arrive 1417 118
Arrival function in video-
phone

Srmes 1657 30 Answering machine

Srphg 594 18
Transmission and reception
on the telephone

Mp4AS 753 21 MPEG-4 audio (simple)
Mp4VS 1146 19 MPEG-4 video (simple)
IndLED 358 39 LED control
DiLCD 637 70 LCD control
Memory 1852 18 Memory function

IDCT(s) 228 1227
Inverse discrete cosine
transform (software)

IDCT(h) 217 125
Inverse discrete cosine
transform (hardware)

Table 2. Performance figures of the synthesized architectures

architecture name
area

(mm2)
processing time (sec)1

W-Com1 1.14 36.6

W-Com2 1.43 25.0

MIPS-Lite

ROM I/F SDRAM I/F
(inc. bridge)

SDRAM

ROM

IDCT

LCD
CNTL

Bus CNTL

SV..

main

SV..
Software
VCore

Hardware
VCore

Keys

KEY
CNTL

LED
CNTL

LEDLCD

Figure 6. The principal part of the W-Com2 architecture

communication methods between the VCores were
generated.

Table 2 shows the comparison of the two generated
architectures. The processing time was estimated from the
expression (1) using the VCore characteristics (execution
time or latency) in Table 1. The area of the W-Coms was
estimated from the hardware components characteristics
(assuming that the components were pre-synthesized using
STARC’s 0.13-micrometer design-rule standard cells [12]).
The area of W-Com2 increases 25%; the processing time is
reduced 32% in comparison with W-Com1. Figure 6 shows
the principal part of the W-Com2 architecture.

To design the RTL description for bus interface circuits of
hardware VCore, we used the interface synthesis
methodology introduced in reference [10]. For the
generation of software from software VCores we used the
software synthesis methodology introduced in reference
[10].

7. Summary and Future work

In this paper, the methodology for synthesizing SoC
architectures using VCores is proposed. We showed through
an experiment that the proposed method can explore
different SoC architectures. Further evaluation of the
performance estimation method is needed in order to the
architecture synthesis methodology be of practical use. In

1 Processing time is the time interval measured from powering on the
system until the display of the main menu and decoded video.

order to raise the performance estimation accuracy we have
to consider the overhead of the RTOS APIs and the device
drivers. A simulation-based estimation which takes into
account the interface of VCores will be developed in the
VCDS project.

We have a plan to develop an algorithm to select the best
VCores from a VCore database considering their
characteristics such as area, performance and power
consumption. Using this algorithm we will be able to
automate the VCore assignment step.

The proposed architecture synthesis can only generate a
SoC with single CPU. Future work also includes extending
the architecture synthesis methodology to support multi-
processors.

Acknowledgement

This work is sponsored by NEDO (New Energy and
Industrial Technology Development Organization) as “SoC
advanced design technology development project” (VCDS
Project).

References

[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh,
B. Tabbara, A. Jurecska, L. Lavagno, C. Passerone,
K. Suzuki, and A.Sangiovanni-Vincentelli, Hardware-
Software Co-Design of Embedded Systems: The Polis
Approach. Kluwer Academic Press, Boston, 1997.
[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,
“Synthesis of Embedded Software from Synchronous
Dataflow Specifications,” Journal of VLSI Signal Processing
Systems, Vol. 21, No. 2, pp.151-166, June 1999.
[3] C.Brandolese, W.Fornaciari, F.Salice, D.Sciuto,
“Source-level Execution Time Estimation of C Programs,”
In Proceedings of the 9th International Symposium on
Hardware / Software Co-Design (CODES), pp. 98-103,
2001.
[4] J.T. Buck, S. Ha, E.A. Lee and D.G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems,” Int. Journal of Computer
Simulation, special issue on Simulation Software
Development, vol.4, pp. 155-182, April, 1994.
[5] D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S.Zhao,
SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, Boston/Dordrecht/London, 2000.
[6] R. K. Gupta and G. De Micheli, “Hardware-Software
Cosynthesis for Digital Systems,” IEEE Design & Test of
Computers, 10 (3): pp. 29-41, September 1993.
[7]G.Kane and J.Heinrich, MIPS RISC Architecture. Prentice
Hall, 1992.
[8]MPEG-4,http://mpeg.telecomitalialab.com/standards/mpe
g-4/mpeg-4.htm
[9] M.Muraoka, “VCDS: Virtual Core based Design
System,” ASP-DAC 1999.
[10] M.Muraoka, H.Hamada, H.Nishi, T.Tada, Y.Onishi,

T.Hosokawa, K.Yoshida, “VCore-based Design
Methodology,” ASP-DAC 2003.
[11] Y.Onishi, M.Muraoka, M.Utsuki, N.Tsubaki, “VCore-
based Platform for SoC Design,” ASP-DAC 2003.
[12] STARC recommend “Common Design Rules for 0.13
micron,” http://www.starc.jp/kaihatu/ipgr/drlib/dr130-e.html,
September 2000.
[13] G.Vanmeerbeeck, P.Schaumont, S.Vernalde, M.Engels,
and I.Bolsens, “Hardware/software partitioning of embedded
system in OCAPI-xl,” In Proceedings of the 9th
International Symposium on Hardware / Software
Co-Design (CODES), pp. 30-35, 2001.
[14] W. Ye, R. Ernst, Th. Benner, and J. Henkel, “Fast
Timing Analysis for Hardware-Software Co-Synthesis,” In
Proc. of the Int. Conference on Computer Design (ICCD),
pp. 452-457, Oct. 1993.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

