
VCore-based Design Methodology

Michiaki Muraoka, Hideyuki Hamada, Hiroaki Nishi, Toshihiko Tada,
Yoichi Onishi, Toshinori Hosokawa, Kenji Yoshida

Semiconductor Technology Academic Research Center (STARC)

Abstract

The VCore [1](*) based design methodology, which

has been developed at the VCDS (**) Project, is a SoC

design methodology using VCores. A VCore is a reusable,

high level abstracted design component. We have

developed the VCore based design methodology and the

VCDS tool prototype. We used the developed tool and

did a trial SoC design. The design result showed that

SoC design productivity improved using the proposed

methodology.

(*) VCDS: Virtual Core based Design System

(**) VCore: Virtual Core

I. Introduction

The re-use methodology at the register transfer level
(RTL) became popular in the area of SoC design in late
1990’s. However, the IP based methodology at RTL has
not been in widespread use yet, because of several
technical problems such as interfacing difficulties and
process portability. These problems make the re-use of
design components difficult.

In order to solve these problems, we have proposed the
VCore, which is a reusable, high level abstracted design
component, and VCDS, which is the design system using
the re-use methodology based on VCores, for the high
level design of SoCs in the VCDS project.

VCores, which are reusable, high level abstracted (such
as the system level design or architecture level design)
design components, are categorized into three types:
Functional VCores used at the system level; Hardware
VCores used in hardware parts of the architecture design;
and Software VCores used in software the parts of
architecture design.

At the system level design, the function of a SoC is
defined by the combination of functional VCores and the
definition of the communication between Functional
VCores.

At the architecture level design, the hardware and
software are partitioned based on the functional definition
at the system level, the required performance, and the
design constraints. From the partitioning a hardware
architecture and a software architecture is obtained. The
hardware architecture consists of Hardware VCores and

Per form.Func .

S o C

A B

(Company D) (E) (F)
C

1 0 0 M H z

A

B

C

M P E G 2

M P E G 2

0.5mW

1 m W

1 m W

1 8 0 M H z

1 3 3 M H z

M P E G 2

S ystem Leve l

Architecture Level

RT Leve l Se lect

O p tim um IP

M u ltip le
Implementat ions

Syn thesis

S V C o re H V C ore

Func .VCore

V C o re database

O p tim um RTL
Desc ription

(Coret+Interface)

V C o re based

R e-use and Automat ion
a t High Level

V C o re
Syn thesis

Behav ioral
Desc ription

F igure 1. VCores vs IPs

IP based

the communication among hardware VCores. The
software architecture consists of Software VCores and the
communication among Software VCores. These VCores
are described using C-based system level description
languages such as SpecC or System C.

There have been several research works on high level
design methodology such as Ptolemy [2] [3], Polis [4],
OCAPI [5], which are targeted to the system level design
of SoCs. But the cited research works have not yet
established, or considered the re-use of design
components at a high level design abstraction. Although
there is a research work [6] on the re-use at the
architecture level, the re-use at the system level design
will be a major research issue towards the era of 65nm
process technology, when a SoC will have more than 100
million transistors.

II. IP vs. VCore

In order to solve the problems of RTL-IP re-use, the
VCore has been proposed as one of the major candidates
for re-usable design components at the high level design
of SoC. Figure 1 shows the relationship between VCores
and IPs.

There are three types of VCores: Functional VCores
used at the system level, Hardware VCores and Software
used at the system level, Hardware VCores and Software
VCores used at the architecture level. Functional VCore
is the component of the function of a SoC at system level.

The algorithm to implement the function is described in a
Functional VCore using a system level description
language. This description does not include details of the
actual implementation of hardware or software. Hardware
VCore is the component of the hardware architecture.
The algorithm to implement the hardware is described in
Hardware VCore using a system level description
language. This is the upper concept of a RTL-IP. Software
VCore is the component of the software architecture. The
algorithm to implement software is described in Software
VCore using a system level description language. This is
the upper concept of embedded software.

Figure 1 shows the correspondence between a RTL-IP
and a VCore. When the engineer designs a SoC by
re-using RTL-IPs, a large number of RTL-IPs must be
provided, and the designer chooses the best IPs from
them to design a SoC. Although each application domain
requires 30 to 60 types of IPs to design a chip, a much
larger number of types of IPs must be provided because
each IP must support a variety of interfaces (such as bus
interfaces) for it to be useful in the design of a SoC.

On the other hand, VCores are described at a higher
abstraction level than RTL, such as function or behavior.
The VCore interface consists of an interface protocol
description between VCores (hardware to hardware and
hardware to software). This description is synthesized and
the correspondent hardware or software interfacing
description is obtained. Using this approach will
drastically reduce the interfacing problems.

–System Level Design is defined by use of VCores.

–Architecture Synthesis and VCore Synthesis

(RTL and Software descriptions are synthesized)

<Architecture
Level Design>

F1F2

F3 F6

F4 F5

F7
F8

: FVCoreF i

Architecture Synthesis

VCore Synthesis
Chip

SoC

VCDS: Virtual Core based Design System

Physical Design

(RTL->Layout
Embedded Software)

: SVCoreS j H k : HVCore

<System Level
Design>

System is defined by use of

Functional VCores
- GUI / Language

VCores

VCDBP
l
a
t
f
o
r
m

DSP

H2 IF H3

S8

H5

S7
S6

S4
BUS_B

S1

BUS_A

ProcessorMemory

Memory HVCore (Interface) :
IF, BUS_A, BUS_B(Generated)
SVCore (OS) :
OS Accelerator

Figure 2. Design by VCDS

RTOS

III. Design Automation Approach in VCDS

The objective of the VCDS is to accelerate the VCore
based re-use design by developing tools to automate the
methodology. The design image of VCDS is shown in
Figure 2.

At the system design level, the function of a SoC is
defined by selecting the adequate Functional VCores
stored in VCore database. A graphical user interface tool
is used to select the Functional VCores, which are
graphically connected to generate a function diagram.
The combination of Functional VCores and the
description of the communication between VCores define
the function of a SoC at the system level.

At the architecture design level, processor, buses and
RTOS are selected from the VCore database to generate
the basic architecture. Functional VCores in the
functional diagram (defined at the system level) are
mapped to Hardware or Software VCores to generate
hardware and software architecture through the
architecture synthesis tools. The performance of the
synthesized architecture is evaluated using estimation
tools in order to check whether it satisfies the design
requirements or constraints. This synthesis procedure is
repeated until the design conditions are satisfied,
obtaining the final architecture.

The VCore synthesis consists of the hardware synthesis,

the software synthesis, and the interface synthesis. The
hardware synthesis synthesizes the hardware parts of the
architecture to generate a RTL description. The software
synthesis synthesizes the software parts of the
architecture to generate a software description such as
ANSI-C. The interface synthesis synthesizes the protocol
description of hardware-to-hardware interface and
hardware-to-software interface to generate an interface
description. To improve VCore re-use, the VCore
platform will be organized to support SoC design. The
VCore platform consists of VCore database, VCore
development tools.

Figure 3 shows the overview of the VCDS
technologies and the descriptions follow.

3.1 System Level Descriptions and Architecture
Synthesis

The system level specification description technology
consists of the system level modeling and the system
level simulation. The system level modeling, which is
based on the graphic user interface, is the functional
diagram editor. This has the capability of editing the
functional diagram by utilizing the objective VCores
from the VCore database, putting them on the diagram,
and defining the communication between VCores to
define the specification of SoC. The system level
simulation technology has the capability to simulate the

System Level
Specification Description

Interface to Physical Design System

SW-VCore SynthesisHW-VCore Synthesis

- System Level Modeling (GUI)

- System Level Simulation

- Definition of Architecture Platform
- Processor, (Operating System, Bus)
- Assignment of VCores – VCore Mapping
- Definition of Interface Specification
- Performance Estimation
- Architecture Level Verification

VCore
Platform

- SW/VCore Synthesis

Architecture
Synthesis

- VCore Synthesis

(Behavior Synthesis)

- VCore Database

- VCore Development
Tools

- Physical Data
Interface

- VCore Performance
EstimationI/F Synthesis

- HW-HW Interface
Synthesis

- HW-SW Interface
Synthesis

- HW/SW Co-simulation - Design for Testability

System Verification and DFT

Figure 3. VCDS Technologies

function diagram at the system level rapidly, when the
function is defined or changed.

The architecture synthesis technology consists of the
architecture template definition, the VCore mapping (the
VCore assignment), the interface specification definition,
the architecture performance estimation, and the
architecture verification. The architecture template
(platform) definition is the technology to define the basic
architecture for a SoC, and it contains a set of the
processor, buses and RTOS with related VCores. The
architecture synthesis selects the architecture template
and generates the basic architecture, which consists of the
processor, buses, RTOS and related VCores. The VCore
mapping is the technology to map the hardware VCores
or software VCores to the functional VCores in the
functional diagram with the consideration of the required
performance and the design constraints. The interface
specification definition is the technology to generate the
protocol description by selecting the protocol template.
The architecture performance estimation is carried out by
using the characteristics of VCores which are measured
or estimated for each VCore. When the estimated
performance is not satisfied with the required conditions,
the VCore mapping and estimation is repeated until it
matches to the requirement. The architecture verification
is carried out by hardware/software co-simulation
technology. This simulation approach is described in 3.3.

3.2 Synthesis of Hardware and Software VCores

VCore synthesis consists of the hardware VCore

synthesis, the software VCore synthesis and the interface
synthesis. The hardware VCore synthesis generates the
RTL description from the behavior description of VCore.
The software synthesis generates the ANSI-C software
code and the task assignment description to realize the
parallel execution from the software description of VCore
written by the system level description language. The
interface synthesis generates the interface hardware and
software such as the protocol converter and the device
driver from the protocol description of the
communication between VCores. These VCore synthesis
technologies generate the RTL description and the
software codes from the VCore description in the
architecture. This enables the interface from the
architecture level to the RTL and the software code
smoothly.

3.3 Hardware/Software Co-simulation by VCores

The simulation approach of VCDS is shown in

Figure 4. The target of VCDS simulation is to achieve
high speed hardware/software co-simulation by
utilizing VCore description, which is the high level
abstracted description. The target is to get the speed of
1 to 100 MIPS (#1, 2, 3 in figure 4), although the
conventional hardware/software co-simulation at RTL
is at the speed of 1 to 10 KIPS (#4, 5 in figure 3).

3.4 Design for Testability

The design for testability (DFT) technology [7] [8] of

Full RTL
Simulation

ISS Model for
processor

BCA:

Bus Cycle

Accurate

Depends on Host
Processor

Remarks

E

D

C

B

A

#

< 102RTL
Description

ANSI
C /C++

RTL

102~103

106

108

Slower one or
two orders of

magnitude than
Host CPU

Simulation
Performance

(IPS)

RTL
Description

Hardware
VCore

+Interface

Hardware
VCore

Hardware

ANSI
C /C++

Software
VCore

Software
VCore

Functional VCore

Software

ISS

ISS

-

-

CPU
Model

RTOS

(ITRON)

RTOS

(ITRON

etc.)

(Host OS)

-

OS

Timed

Timed

(BCA)

Untimed

Untimed

Time
Abstraction

RTLevel

Architecture
Level

System
Level

Design
Level

VCDS focuses on system and architecture level simu lation (#A, B, C)

to achieve high speed simulation.

Figure 4. S imulation Approach

µ

µ

VCDS consists of the external test of the VCores and the
test architecture synthesis. The external test, which has
been developed to reduce the time for the SoC test, is
based on the non-scan DFT, which we call NS-DFT, and
is the replace of the full-scan DFT. The DFT technology
between VCores synthesizes the test architecture, which
realizes the parallel test of VCores to reduce the time of
SoC test. The DFT technology of VCDS is able to reduce
the real time test of SoC more than 100 times.

3.5 VCore based Re-use System

The VCore platform technology consists of the VCore
database management system, VCore entry tool, VCore
performance estimation system and VCore distribution
system. These technologies accelerate the re-use of
VCores and utilize them efficiently.

IV. VCDS prototype and design experiment

The VCDS project has developed the VCDS prototype
(the limited functional version), which could be
demonstrated the design flow to prove the VCore based
design methodology. We designed VCores and a SoC,
which has the size of 200 Kgates, for Wearable
Computers as a pilot project by use of the VCDS
prototype, and the result could be proved the efficiency of
the design methodology of VCDS. Through the designing
the SoC, the improvement of the productivity was more
than 5 times by use of the prototype and the estimated
improvement by use of the enhanced VCDS will be 20
times respectively.

V. Summary and future works

We have developed the VCDS technologies as

described. The key technologies such as the architecture
synthesis and the HW/SW co-simulation of VCDS have
to be brushed up to enhance VCDS as the beta site
version. As to the future work, the formal verification
technology at the high level abstracted description, which
the simulation technology could not cover, will be the
next important research area.

Acknowledgements

This work is sponsored by New Energy and Industrial

Technology Development Organization (NEDO) as “SoC
advanced design technology development project”
(VCDS Project).

References

[1] M.Muraoka, VCDS: Virtual Core based Design
System”, ASP-DAC 1999.
[2] Shuvra S. Bhattacharyya, Praveen K. Murthy, and
Edward A. Lee, “ Synthesis of Embedded Software from
Synchronous Dataflow Specifications,” Journal of VLSI
Signal Processing Systems, Vol. 21, No. 2, June 1999.
[3]J.T. Buck, S. Ha, E.A. Lee and D.G.Messerschmitt,
“ Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems,” Int. Journal of Computer
Simulation, special issue on Simulation Software
Development, vol.4, pp. 155-182, April, 1994.
[4] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H.
Hsieh, B. Tabbara, A. Jurecska, L. Lavagno, C. Passerone,
K. Suzuki, and A.Sangiovanni-Vincentelli, “ Hardware-
Software Co-Design of Embedded Systems: The Polis
Approach.” Kluwer Academic Press, Boston, 1997.
[5] G.Vanmeerbeeck, P.Schaumont, S.Vernalde, M.Engels,
and I.Bolsens, “Hardware/software partitioning of
embedded system in OCAPI-xl "Proceedings of the 9th
International Symposium on Hardware / Software
Codesign - CODES, pp. 30-35, 2001.
[6] Reinaldo A. Bergamaschi, William R. Lee,
"Designing Systems-on-Chip Using Cores", in Proc. of
37th Design Automation Conference (DAC2000),
pp.420-425, June 2000.
[7] T.Hosokawa, H.Date and M.Muraoka, "A Test
Generation Method Using a Compacted Test Table and a
Test Generation Method Using a Compacted Test Plan
Table for RTL Data Path Circuits”, in Proc. of 20th VLSI
Test Symposium (VTS'02), pp.328-335, Monterey, April
2002.
[8] H.Date, T.Hosokawa and M.Muraoka, "A SoC Test
Strategy Based on a Non-scan DFT Method", in Proc. of
11th Asian Test Symposium (ATS'02), pp.305-310,
November 2002.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

