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Abstract This paper studies the buffer planning problem for 
interconnect-centric floorplanning for nanometer technologies. 
The dead-spaces are the spaces within a placement that are not 
held by any circuit block. In this paper, we proposed a buffer 
planning algorithm based on dead space redistribution to make 
good use of dead-spaces for buffer insertion. Associated with 
circuit blocks under topological representations, the dead space 
can be redistributed by freely moving some circuit blocks within 
their rooms in the placement. The total area and the topology of 
the placement keep unchanged while doing the dead space 
redistribution. The number of nets satisfying the delay 
constraint can be increased by redistributing the dead space all 
over the placement, which has been demonstrated by the 
experimental results. The increment of the number of nets that 
satisfy delay constraints is 9% on an average. 

I. INTRODUCTION∗ 

As the VLSI circuits are scaled into nanometer dimensions 
and operate in gigahertz frequencies, interconnect design and 
optimization has become critical. To ensure the timing 
closure of design, interconnects must be considered as early 
as in the design flow. A comprehensive survey of interconnect 
optimization techniques can be found in [4]. 

Buffer insertion is an effective technique to reduce the 
interconnect delay. While the Elmore delay of a long wire 
grows quadratically in terms of the length of the wire, buffer 
insertion properly results in a linear delay increase due to the 
length of the wire. The number of buffers needed to achieve 
timing closure continues to increase with decreasing feature 
size. Buffers must be planned early in the design because they 
will take up silicon resources. Recently, many approaches of 
buffer planning have been proposed. 
  J. Cong et al[2] introduces the concept of feasible region, 
which is used to generate buffer bocks. Sarkar et al[5] adds the 
notion of independence to feasible region and tries to improve 
the routing congestion. Tang and Wong[8] proposes an optimal 
algorithm assuming only one buffer for each net. F.F. 
Dragan[9][10] allocates buffers to existent buffer blocks by the 
multi-commodity flow-based approach. Alpert [11] makes use 
of tile graph and dynamic programming to perform buffer 
block planning. They assume that buffers be allowed to be 
inserted inside macro blocks. Sham[13] proposes a routability 
driven floorplanner, which can estimate buffer usage and 
buffer resource for the congestion constraint. F. Rafiq[14] 
provide an integrated floorplanner with buffer/channel 
insertion for bus-based microprocessor designs. Although 
many approaches inserted the buffers into dead space, none 
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of them optimize the distribution of the dead space to 
improve the number of nets that meet the target delay. 

This paper proposes a dead-space redistribution-based 
buffer planning algorithm to make good use of dead space for 
buffer insertion. Associated with blocks under topological 
representations, the dead space can be redistributed by freely 
moving some blocks within their rooms in the placement, 
while the total area and the topology of the placement keep 
unchanged. We compute independent feasible region (IFR)[5] 
for buffer insertion under delay constraint. Each buffer can be 
inserted into the intersection area between its IFR and the 
dead-spaces. Therefore, redistributing the dead space in the 
placement can increase the number of the buffers inserted. In 
other words, the number of nets satisfying the delay 
constraints will be increased, which is demonstrated by the 
experimental results. The increment of the number of nets 
which satisfy delay constraints is 9% on an average. 
  The rest of the paper is organized as follows. Section II 
gives the problem definition, introduces the independent 
feasible region and gives a brief review of the Corner Block 
List representation. The redistribution of the dead-spaces is 
discussed in section III. Section IV proposes the buffer 
planning and optimization algorithm. Section V and Section 
VI give the experimental results and conclusion, respectively. 

II. PRELIMILARY 

A. Problem Definition 
  In this paper, we concentrate on the buffer planning 
problem: Given an initial placement/floorplan and timing 
constraints for each net, we want to determine the number, 
locations of buffers for each net to satisfy timing closure. The 
buffers are considered to be inserted into the channel regions 
or the dead-spaces between circuit blocks. In the following 
sections, channel regions are also regarded as dead-spaces. 
Additionally, the dead-spaces are redistributed to maximize 
the number of nets that meet the target delay. 
B. Independent Feasible Region 

The concept of independent feasible region (IFR) is 
introduced for buffer insertion [5]. The IFR for a buffer b is 
the maximum region where b can be located such that by 
inserting buffer b into any location in that region, the net 
delay constraint can be satisfied, assuming that the other 
buffers of that net are also located within their respective 
independent feasible regions. 
  The 2-dimensional feasible region is essentially the union 
of the one-dimensional IFRs of all possible monotonic 
Manhattan routes from source to sink, which are convex 
octilinear polygons, bounded by two parallel lines and the 
bounding box from source to sink. For example Fig.6 shows a 
feasible region for a net. The detail of the computation of the 
IFR can be found in [5]. 
 



 

C.  Corner Block List 
Corner Block List (CBL) is introduced in [1]. CBL is a 

topological representation. Corner Block List represents 
floorplan by a triple list of (S, L, T), where S stands for block 
assignment, L and T stand for orthogonal line segments. It 
dissects the chip into rectangular rooms and assigns one and 
only one block to each room. Zhou [12] extended the Corner 
Block List by adding empty rooms into Corner Block List and 
assigning a dummy block to each empty room. As shown in 
Fig.2, a dummy block 0 is assigned to an empty room. In the 
following sections, the Corner Block List means the extended 
CBL except special declaration. 

CBL can be constructed from a placement by deleting 
corner block recursively. The Corner Block is the block 
assigned to the upper-right corner room of the floorplan. In 
the floorplan, the segments lying on the left and bottom 
boundary of the corner block compose a T-junction who 
defined the orientation of the corner block. The T-junction 
has alternative orientations: T rotated counterclockwise by 
90° (‘+ ’) and by 180° (‘- ’) representing horizontal and 
vertical orientation, respectively. Fig.2 shows an example. 
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The insertion process of corner block based on given (S, L, 
T) can construct the corresponding floorplan. A placement 
and its Corner Block List are shown in Fig.2. The detail of 
the Corner Block List can be found in [1]. 

III. REDISTRIBUTION OF THE DEAD-SPACES 

The dead-spaces are defined as the spaces within a 
placement that are not held by any circuit block. The chip can 
always be dissected into small rectangles, denoted as room, 
and there is at most one block in each room. All the rooms are 
not held entirely by the circuit blocks and there may be some 
empty room assigned no circuit block. Therefore, some 
dead-spaces may be generated. According to the generation 
of a dead-space, the dead-spaces in a placement can be 
classified into the following two types: 

Definition 1 If a dead-space is generated because of some 
empty room, the dead-space is called a Detached 
Dead-Space (DDS).  

A Detached Dead-Space cannot be associated with any 
circuit block. For example, the empty room 0 shown in 
Fig.4.(a) is a Detached Dead-Space, and it cannot be 
associated with any circuit block around it. 

Definition 2 A dead-space is called an Attached 
Dead-Space (ADS) if the dead-space is generated because 
that a room is not entirely held by the circuit block. 

An Attached Dead-Space can be associated with the 
circuit block in the room in which the ADS is generated. As 
shown in Fig.4, the dead-spaces a1, e1 and e2 are Attached 

Dead-Spaces. The dead space a1 can be associated with block 
a, and e1, e2 can be associated with block e. 

The following lemma is easily concluded. 
Lemma 1 The topology among blocks and the total area of 

the placement are unchanged when we move a circuit block in 
its related room. 
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The Detached Dead-Spaces are moveless, while the 
Attached Dead-Spaces can be redistributed. Because of the 
existence of the Attached Dead-Spaces, some circuit blocks 
can be moved freely in one-dimensional region or 
2-dimensional region (such as block e in Fig.4.(b)) keeping 
the topology and the total area unchanged. Through the 
topological representation of the placement, we can 
respectively associate Attached Dead-Spaces with some 
circuit blocks. Consequently, the distribution of dead-spaces 
can be changed by moving the circuit block within the room 
which is not “filled”. In Fig.4.(a), the Attached Dead Space e1 
is above block e, e2 is right to block e. Fig.4.(b) gives a 
redistribution of the Attached Dead-Spaces in the placement 
shown in Fig.4.(a). The dead-space a1 is divided into a11 and 
a12 by moving block a, block e is moved to divide e2 into e21 
and e22, and e1 is below the block e in Fig.4.(b). 

Therefore, the following theorem is easily concluded. 
Theorem 1 The dead space redistribution can be achieved 

by redistributing the Attached Dead-Spaces in the placement, 
while the topology and total area of the placement keep 
unchanged. 

In the following, we describe how to find all the 
dead-spaces in a placement and to associate each Attached 
Dead-Space with some circuit block or dummy block under 
the representation of Corner Block List, which has been 
introduced in section II. 

For a placement of n blocks, the CBL dissects the chip into 
m (m=n) rectangular rooms by horizontal and vertical 
segments, which determine the topology among rooms. Thus, 
each of the dead-spaces must be generated in certain room. 
Because each room is assigned with a circuit block or a 
dummy block, each dead-space must be associated with some 
circuit block or dummy block. It is obviously that all the 
Detached Dead-Spaces must be associated with dummy 
blocks, and the Attached Dead-Spaces are associated with 
circuit blocks. 

When a corner block is inserted during the packing process, 
the corner block must cover some other blocks. For each 
block b, we check all the blocks covered by b, and determine 
whether there are dead-spaces between b and its covered 
blocks by comparing the coordinates of them. Simultaneously 
each dead-space is associated with a circuit block or a dummy 



 

block. For example, blocks a, d, and e are covered by block g 
in Fig.4.(a). We compare the coordinates of block g with 
those of a, d and e to find the dead-spaces between them. The 
dead-spaces a1, e1 and e2 are found, and dead-space a1 is a 
Attached Dead-Space associated with block a, dead-spaces e1 
and e2 are the Attached Dead-Spaces associated with block e. 
By checking the blocks covered by block d, we can find a 
Detached Dead-space 0 which is associated with a dummy 
block. The Attached Dead-Space a1, e1 and e2 can be 
redistributed since they are associated circuit blocks. 

IV. BUFFER PLANNING AND OPTIMIZATION 

  In this section, we describe the buffer planning algorithm 
based on the dead-space redistribution in detail.  Given a 
placement, we assume that the buffers can only be inserted 
into dead space. As shown in [1], the CBL representation of 
the placement can be obtained by deleting the corner block 
recursively. And then we compute the dead-spaces in the 
placement and associate each dead-space with a circuit block 
or a dummy block using the method described in section III.  
A. Buffer Planning 
  The objective of the buffer planning is to determine the 
number and locations of buffers, and insert as many buffers as 
possible to maximize the number of nets meeting the timing 
constraints. 

At first, the candidate tile (shown in Fig.6) set for each 
buffer is calculated. Secondly a bipartite graph is constructed 
to represent all the possible assignment from buffers to tiles. 
Finally the assignment of buffers to tiles is achieved by 
finding max cardinality matchings in a bipartite graph. 
Algorithm 1 shows an outline of the algorithm. 

 
 
 
 
 
 
 
 
 
 

  In step 1, each dead-space is divided into small tiles where 
the buffers can be located. For each buffer b, we compute all 
the possible tiles that b can be placed in step 3. Consequently, 
the set of all possible buffer assignments is computed, from 
which a bipartite graph G can be constructed. Each edge of G 
represents a possible assignment from a buffer to a tile. The 
bipartite graph G can be defined as follow: 

 
G = (V, E), V = V1 ∪ V2, where V1 represents buffers and 

V2 represents tiles, E = {(v1, v2), v1 ∈ V1, v2 ∈ V2, v1 can be 

inserted into v2}.  
In step 5, in order to insert as many buffers as possible, we 

construct an s-t graph based on bipartite graph G to find the 
max cardinality matchings. We direct all edges from V1 to V2, 
add a source s and a directed edge from s to each element of 
V1, and add a sink t and a directed edge from each element of 
V2 to t. Let each edge have a capacity 1. The max cardinality 
matching can be computed by finding the max flow from s to 
t. 
B. Optimization 

The solution of the above Buffer Planning algorithm is 
optimized by redistributing the dead-spaces all over the 
placement. The objective is to maximize the number of nets 
that meet the delay constraints. Algorithm 2 outlines the 
Optimization algorithm. 

 
The new distribution of the dead space in the placement 

can be generated by the following two methods.  
One method is to randomly select two dead-spaces, and 

move the selected dead-spaces to the other side of the 
corresponding circuit blocks. And then we update the length, 
the buffer number of the nets that have pins in the moved 
circuit block and independent feasible region of each buffer. 
In step 5, if the new dead-space distribution is not accepted, 
we move the selected two dead-spaces to their original 
locations, and restore the changes in the length and buffer 
number of the nets and feasible region of buffers. 

The other method is to divide a dead-space into two parts, 
and the associated circuit block will be located between the 
two parts. In step 5, if the new dead-space distribution is not 
accepted, we merge the two parts to the original dead-space, 
and restore the changes in the nets and associated buffers. 

It is obviously that the topology of the placement and total 
area of the chip keep unchanged after the dead-space 
redistribution. We perform the previous buffer planning 
algorithm to compute the number of nets that meet the target 
delay for each new distribution of the dead space.  

We cannot ensure that all the nets can satisfy the delay 
constraints because of the limited dead-spaces. The number 
of nets that cannot satisfy the target delay through the above 
Optimization algorithm can be further reduced by a 
channel-expanded approach as in [2] or [5]. In this paper, we 
concentrate on the improvement on the number of nets meet 
the delay constraints by redistributing the dead-spaces, and it 
is unnecessary to repeat the former work. 

V. EXPERIMENTAL RESULTS 

The Buffer Planning and Optimization algorithm have 
been implemented using C language on a SUN Ultra-SPARC 

Algorithm 2 Optimization 
1. Compute all the dead-spaces in the placement and associate each 

of the dead-spaces with some circuit block. 
2. Perform the buffer planning algorithm to compute the number of 

nets that meet the target delay, denoted as Nold. 
3. Generate new distribution of the dead-spaces and update related 

information. 
4. Perform the Buffer Planning algorithm to compute the number of 

nets that satisfy the delay constraints, denoted as Nnew. 
5. If Nold < Nnew, the new dead space distribution is accepted, Nold = 

Nnew. Otherwise, restore the changes. 
6. Repeat step 3 to step 5 for given times. 
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Fig.6. Independent Feasible region and 
Candidate tiles for a buffer 

Algorithm 1 Buffer Planning 
1.Build the tile data structure for all the dead-spaces. 
2.Compute IFR for each buffer. 
3.Compute the set of candidate tiles for each buffer 
4.Construct a bipartite graph G (V, E), V = V1 ∪ V2, where V1 represents 
buffers and V2 represents tiles, E = {(v1, v2), v1 ∈ V1, v2 ∈ V2, v1 can be 
inserted into v2}. 
5.Construct an s-t graph from G. 
6.Find the max flow from s to t and determine the location of each buffer. 



 

III machine. In this section, we present some details of our 
experimental results obtained. The values for parameters are 
based on a 0.18µm technology in the NTRS’97 roadmap[15].  

In this paper, we concentrate on solving the problem of 
buffer planning for two-pin (single source, single sink) nets, 
and all the multiple-pin nets are decomposed into two-pin 
nets. Because of the lack of information on signal direction in 
the benchmark files, we choose a pin to be the source and all 
the others to be sinks, and then decompose a multiple 
terminal net into a set of two-pin nets. We ignore all power 
and ground interconnects. The initial placements of the 
MCNC benchmark circuits were obtained from [1]. 

We assign target delays of the two-pin nets, since the 
MCNC benchmarks include no any timing information. All 
two-pin nets whose lengths are smaller than the critical length 
lmin

[6] are ignored, because buffer insertion cannot reduce 
their delay. And then we compute the optimal delay Topt 
under optimal buffer insertion [6] for each net and then 
randomly assign a constraint delay between 1.05 and 1.20 
times Topt to the net as in [2,5]. Since we generate placements 
and timing constraints on our own, a direct comparison 
between our method and that in [2,5] cannot be fair. We 
provide the results of our algorithm for 5 MCNC benchmark 
circuits[7]. The details of these circuits are shown in Table 1. 

In Table 2, we provide some experimental results from our 
buffer planning and optimization algorithm, which includes 
the number of nets which meet the delay constraint, the total 
number of inserted buffers, the improvement of the 
optimization algorithm, and the CPU time. 

TABLE 1 
MCNC BENCHMARKS STATISTICS 

Circuit Blocks Nets Two-pin Nets 
Apte 9 97 172 
Xerox 10 203 455 
Hp 11 83 226 
Ami33 33 123 363 
Ami49 49 408 545 

The column of “Buffer Planning” shows the experimental 
results of running Buffer Planning algorithm under the initial 
dead space distribution, and the column of “Optimization” is 
the experimental results of optimization algorithm. The 
sub-column of “met”, “#B”, and “time” respectively show the 
number of nets that satisfy the timing closure, the number of 
buffers inserted, and the CPU time consumed. The improved 
number of nets that satisfy the timing constraint and the ratio 
are respectively given in the column of “Nimp” and “Rimp”. 

The results in Table 2 show that Optimization algorithm is 
able to increase the number of nets that satisfy the delay 
constraints, while the total area and topology of the placement 
are unchanged. In circuit Xerox, for example, the number of 
nets that satisfy the delay constraints is 275 in the initial dead 
space distribution, and the number increase to 315 after 
optimization. The nets which satisfy the delay constraints 
increase 12.4%. For the five circuits, the increment of the 
number of the nets that satisfy delay constraints is 9% on an 
average. The experimental results show that our Optimization 
algorithm is very efficient. Because of the iteration of the 
dead space redistribution, the run-time of our algorithm is 
higher than those in [2] and [5]. 

VI. Conclusion 
  In this paper, we proposed a buffer planning algorithm 
based on dead space redistribution to make good use of 
dead-spaces for buffer insertion. The dead space 
redistribution can be achieved by redistributing the Attached 
Dead-Spaces in the placement, while the topology and total 
area of the placement keep unchanged. Experimental results 
show that our approach is efficient. 

As a basic buffer planning algorithm embedded in the 
optimization procedure, Our Buffer Planning algorithm can 
be easily extended to handle the additional constraints, such 
as congestion and noise. To get an approximate optimal 
solution, it is necessary to apply an advanced search strategy 
such as simulated annealing. But because of time 
consumption, a greedy algorithm is used for optimization in 
our paper. Though the experimental results show that the 
greedy strategy is efficient, it is required to develop a faster 
buffer planning algorithm for applying a better search 
strategy, and the detour route is not considered in this paper. 
We will work on it in the future. 

TABLE 2  
THE RESULTS OF THE BUFFER PLANNING AND OPTIMIZATION ALGORITHM 

Buffer Planning Optimization Circuit 
met #B Time (s) met #B Time(s) 

Nimp Rimp 

Apte 89 83 0.16 100 104 28.6 11 12.4% 
Xerox 275 152 0.1 315 182 8.7 40 14.5% 

Hp 129 179 0.25 139 182 25.1 10 7.8% 
Ami33 235 162 0.08 249 178 7.1 14 5.9% 
Ami49 437 236 0.51 457 253 49.1 20 4.6% 
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