

A Buffer Planning Algorithm Based on Dead Space Redistribution∗

Song Chen1, Xianlong Hong1, Sheqin Dong1, Yuchun Ma1, Yici Cai1,
Chung-Kuan Cheng2, Jun Gu3

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Department of Computer Science and Engineering, University of California,San Diego USA

3Department of Computer Science, Science & Technology University of HongKong

Abstract This paper studies the buffer planning problem for
interconnect-centric floorplanning for nanometer technologies.
The dead-spaces are the spaces within a placement that are not
held by any circuit block. In this paper, we proposed a buffer
planning algorithm based on dead space redistribution to make
good use of dead-spaces for buffer insertion. Associated with
circuit blocks under topological representations, the dead space
can be redistributed by freely moving some circuit blocks within
their rooms in the placement. The total area and the topology of
the placement keep unchanged while doing the dead space
redistribution. The number of nets satisfying the delay
constraint can be increased by redistributing the dead space all
over the placement, which has been demonstrated by the
experimental results. The increment of the number of nets that
satisfy delay constraints is 9% on an average.

I. INTRODUCTION∗

As the VLSI circuits are scaled into nanometer dimensions
and operate in gigahertz frequencies, interconnect design and
optimization has become critical. To ensure the timing
closure of design, interconnects must be considered as early
as in the design flow. A comprehensive survey of interconnect
optimization techniques can be found in [4].

Buffer insertion is an effective technique to reduce the
interconnect delay. While the Elmore delay of a long wire
grows quadratically in terms of the length of the wire, buffer
insertion properly results in a linear delay increase due to the
length of the wire. The number of buffers needed to achieve
timing closure continues to increase with decreasing feature
size. Buffers must be planned early in the design because they
will take up silicon resources. Recently, many approaches of
buffer planning have been proposed.
 J. Cong et al[2] introduces the concept of feasible region,
which is used to generate buffer bocks. Sarkar et al[5] adds the
notion of independence to feasible region and tries to improve
the routing congestion. Tang and Wong[8] proposes an optimal
algorithm assuming only one buffer for each net. F.F.
Dragan[9][10] allocates buffers to existent buffer blocks by the
multi-commodity flow-based approach. Alpert [11] makes use
of tile graph and dynamic programming to perform buffer
block planning. They assume that buffers be allowed to be
inserted inside macro blocks. Sham[13] proposes a routability
driven floorplanner, which can estimate buffer usage and
buffer resource for the congestion constraint. F. Rafiq[14]
provide an integrated floorplanner with buffer/channel
insertion for bus-based microprocessor designs. Although
many approaches inserted the buffers into dead space, none

∗This work is supported by the National Natural Science Foundation of
China 60121120706 and National Natural Science Foundation of USA
CCR-0096383, the National Foundation Research(973) Program of China
G1998030403, the National Natural Science Foundation of China 60076016
and 863 Hi-Tech Research & Development Program of China
2002AA1Z1460

of them optimize the distribution of the dead space to
improve the number of nets that meet the target delay.

This paper proposes a dead-space redistribution-based
buffer planning algorithm to make good use of dead space for
buffer insertion. Associated with blocks under topological
representations, the dead space can be redistributed by freely
moving some blocks within their rooms in the placement,
while the total area and the topology of the placement keep
unchanged. We compute independent feasible region (IFR)[5]
for buffer insertion under delay constraint. Each buffer can be
inserted into the intersection area between its IFR and the
dead-spaces. Therefore, redistributing the dead space in the
placement can increase the number of the buffers inserted. In
other words, the number of nets satisfying the delay
constraints will be increased, which is demonstrated by the
experimental results. The increment of the number of nets
which satisfy delay constraints is 9% on an average.
 The rest of the paper is organized as follows. Section II
gives the problem definition, introduces the independent
feasible region and gives a brief review of the Corner Block
List representation. The redistribution of the dead-spaces is
discussed in section III. Section IV proposes the buffer
planning and optimization algorithm. Section V and Section
VI give the experimental results and conclusion, respectively.

II. PRELIMILARY

A. Problem Definition
 In this paper, we concentrate on the buffer planning
problem: Given an initial placement/floorplan and timing
constraints for each net, we want to determine the number,
locations of buffers for each net to satisfy timing closure. The
buffers are considered to be inserted into the channel regions
or the dead-spaces between circuit blocks. In the following
sections, channel regions are also regarded as dead-spaces.
Additionally, the dead-spaces are redistributed to maximize
the number of nets that meet the target delay.
B. Independent Feasible Region

The concept of independent feasible region (IFR) is
introduced for buffer insertion [5]. The IFR for a buffer b is
the maximum region where b can be located such that by
inserting buffer b into any location in that region, the net
delay constraint can be satisfied, assuming that the other
buffers of that net are also located within their respective
independent feasible regions.
 The 2-dimensional feasible region is essentially the union
of the one-dimensional IFRs of all possible monotonic
Manhattan routes from source to sink, which are convex
octilinear polygons, bounded by two parallel lines and the
bounding box from source to sink. For example Fig.6 shows a
feasible region for a net. The detail of the computation of the
IFR can be found in [5].

C. Corner Block List
Corner Block List (CBL) is introduced in [1]. CBL is a

topological representation. Corner Block List represents
floorplan by a triple list of (S, L, T), where S stands for block
assignment, L and T stand for orthogonal line segments. It
dissects the chip into rectangular rooms and assigns one and
only one block to each room. Zhou [12] extended the Corner
Block List by adding empty rooms into Corner Block List and
assigning a dummy block to each empty room. As shown in
Fig.2, a dummy block 0 is assigned to an empty room. In the
following sections, the Corner Block List means the extended
CBL except special declaration.

CBL can be constructed from a placement by deleting
corner block recursively. The Corner Block is the block
assigned to the upper-right corner room of the floorplan. In
the floorplan, the segments lying on the left and bottom
boundary of the corner block compose a T-junction who
defined the orientation of the corner block. The T-junction
has alternative orientations: T rotated counterclockwise by
90° (‘+ ’) and by 180° (‘- ’) representing horizontal and
vertical orientation, respectively. Fig.2 shows an example.

c
f

b

a

d

0

T-junction representing
vertical orientation

S= (cba 0 fdb)
L= (001101)
T= (001010100)

A dummy block

T-junction covered
by block d

Fig.2. The orientation of block d and
T-junction covered by d

The insertion process of corner block based on given (S, L,
T) can construct the corresponding floorplan. A placement
and its Corner Block List are shown in Fig.2. The detail of
the Corner Block List can be found in [1].

III. REDISTRIBUTION OF THE DEAD-SPACES

The dead-spaces are defined as the spaces within a
placement that are not held by any circuit block. The chip can
always be dissected into small rectangles, denoted as room,
and there is at most one block in each room. All the rooms are
not held entirely by the circuit blocks and there may be some
empty room assigned no circuit block. Therefore, some
dead-spaces may be generated. According to the generation
of a dead-space, the dead-spaces in a placement can be
classified into the following two types:

Definition 1 If a dead-space is generated because of some
empty room, the dead-space is called a Detached
Dead-Space (DDS).

A Detached Dead-Space cannot be associated with any
circuit block. For example, the empty room 0 shown in
Fig.4.(a) is a Detached Dead-Space, and it cannot be
associated with any circuit block around it.

Definition 2 A dead-space is called an Attached
Dead-Space (ADS) if the dead-space is generated because
that a room is not entirely held by the circuit block.

An Attached Dead-Space can be associated with the
circuit block in the room in which the ADS is generated. As
shown in Fig.4, the dead-spaces a1, e1 and e2 are Attached

Dead-Spaces. The dead space a1 can be associated with block
a, and e1, e2 can be associated with block e.

The following lemma is easily concluded.
Lemma 1 The topology among blocks and the total area of

the placement are unchanged when we move a circuit block in
its related room.

c

b

a

f

d

e

0

a1 e1
g

e2
e22

e21

e1

(a) Dead space type (b) Redistribution

c

b

a

f

d

e

0

a11
g

a12

Fig.4. Two type of dead space and
Redistribution of the dead space

The Detached Dead-Spaces are moveless, while the
Attached Dead-Spaces can be redistributed. Because of the
existence of the Attached Dead-Spaces, some circuit blocks
can be moved freely in one-dimensional region or
2-dimensional region (such as block e in Fig.4.(b)) keeping
the topology and the total area unchanged. Through the
topological representation of the placement, we can
respectively associate Attached Dead-Spaces with some
circuit blocks. Consequently, the distribution of dead-spaces
can be changed by moving the circuit block within the room
which is not “filled”. In Fig.4.(a), the Attached Dead Space e1
is above block e, e2 is right to block e. Fig.4.(b) gives a
redistribution of the Attached Dead-Spaces in the placement
shown in Fig.4.(a). The dead-space a1 is divided into a11 and
a12 by moving block a, block e is moved to divide e2 into e21
and e22, and e1 is below the block e in Fig.4.(b).

Therefore, the following theorem is easily concluded.
Theorem 1 The dead space redistribution can be achieved

by redistributing the Attached Dead-Spaces in the placement,
while the topology and total area of the placement keep
unchanged.

In the following, we describe how to find all the
dead-spaces in a placement and to associate each Attached
Dead-Space with some circuit block or dummy block under
the representation of Corner Block List, which has been
introduced in section II.

For a placement of n blocks, the CBL dissects the chip into
m (m=n) rectangular rooms by horizontal and vertical
segments, which determine the topology among rooms. Thus,
each of the dead-spaces must be generated in certain room.
Because each room is assigned with a circuit block or a
dummy block, each dead-space must be associated with some
circuit block or dummy block. It is obviously that all the
Detached Dead-Spaces must be associated with dummy
blocks, and the Attached Dead-Spaces are associated with
circuit blocks.

When a corner block is inserted during the packing process,
the corner block must cover some other blocks. For each
block b, we check all the blocks covered by b, and determine
whether there are dead-spaces between b and its covered
blocks by comparing the coordinates of them. Simultaneously
each dead-space is associated with a circuit block or a dummy

block. For example, blocks a, d, and e are covered by block g
in Fig.4.(a). We compare the coordinates of block g with
those of a, d and e to find the dead-spaces between them. The
dead-spaces a1, e1 and e2 are found, and dead-space a1 is a
Attached Dead-Space associated with block a, dead-spaces e1
and e2 are the Attached Dead-Spaces associated with block e.
By checking the blocks covered by block d, we can find a
Detached Dead-space 0 which is associated with a dummy
block. The Attached Dead-Space a1, e1 and e2 can be
redistributed since they are associated circuit blocks.

IV. BUFFER PLANNING AND OPTIMIZATION

 In this section, we describe the buffer planning algorithm
based on the dead-space redistribution in detail. Given a
placement, we assume that the buffers can only be inserted
into dead space. As shown in [1], the CBL representation of
the placement can be obtained by deleting the corner block
recursively. And then we compute the dead-spaces in the
placement and associate each dead-space with a circuit block
or a dummy block using the method described in section III.
A. Buffer Planning
 The objective of the buffer planning is to determine the
number and locations of buffers, and insert as many buffers as
possible to maximize the number of nets meeting the timing
constraints.

At first, the candidate tile (shown in Fig.6) set for each
buffer is calculated. Secondly a bipartite graph is constructed
to represent all the possible assignment from buffers to tiles.
Finally the assignment of buffers to tiles is achieved by
finding max cardinality matchings in a bipartite graph.
Algorithm 1 shows an outline of the algorithm.

 In step 1, each dead-space is divided into small tiles where
the buffers can be located. For each buffer b, we compute all
the possible tiles that b can be placed in step 3. Consequently,
the set of all possible buffer assignments is computed, from
which a bipartite graph G can be constructed. Each edge of G
represents a possible assignment from a buffer to a tile. The
bipartite graph G can be defined as follow:

G = (V, E), V = V1 ∪ V2, where V1 represents buffers and

V2 represents tiles, E = {(v1, v2), v1 ∈ V1, v2 ∈ V2, v1 can be

inserted into v2}.
In step 5, in order to insert as many buffers as possible, we

construct an s-t graph based on bipartite graph G to find the
max cardinality matchings. We direct all edges from V1 to V2,
add a source s and a directed edge from s to each element of
V1, and add a sink t and a directed edge from each element of
V2 to t. Let each edge have a capacity 1. The max cardinality
matching can be computed by finding the max flow from s to
t.
B. Optimization

The solution of the above Buffer Planning algorithm is
optimized by redistributing the dead-spaces all over the
placement. The objective is to maximize the number of nets
that meet the delay constraints. Algorithm 2 outlines the
Optimization algorithm.

The new distribution of the dead space in the placement

can be generated by the following two methods.
One method is to randomly select two dead-spaces, and

move the selected dead-spaces to the other side of the
corresponding circuit blocks. And then we update the length,
the buffer number of the nets that have pins in the moved
circuit block and independent feasible region of each buffer.
In step 5, if the new dead-space distribution is not accepted,
we move the selected two dead-spaces to their original
locations, and restore the changes in the length and buffer
number of the nets and feasible region of buffers.

The other method is to divide a dead-space into two parts,
and the associated circuit block will be located between the
two parts. In step 5, if the new dead-space distribution is not
accepted, we merge the two parts to the original dead-space,
and restore the changes in the nets and associated buffers.

It is obviously that the topology of the placement and total
area of the chip keep unchanged after the dead-space
redistribution. We perform the previous buffer planning
algorithm to compute the number of nets that meet the target
delay for each new distribution of the dead space.

We cannot ensure that all the nets can satisfy the delay
constraints because of the limited dead-spaces. The number
of nets that cannot satisfy the target delay through the above
Optimization algorithm can be further reduced by a
channel-expanded approach as in [2] or [5]. In this paper, we
concentrate on the improvement on the number of nets meet
the delay constraints by redistributing the dead-spaces, and it
is unnecessary to repeat the former work.

V. EXPERIMENTAL RESULTS

The Buffer Planning and Optimization algorithm have
been implemented using C language on a SUN Ultra-SPARC

Algorithm 2 Optimization
1. Compute all the dead-spaces in the placement and associate each

of the dead-spaces with some circuit block.
2. Perform the buffer planning algorithm to compute the number of

nets that meet the target delay, denoted as Nold.
3. Generate new distribution of the dead-spaces and update related

information.
4. Perform the Buffer Planning algorithm to compute the number of

nets that satisfy the delay constraints, denoted as Nnew.
5. If Nold < Nnew, the new dead space distribution is accepted, Nold =

Nnew. Otherwise, restore the changes.
6. Repeat step 3 to step 5 for given times.

Independent
Feasible
Region

Candidate
Tiles

Source

Sink

xmax xmin

Fig.6. Independent Feasible region and
Candidate tiles for a buffer

Algorithm 1 Buffer Planning
1.Build the tile data structure for all the dead-spaces.
2.Compute IFR for each buffer.
3.Compute the set of candidate tiles for each buffer
4.Construct a bipartite graph G (V, E), V = V1 ∪ V2, where V1 represents
buffers and V2 represents tiles, E = {(v1, v2), v1 ∈ V1, v2 ∈ V2, v1 can be
inserted into v2}.
5.Construct an s-t graph from G.
6.Find the max flow from s to t and determine the location of each buffer.

III machine. In this section, we present some details of our
experimental results obtained. The values for parameters are
based on a 0.18µm technology in the NTRS’97 roadmap[15].

In this paper, we concentrate on solving the problem of
buffer planning for two-pin (single source, single sink) nets,
and all the multiple-pin nets are decomposed into two-pin
nets. Because of the lack of information on signal direction in
the benchmark files, we choose a pin to be the source and all
the others to be sinks, and then decompose a multiple
terminal net into a set of two-pin nets. We ignore all power
and ground interconnects. The initial placements of the
MCNC benchmark circuits were obtained from [1].

We assign target delays of the two-pin nets, since the
MCNC benchmarks include no any timing information. All
two-pin nets whose lengths are smaller than the critical length
lmin

[6] are ignored, because buffer insertion cannot reduce
their delay. And then we compute the optimal delay Topt
under optimal buffer insertion [6] for each net and then
randomly assign a constraint delay between 1.05 and 1.20
times Topt to the net as in [2,5]. Since we generate placements
and timing constraints on our own, a direct comparison
between our method and that in [2,5] cannot be fair. We
provide the results of our algorithm for 5 MCNC benchmark
circuits[7]. The details of these circuits are shown in Table 1.

In Table 2, we provide some experimental results from our
buffer planning and optimization algorithm, which includes
the number of nets which meet the delay constraint, the total
number of inserted buffers, the improvement of the
optimization algorithm, and the CPU time.

TABLE 1
MCNC BENCHMARKS STATISTICS

Circuit Blocks Nets Two-pin Nets
Apte 9 97 172
Xerox 10 203 455
Hp 11 83 226
Ami33 33 123 363
Ami49 49 408 545

The column of “Buffer Planning” shows the experimental
results of running Buffer Planning algorithm under the initial
dead space distribution, and the column of “Optimization” is
the experimental results of optimization algorithm. The
sub-column of “met”, “#B”, and “time” respectively show the
number of nets that satisfy the timing closure, the number of
buffers inserted, and the CPU time consumed. The improved
number of nets that satisfy the timing constraint and the ratio
are respectively given in the column of “Nimp” and “Rimp”.

The results in Table 2 show that Optimization algorithm is
able to increase the number of nets that satisfy the delay
constraints, while the total area and topology of the placement
are unchanged. In circuit Xerox, for example, the number of
nets that satisfy the delay constraints is 275 in the initial dead
space distribution, and the number increase to 315 after
optimization. The nets which satisfy the delay constraints
increase 12.4%. For the five circuits, the increment of the
number of the nets that satisfy delay constraints is 9% on an
average. The experimental results show that our Optimization
algorithm is very efficient. Because of the iteration of the
dead space redistribution, the run-time of our algorithm is
higher than those in [2] and [5].

VI. Conclusion
 In this paper, we proposed a buffer planning algorithm
based on dead space redistribution to make good use of
dead-spaces for buffer insertion. The dead space
redistribution can be achieved by redistributing the Attached
Dead-Spaces in the placement, while the topology and total
area of the placement keep unchanged. Experimental results
show that our approach is efficient.

As a basic buffer planning algorithm embedded in the
optimization procedure, Our Buffer Planning algorithm can
be easily extended to handle the additional constraints, such
as congestion and noise. To get an approximate optimal
solution, it is necessary to apply an advanced search strategy
such as simulated annealing. But because of time
consumption, a greedy algorithm is used for optimization in
our paper. Though the experimental results show that the
greedy strategy is efficient, it is required to develop a faster
buffer planning algorithm for applying a better search
strategy, and the detour route is not considered in this paper.
We will work on it in the future.

TABLE 2
THE RESULTS OF THE BUFFER PLANNING AND OPTIMIZATION ALGORITHM

Buffer Planning Optimization Circuit
met #B Time (s) met #B Time(s)

Nimp Rimp

Apte 89 83 0.16 100 104 28.6 11 12.4%
Xerox 275 152 0.1 315 182 8.7 40 14.5%

Hp 129 179 0.25 139 182 25.1 10 7.8%
Ami33 235 162 0.08 249 178 7.1 14 5.9%
Ami49 437 236 0.51 457 253 49.1 20 4.6%

References
[1] X.L. Hong, G. Huang, Y.C. Ma, Yici Cai, S.Q. Dong, “Corner Block List:
an effective and efficient topological representation of non-slicing
floorplan,” ICCAD’2000.
[2] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for
interconnect-driven floorplanning”, IEEE/ACM ICCAD, 1999.
[3] J. Cong, “Challenges and opportunities for design innovations in
nanometer technologies,” Frontiers in Semiconductor Research: A collection
of SRC Working Papers, Semiconductor Research Corporation,
http://www.src.org/prg_mgmt/frontier.dgw, 1997
[4] J. Cong, L. He, C-K. Koh, P.H. Madden, “Performance optimization of
VLSI interconnect layout” Integration, the VLSI Journal, vol.21, Nov. 1996.
[5] P. Sarkar, C. K. Koh, “Routability-driven repeater block planning for
interconnect-centric floorplanning,” Intl. Symp. Physical Design, 2000.
[6] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer
insertion,” in Proc. Design Automation Conf, pp. 588–593, June 1997.
[7] Collaborative Benchmarking Laboratory, North Carolina State
University, http://www.cbl.ncsu.edu/CBL Docs/lys92.html: LayoutSynth’92
Benchmark Information.
[8] X. Tang and D.F. Wong, “Planning buffer locations by network flows”,
Intl. Symp. Physical Design, 2000, pp. 180-185.
[9] F. F. Dragan, A. B. Kahng, I. Mandoiu, S. Muddu, “Provably good global
buffering using an available buffer block plan”, IEEE/ACM ICCAD, 2000
[10] F. F. Dragan, A. B. Kahng, et al“Provably good global buffering by
multiterminal multicommodity flow approximation”, ASP-DAC, 2001.
[11] C. J. Alpert, J. Hu, S.S. Sapatnekar, P.G. Villarrubia, “A practical
methodology for early buffer and wire resource allocation,” DAC, 2001.
[12] Sh. Zhou, S.Q. Dong et al. “ECBL: an extended Corner Block List with
solution space including optimum placement”, ISPD 2001.
[13] C. W. Sham, F. Y. Young, “ Routability driven floorplanner with buffer
block planning”, ISPD 2002.
[14] F. Ragiq, M. C. Jeske, H. H. Yang, N. Sherwani, “Integrated
floorplanning with buffer/channel insertion for bus-based microprocessor
designs”, ISPD 2002.
[15] Semiconductor Industry Association, National Technology Roadmap
for Semiconductors, 1997.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

