
Advanced power management techniques:
going beyond intelligent shutdown

Luca Benini
DEIS Universit́a di Bologna

lbenini@deis.unibo.it

Abstract— Well into the System-on-Chip era, power consump-
tion has emerged as one of the most critical challenges to design
complexity scaling. Moving from a critical assessment of current
technologies and architectures, we survey the distinguishing fea-
tures of a design methodology that aims at energy consumption
reduction, under guaranteedquality of service(QoS), as a main
objective in system design.

I. I NTRODUCTION

Systems on chips(SoCs) containing tens of millions of tran-
sistors are currently designed and produced. Billion-transistor
chips are not a distant dream in the future. Several chal-
lenges arise from the complexity of designing multimillion-
and billion-transistor chips. Design methods (and tools) must
follow the rapid pace of evolution dictated by technology and
application pull. As of today, a few fundamental trends of evo-
lution have emerged.

• Technology is increasingly hard to master, both from
a cost and a reliabili perspective. Hence, application-
specific hardware platforms are becoming not viable from
an economic viewpoint. Large-scale SoCs must be flex-
ible and programmable after fabrication (to sell in large
volumes), and they must contain a large amount of func-
tional redundancy (to tolerate technology-induced faults
and bring yield to acceptable levels).

• Systems on chips are designed using pre-existing com-
ponents. Reuse becomes key for designing chips fast
enough, because no design team can successfully com-
plete a multi-million transistor design ”from scratch” in
the six to nine month window dictated by market pressure.
Design methodologies must support component re-use in
a plug-and-play fashion.

• While the traditional computing equipment market has
reached a saturation region where margins are extremely
low, great promise is shown by the emergence of ”ambient
intelligence” devices. These devices will materialize the
vision of ubiquitous interactive access to world-wide in-
formation and communication resources from tiny wire-
less terminals, coupled extensive data collection and in-
tegration from a myriad of geographically dispersed sen-
sors.

These trends have jointly contributed to the creation of a un-
precedentedpower crisis: on one side technology and com-
plexity control push for highly-reusable, standardized and pro-
grammable architectures, which are notoriously much less
power efficient than dedicated hardware [11]. On the other
hand, the largest market potential is for chips that can be easily
embedded in tiny, battery powered (even battery-less) devices,
while at the same time performing computationally intensive
tasks.

Low power design has thus become a critical need for cur-
rent and future SoCs. In this paper we will first review the
trends of evolution of current technologies and architectures,
with the purpose of identifying the most critical bottlenecks
in system power consumption. Then, we will focus on a few
leading-edge low power design techniques that can provide im-
mediate relief to the power crisis.

II. T ECHNOLOGY TRENDS

It is a well-known fact that rapidly evolving silicon technol-
ogy creates smaller and faster CMOS transistors, with decreas-
ing switching power. At a fist sight, then, technology works for
reducing power consumption. However, die area is not shrink-
ing with technology (in other words, chips pack a quadratically
increasing number of transistors). This would not be a prob-
lem if the power dissipation of basic CMOS gates decreased
fast enough to compensate the increase in integration density.
Unfortunately, this is not the case, as detailed next.

First, because of bounded propagation speed of electromag-
netic waves, as opposed to the ever faster switching speed
of transistors, silicon technology is becoming increasingly
interconnect-dominated. Delays on wires are already domi-
nating: global wires spanning a significant fraction of the chip
have propagation delays exceeding the clock period. The same
holds for switching power: the gate capacitance of a minimum-
size transistor is decreasing with technology, but interconnect
capacitance per unit length is not decreasing at the same speed
(because of sidewall contributions) and interconnect length is
not decreasing for global wires. Hence, theC factor in the well
known switching power equationPsw = kCV 2

DDf (wherek
represents switching activity) does not scale down as fast as
minimum feature size [4, 13].

Second, in order do reap performance benefits (in other
words, to satisfy quality of service requirements), chip clock



frequency is scaled faster than technology [5]. This result is
achieved by clever architectural optimizations that reduce the
number of logic stages to be traversed within the clock cycle
time. From a power viewpoint this is clearly a problem, be-
cause power is directly proportional to switching frequencyf .
Performance constraints (or objectives) are also the main rea-
son why supply voltage scaling is not drastic as one would
desire for power minimization purposes. In fact, transistor
switching speed decreases as(VDD − VT )α, with 1 < α < 2.
This cannot be tolerated if performance is tightly constrained.

Third, deep submicron transistors are increasingly leaky in
the OFF state. Source-to-drain current due to subthreshold
conduction is the dominant cause of leakage, but drain-to-
gate currents due to electron tunnelling across the gate oxide
is also becoming significant. Furthermore, random variations
of the number of dopant atoms in the channel region cause
poor threshold control, and. many transistors have a threshold
significantly lower than nominal. Unfortunately, subthreshold
conduction is exponentially dependent on threshold voltage
and transistors with lower threshold leak exponentially more
than nominal transistors. As a result, chip standby power is
becoming a significant concern. Clearly, subthreshold leakage
also a heavy limiter to threshold voltageVT reduction, with
obvious negative impact on supply voltage scaling [5].

From this brief overview, it is apparent that power is critical
in many ways. Power density grows significantly with tech-
nology, thereby creating huge problems in power supply dis-
tribution. Total power consumption in active state increases as
well, with obvious negative consequences in battery lifetime as
well as thermal design. Finally, even stand-by power is grow-
ing fast with technology, impacting battery lifetime in portable
applications. For these reasons, technologists are pointing at
power as the one of the most likely show-stoppers to technol-
ogy scaling if adequate countermeasures are not taken.

III. A RCHITECTURAL TRENDS

As seen in the previous section, technology evolution is not
going to solve the power consumption problem. On the con-
trary, many technologists refer to design innovation at the cir-
cuit, logic, architectural level as a way out from the crisis. Un-
fortunately, trends in this area are not favorable to energy effi-
ciency at all. Even though a significant research effort is being
devoted to power minimization, mainstream architectural de-
sign is moving toward energy-hungry architectures.

Most systems-on-chip are nowadays designed with a high
degree of programmability. The majority contains one or more
core processors, and many instantiate several programmable
coprocessors (e.g., VLIW units for numerical computations,
programmable IO processors, etc.); a few recent designs even
embed a significant amount of bit-programmable logic (FPGA
fabrics) [15]. Programmability is a common requirement when
designing large-scale SoCs for two main reasons. First, it
ensures functional flexibility, which widens the spectrum of
applicability and the potential production volume. Second,
it leaves margins for post-fabrication bug fixing and tuning,

thereby enhancing yield. High yield and volume of sales are
required to amortize ballooning mask development and fab-
rication costs. Second, processor-based architectures empha-
size reuse of hardware modules (e.g., the cores themselves, the
memories, etc.) as well as software components (e.g. libraries,
operating systems, compilers). Reuse-centric methodologies
are instrumental to reduce development risk and cost, and min-
imize time-to-market.

Yet, flexibility and reuse come at a price. The power-
performance ratio (i.e., the energy) required by a processor to
carry out a given task (e.g., MPEG decoding) is several orders
of magnitude (3 or more) higher than what could be achieved
with an application-specific architecture [14, 11]. The causes
of the energy inefficiency of processor-based architectures are
well understood. Processors have to fetch and decode instruc-
tions to control execution. This is a huge overhead with re-
spect to an application-specific architecture with a hardwired
controller.

Instruction execution relies on heavily shared memory struc-
tures (register files), while dedicated architectures can ex-
ploit distributed registers with faster read/write time and enor-
mously lower power consumption per access. The sequential
instruction execution flow inevitably limits the parallelism that
can be extracted from an application, and therefore emphasizes
storage requirements. In general processor-based architectures
are memory-hungry and require complex memory hierarchies
to achieve satisfactory performance thanks to the exploitation
of the spatial and temporal locality principles. As a result,
a dominant fraction of the power consumed by a processor
is spent in accessing the memory hierarchy (i.e., in commu-
nicating with memory structures and in extracting/storing in-
formation in them). Storage-related costs are minimized in
application-specific architectures thanks to the exploitation of
distributed and custom-sized memories and the minimization
of spurious memory accesses created as an artefact of sequen-
tial instruction execution.

Advanced processors, often required to attain performance
goals, are even more power-hungry than simple processors,
because they rely on various forms of speculative execution
to increase the average number of instructions executed in
a clock cycle. Well-known performance-enhancement tech-
niques, such as speculating past branches, value prediction,
prefetching, imply the execution of redundant instructions
which can be committed only after they completed. In case
of a wrong prediction, a double overhead is often incurred.
Not only computation has been executed needlessly, but also
its effects must be rolled back.

Fine-grained programmable fabrics can be one or more or-
ders of magnitude more energy-efficient than processors [14]
for some classes of computations, but they still incur a very sig-
nificant overhead with respect to dedicated logic. Recent data
shows that computation performed by an embedded FPGA fab-
ric in a hybrid FPGA-ASIC chip is more than two orders of
magnitude more power consuming and more than ten times
slower than the same computation in dedicated logic [15]. The
overhead in this case is mainly due to communication between



fine-grain programmable logic elements, which is performed
on massively redundant programmable wiring resembling a
multi-stage network, as opposed to dedicated, instance spe-
cific wires. Additionally, programmable logic blocks are of-
ten much more complex than the basic gates they mimic when
programmed.

In summary, it quite clear that the power crisis is caused by
the conjunction of two factors: technology does not help us as
much as we need, and architectural evolution trends are work-
ing against energy efficiency. To escape this losing scenario,
a multi-pronged approach is needed, which improves energy
efficiency without compromising flexibility, while minimizing
performance overhead. This hard to do, but it can be done, as
we shall see in the following sections.

IV. D ESIGNING LOW-POWER HARDWARE

In a nutshell, we believe that the key for addressing the
power consumption challenge lies in two simple ideas: (i)
exploit flexibility not only at the functional level, but also in
the power dimension (i.e., designpower-manageable architec-
tures), (ii) enable application-dependent specialization with-
out compromising reuse and design flow streamlining. The
first idea implies adding hardware resources that do not have a
computational task, but they dedicated to controlling the power
level of functional units, detecting and exploding idleness, and
locally trading off performance with power. The second idea
requires tuning a hardware platform to a specific computational
task, without significantly increasing design time and effort
(i.e., with a push-button process that does not require re-design
of hardware blocks).

The practical embodiments of the two above principles often
require both hardware and software support. In this section
we analyze hardware implications. In particular, we focus on
power manageable hardware, because design practices in this
area are well established and widely spread. On the contrary,
application-dependent specializations for power efficiency are
performed much more in a ad-hoc fashion and they have more
limited applicability, therefore they are not covered here. The
interested reader can refer to a few recently published books
and survey papers for additional information [2, 10, 11].

A. Power-manageable architectures

Power manageable architectures ultimately aim at eliminat-
ing idle power consumption (i.e., the power consumed by a
hardware component when it is not in use) and run-time slack
in active state, through the run-time control of clock activity
and frequency, supply voltage and device threshold. The ben-
efit of idle power elimination is obvious, while run-time slack
elimination translates to cubic power savings (and quadratic
energy savings) if the circuit is slowed down while at the same
time reducing the power supply. Even though slow-down cou-
pled with dynamic voltage scaling is more effective than idle
power reduction [3], the two techniques are not mutually ex-
clusive. Clearly, slowing down a circuit reduces its idleness,

but in many cases it cannot eliminate it: consider for example
a MP3 player. When the device is active it operates under tight
performance constraints (namely, real-time playback), and ob-
viously it is not possible to stretch execution time beyond the
duration of a music track, even if after it has been played out,
the player remains idle for hours.

Leakage is a major concern in idle-power reduction, because
it impacts battery lifetime even if the circuit is completely idle.
Quiescent power specifications tend to be very tight. In fact,
CMOS technology has traditionally been extremely power-
efficient when transistors are not switching, and system design-
ers expect low leakage from CMOS chips. To meet leakage
power constraints,multiple-thresholdand variable threshold
circuits have been proposed [9]. In multiple-threshold CMOS,
the process provides two different thresholds. Low-threshold
transistors are fast and leaky, and they are employed on speed-
critical sub-circuits. High-threshold transistors are slower but
exhibit low sub-threshold leakage, and they are employed in
non-critical units/paths of the chip.

Unfortunately, multiple-threshold techniques tend to loose
effectiveness as more transistors become timing-critical.
Variable-threshold circuits overcome this shortcoming by dy-
namically controlling the threshold voltage of transistors
through substrate biasing. When a variable-threshold circuit
becomes quiescent, the substrate of NMOS transistors is nega-
tively biased, and their threshold increases because of the well
known body-bias effect. A similar approach can be taken for
PMOS transistors (which require positive body bias). Variable-
threshold circuits can in principle solve the quiescent leakage
problem, but they require standby control circuits that mod-
ulate substrate voltage. Needless to say, accurate and fast
body-bias control is quite challenging, and requires carefully
designed closed-loop control [9].

Idle power is not only caused by leakage, but it is also due to
unneeded switching activity. Clock switching within idle func-
tional units is the best known example of this problem. Clock
gating is used to eliminate unneeded clock activity. Most low-
power processors implement both hardware and software con-
trolled clock gating through dedicated power-down instruc-
tions. A radical way to eliminate idle power (both leakage
and dynamic) is to disconnect a unit from its power supply.
Unfortunately, in this case state information is lost.

In active state, supply voltage can be controlled to reduce
power, albeit in the limited ranges allowed in aggressively
scaled technologies.Multiple-voltageand variable voltage
techniques have been developed to this purpose [11]. In
multiple-voltage circuits two or more power supply voltages
are distributed on chip. Similarly to the multiple-threshold
scheme, timing-critical transistors can be powered at a high
voltage, while most transistors are connected to the low voltage
supply. Multiple voltages are also frequently used to provide
standard voltage levels (e.g., 3.3 V) to input-output circuits,
while powering on-chip internal logic at a much lower voltage
to save power. The main challenges in the multiple-voltage ap-
proach are in the design of multiple power distribution grids
and of power-efficient level-shifters to interface low-voltages



with high-voltage sections.
Variable-voltage techniques offer the possibility of modulat-

ing the power supply dynamically during system operation. In
principle, this is a very powerful technique, because it gives the
possibility to trade off power for speed at run time, and to finely
tune performance and power to non-stationary workloads. In
practice, the implementation of this technique requires consid-
erable design ingenuity. First, voltage changes require non-
negligible time, because of the large time constants of power
supply circuits. Second, the clock speed must be varied con-
sistently with the varying speed of the core logic, when supply
voltage is changed.

Power manageable hardware can be designed at different
levels of granularity. While early embodiments allowed only
coarse-grained control (e.g., peripheral vs. core logic), the
trend is toward fine-grained support to power management. An
example of a state-of-the-art power management support is the
”Voltage islands” technology introduced by IBM [6], where it
is possible to instantiate multiple regions on a chip each pow-
ered by its own variable voltage supply, clocked by a dedicated
variable frequency clock generation unit, and equipped with
independent threshold voltage control circuitry.

It is important to remember that power manageable hard-
ware is only one side of the equation. Transitions between
power states (e.g. from idle to active, from fast to slow) have
significant cost in performance and energy. Hence, virtually all
power management schemes require significant software sup-
port both at design (and compilation) time and at execution
time. The main challenges are to avoid power state transitions
that cannot be amortized and to select the most suitable power
state for a given operating condition.

V. POWER MANAGEMENT SOFTWARE

We generalize the notion of operating system (OS) to the
middleware that provides support for the operation of SoCs.
Note that system support middleware in current SoCs is usually
quite simple, designed for a specific integrated core processor,
under the assumption that a processor provides global, central-
ized control for the system. In the context of future SoCs, the
prevailing paradigm will be peer to peer interaction among sev-
eral, possibly heterogeneous processing elements. Thus, we
think that system software will be designed as a modular dis-
tributed system. Each programmable component will be pro-
vided with system software to support its own operation and to
manage its communication to other modules.

The system software creates an abstraction of the underlying
hardware platform. In a nutshell, we can view the system as a
network of components. Each component models a computa-
tional or storage unit. We observe that:

• Each component can operate at various service levels,
providing corresponding performance and energy con-
sumption levels. This abstracts the physical implemen-
tation of components with adjustable voltage and/or fre-
quency levels, as well as with the ability to disable their
functions in full or in part.

• Even if units can be power managed independently, power
minimization for a complex system requires informa-
tion exchange between its components. Locally optimal
choices do not generally lead to a globally optimal solu-
tion.

Dynamic power management entails selecting the appropri-
ate component state to service a workload with the minimum
energy consumption. DPMpoliciesare the control algorithms
for state transitions [1]. Transitions among states have a fi-
nite delay and energy penalty. Thus, the definition of policies
that maximize performance under energy constraints, is a non-
trivial problem [1]. Whereas policies can be implemented in
hardware (as a part of the control-unit of a component), much
more flexibility and ease of integrations is achieved by soft-
ware implementations. Thus a policy can be seen as a pro-
gram that is executed at run-time by the system software. The
fundamental premise for the applicability of DPM is that sys-
tems (and their components) experience non-uniform work-
loads during operation time. Such an assumption is valid for
most systems, both when considered in isolation and when
inter-networked. A second assumption of DPM is that it is
possible to predict, with a certain degree of confidence, the
fluctuations of workload. Workload observation and predic-
tion should consume little energy.

Power management policies can be implemented in system
kernel and be tightly coupled to process management. Indeed,
process management has knowledge of currently-executing
tasks and tasks coming up for execution. Process managers
know also which components (devices) are needed by each
task. Thus, policy implementation at this level of system soft-
ware enjoys both a global view and an outlook of the system
operation in the near future. Predictive wake-up of compo-
nents is possible with the knowledge of upcoming tasks and
required components. The system software can be designed to
improve effectiveness of power management. Indeed, power
management exploits idle times of components. The sched-
uler can sequence tasks for execution with the additional goal
of clustering component operation, thus achieving fewer but
longer idle periods. The inter-relation between power man-
ager and scheduler is even stronger for variable-voltage units.
In this area numerous variable-voltage scheduling algorithms
have been proposed [11], which aim at running processing el-
ements as slow as possible (to allow supply voltage minimiza-
tion), without violating performance constraints. Experiments
with implementing DPM policies at different levels of system
software [8] have shown increasing energy saving as the poli-
cies have deeper interaction with the system software func-
tions.

A. Application-level power management

A reasonable questions is why not letting the application
programs control the service levels and energy cost of the un-
derlying hardware components. There are typically two objec-
tions to such an approach. First, application software should
be independent of the hardware platform for portability rea-



sons. Second, system software supports generally multiple
tasks. When a task controls the hardware, unfair resource uti-
lization and deadlocks may become serious problems.

For these reasons, it has been suggested [7] that application
programs contain system calls that request the system software
to control a hardware component, e.g., by turning it on or shut-
ting it down, or by requesting a specific frequency and/or volt-
age setting. The request can be accepted or denied by the oper-
ating system, that has access to the task schedule information
and to the operating levels of the components. The advantage
of this approach is that OS-based power management is en-
hanced by receiving detailed service request information from
applications, and thus is in a position to take better decisions.

Another approach is to let the compiler extract directly the
power management requests from the application programs at
compile time. This is performed by an analysis of the code,
followed by a code modification phase that inserts power man-
agement requests in critical points of the computation. For in-
stance, in a variable-voltage unit, voltage and speed change re-
quests can be issued immediately after data-dependent control-
flow branching, when the behavior of the program is such that
additional slack is created with respect to the worst case exe-
cution time [12].

VI. CONCLUSION

Moving from the analysis of technology and architectural
trends in gigascale silicon integration, we observed that power
consumption has become one of the most menacing showstop-
pers. Thus, leading edge low power design techniques are
more critical than ever. Power management has emerged as the
most promising approach to tackle the power crisis, because
it makes it possible to finely control the power-performance
tradeoff at run time. The paper surveyed hardware and soft-
ware technologies for power management support, focusing
more on fundamental ideas than on specific embodiments.
Even though many solutions exist, much work still needs to be
done especially in light of the evolution of SoC architectures
toward communication-dominated networks-on-chip.
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