
Logic Foundry: Rapid Prototyping of FPGA-based DSP Systems

Gary Spivey 
Rincon Research 

Corporation 
Tucson, AZ, USA 

spivey@rincon.com 

Shuvra S. Bhattacharyya* 

ECE Department & 
UMIACS 

University of Maryland, 
USA 

ssb@eng.umd.edu 

Kazuo Nakajima 
ECE Dept, University of Maryland, USA  & 

Graduate School of Information Science, 
Nara Institute of Science and Technology, 

Ikoma, Nara, Japan 
kazuo@is.aist-nara.ac.jp 

 
Abstract – The Logic Foundry is a system for the creation 

and integration of FPGA-based DSP systems. Recognizing 
that some of the greatest challenges in creating FPGA-based 
systems occur in the integration of the various components, 
we have developed a system that addresses the following four 
areas of integration: design flow integration, component 
integration, platform integration, and software integration. 
Using the Logic Foundry, a system can easily be specified, 
and then automatically constructed and integrated with 
system level software. 

I. Introduction* 

A large number of system development and integration 
companies, laboratories, and government organizations 
exist that have traditionally produced applications 
requiring rapid development and deployment as well as 
ongoing design flexibility. These applications are generally 
low-volume and frequently specific to defense and 
government requirements. This task has generally been 
performed by software applications on general-purpose 
computers. Often these general-purpose solutions are not 
adequate for the processing requirements of the 
applications and the designers have been forced to employ 
solutions involving special purpose hardware acceleration 
capabilities.  

These special purpose hardware accelerators come at a 
significant cost. This community does not possess the large 
infrastructure or volume requirements necessary to produce 
or maintain special-purpose hardware. Additionally, the 
investment made in integrating special purpose hardware 
makes technology migration difficult in an environment 
where utilization of leading-edge technology is critical and 
often pioneered. Many of these entities are eyeing FPGA-
based platforms as a way to rapidly provide deployable, 
flexible, and portable hardware solutions.  

Introducing FPGA components into DSP system 
implementations creates an assortment of challenges across 
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system architecture and logic design. Where system 
architects may be available, skilled logic designers are a 
scarce resource. There is a growing need for tools to allow 
system architects to be able to implement FPGA-based 
platforms with limited input from logic designers. 
Unfortunately, getting designs translated from software 
algorithms to hardware implementations has proven to be 
difficult. 

Earlier efforts such as the GRAPE-II [1] system tended 
to focus on creating a heterogeneous multiprocessor rather 
than an FPGA-based subsystem — typically enforcing a 
static dataflow model. Current efforts like MATCH [2] 
have attempted to compile high-level languages such as 
MATLAB directly into FPGA implementations. Certain 
tools such as C-Level Design [3] have attempted to convert 
“C” software into a hardware description language (HDL) 
format such as the Verilog HDL (hereafter referred to as 
Verilog) or VHDL that can be processed by traditional 
FPGA design flows. Other tools use derived languages 
based on C such as Handel-C [4], C++ extensions such as 
SystemC [5], or Java classes such as JHDL [6]. These tools 
give designers the ability to more accurately model the 
parallelism offered of the underlying hardware elements. 
While these approaches attempt to raise the abstraction 
level for design entry, many experienced logic designers 
argue that these higher levels of abstraction do not address 
the underlying complexities required for efficient hardware 
implementations. 

Another approach has been to use block-based design 
[7] where system architects can behaviorally model at the 
system level, and then partition and map design 
components onto specific hardware blocks, which are then 
designed to meet timing, power, and area constraints. An 
example of this technique is the Xilinx System Generator 
for the MathWorks Simulink Interface [8]. Using this tool, 
a system architect can “develop high-performance DSP 
systems for Xilinx FPGA's. Designers can design and 
simulate a system using MATLAB, Simulink, and a Xilinx 
library of bit/cycle-true models. The tool will then 
automatically generate synthesizable Hardware Description 
Language (HDL) code mapped to Xilinx pre-optimized 



algorithms” [9]. However, this block-based approach still 
requires that the designer be intimately involved with the 
timing and control aspects of cores in addition to being 
able to execute the back-end processes of the FPGA design 
flow. Furthermore, the only blocks available to the 
designer are the standard library of Xilinx IP Cores. Other 
black-box cores can be developed by a logic designer using 
standard HDL techniques, but these cannot currently be 
modeled in the same environment. Annapolis Micro 
Systems has developed a tool entitled “CoreFire” that uses 
pre-built blocks to obviate the need for the back-end 
processes of the FPGA design flow, but is limited in 
application to Annapolis Micro Systems hardware [10]. In 
both of the above cases, the system architect must still be 
intimate with the underlying hardware in order to 
effectively integrate the hardware into a given software 
environment. 

 Some have proposed using high-level, embedded 
system design tools, such as Ptolemy [11] and Polis [12]. 
These tools emphasize overall system simulation and 
software synthesis rather than the details required in 
creating and integrating FPGA-based hardware into an 
existing system. An effort funded by the DARPA Adaptive 
Computing Systems (ACS) program was performed by 
Sanders (now BAE Systems) [13] that was successful in 
transforming a synchronous dataflow graph into a 
reasonable FPGA implementation. However, this effort 
was strictly limited to the implementation of a signal 
processing datapath with no provisions for run-time 
control of processing elements. Another ACS effort, 
Champion [14] was implemented using Khoros’s Cantata 
[15] as a development and simulation environment. This 
effort was also limited to datapaths without run-time 
control considerations. While datapath generation is easily 
scalable, control synthesis is not. Increased amounts of 
control will rapidly degrade system timing, often to the 
point where the design becomes unusable.  

In the brief survey above of relevant work, we have 
observed that while some of these efforts have focused on 
the design of FPGA-based DSP processing systems, there 
has been less work in the area of implementing and 
integrating these designs into existing software application 
environments. Typically a specific hardware platform has 
been targeted and integration into this platform is left as a 
task for the user. Software front-ends are generally 
designed on an application-by-application basis and for 
specific software environments. Because the community 
requirements are often rapidly changing and increasing in 
complexity, it is necessary for any solution to be rapidly 
designed and modified, portable to the latest, most 
powerful processing platform, and easily integrated into a 
variety of front-end software application environments. In 

other words, in addition to the challenge of creating an 
FPGA-based DSP design, there is another great challenge 
in implementing that design and integrating it into a 
working software application environment. 

  It is our experience that one of the greatest challenges 
in designing these solutions is the integration of the 
hardware into a pre-existing system. To help address this 
challenge we have created the “Logic Foundry”. The Logic 
Foundry uses a “platform-based” design approach. 
Platform-based design starts at the system level and 
“achieves its high productivity through extensive, planned 
design reuse … productivity is increased by using 
predictable, pre-verified blocks that have standardized 
interfaces” [7]. To facilitate the rapid implementation and 
deployment of these platform-based designs, we have 
created a component-based architecture that allows for run-
time control of processing elements. Using this 
architecture, an FPGA-based DSP system can be easily 
constructed from pre-built components and implemented 
on a variety of back-end FPGA platforms. The resulting 
implementation can then be automatically encapsulated 
and integrated into a variety of front-end software 
application environments. 

The Logic Foundry was created for four areas of 
integration that present challenges in rapid prototyping of 
FPGA-based DSP systems: design flow integration, 
component integration, platform integration, and software 
integration. Each area of integration in the Logic Foundry 
operates independently. While the Logic Foundry provides 
easy linkages between all areas, a user might make use of 
but one area, allowing the Logic Foundry to be adopted 
incrementally throughout the design community.  

This paper gives an overview of how the Logic Foundry 
is used in the rapid prototyping, development, and 
deployment of FPGA-based DSP systems. Sections II 
through V detail the four areas of integration and how they 
are addressed by the Logic Foundry design environment. 

II. Design Flow Integration 

An FPGA design flow is the process of turning an 
FPGA design into a correctly timed image file used to 
program the FPGA. Due to the difference in resources 
between FPGA’s and general-purpose processors, the 
realized algorithm on an FPGA may be quite different than 
an algorithm originally specified by a system designer. 
While many languages are being proposed as system 
design languages (among them C++, Java, and MATLAB), 
none of these languages perform this algorithmic 
translation step. Therefore, a uniquely skilled logic 
designer is generally required to construct an FPGA design 
in a Hardware Description Language (HDL). While this 
expert may be required for optimal design entry, many 



mundane tasks are performed in the process of converting 
the design into an FPGA image file using Electronic 
Design Automation (EDA) tools. We desire to automate 
many of these steps without inhibiting the abilities of the 
skilled logic designer. 

A. MEADE  

To efficiently integrate designs into a user-defined EDA 
tool flow, we have developed MEADE – the Modular, 
Extensible, Adaptable Design Environment [16]. MEADE 
allows users to specify a node to represent a design 
building block. A node can be a small function such as an 
adder, or a large design like a Turbo-Decoder. 
Furthermore, nodes can be connected to other nodes or 
contain other nodes, allowing for design reuse and large 
system definitions. A node not only contains the elements 
that are required for a design (e.g., HDL files, synthesis 
files), but also the information required by the design flow 
to build the node (e.g., HDL libraries and packages 
required, sub-nodes included, element dependencies).  

MEADE provides an extensible set of procedures, 
actions, and agents. MEADE procedures are sequences of 
MEADE actions. A MEADE action can be performed by 
one or more MEADE agents. These agents are used to 
either perform specific design flow tasks or encapsulate 
EDA tools. For example, a simulation procedure can be 
defined that has a sequence of actions – make, analysis 
setup, simulate, output comparison, and analysis. If a 
design house has multiple different simulators, such as 
ModelSim and NC-Sim, an agent for each simulator exists 
and is selectable by the user at run-time. The same holds 
true for any other tools (analysis, synthesis, etc.).  

The MEADE agents extract design information from 
the nodes when operating on them. Design flow details are 
localized in the node by the designer building the node. 
When the node is used in a larger system, the system 
designer does not need to know the information required to 
build a sub-node as that information is automatically 
acquired from the sub-node by MEADE. This feature 
enables efficient design reuse and provides a mechanism 
for IP transfer between different design groups. 

MEADE also provides the ability to specify unique 
‘builds’ within a given node. For example, a node can be 
delivered with Verilog HDL, VHDL, or SystemC 
implementations, or with generic, Xilinx, or Altera 
implementations. These builds can easily be specified by a 
top-level so that if an Altera build is desired, the top node 
specifies the Altera build, and then any build that has an 
Altera option uses its custom Altera elements. Those 
elements that are generic continue to be used.  

B. EP3 

While most of the flow management in MEADE can be 
done by tracking files and data through the MEADE 
agents, some processes require that files be generated or 
modified in unique and complex manners. For these 
instances, a preprocessor step has proved effective for 
many of the detailed MEADE files.  

The advantage of using a preprocessor rather than a 
code generation program is that it gives the HDL designer 
the ability to use automation where wanted, but the 
freedom to enter absolute specifications at will. This is an 
important feature when developing sophisticated systems 
as the designer typically ventures into areas that the tool 
programmer had not thought of. 

Traditional preprocessors come with a limited set of 
directives, making some file manipulations hard or 
impossible. To rectify this we developed the extensible Perl 
pre-processor (EP3) [17]. EP3 enables a designer to create 
their own directives and embed the power of the Perl 
language into all of their files – linking them with the node 
and enabling MEADE to dynamically create files for its 
processes. Because it is a preprocessor rather than an 
explicit file manipulator, the designer can easily and 
selectively enact or eliminate special preprocessing 
directives in choice files for specific agents. 

EP3 has been extended not only to parse files, but to 
read in specification files, build large tables of information, 
and subsequently do dynamic code construction based on 
the information. This allows for a simple template file to 
create a very complex HDL description with component 
instantiations and interconnections done automatically and 
with error checking. 

III. Component Integration 

One of the challenges in rapidly creating FPGA-based 
systems is effective design reuse. Many designers find it 
preferable to redesign a component rather than invest the 
time required to effectively integrate a previously designed 
component. As integration is typically done in the realm of 
the logic designer, a system designer cannot prototype a 
system without requiring the detailed skills of the logic 
designer. The Logic Foundry provides a component 
abstraction that makes component integration efficient and 
provides MEADE constructs that allow a system designer 
to create prototype systems from existing components. 

A Logic Foundry component specifies attributes and 
portals. If you think of a component as a black box 
containing some kind of functionality, then attributes are 
the lights, knobs, and switches on that box. Essentially, an 
attribute is any publicly accessible part of the component, 
providing state inspectors and behavioral controls. Portals 



are the elements on a component that provide 
interconnection to the outside and are made up of user-
defined pins. 

A. The Attribute Interface 

Other attempts at FPGA-based development systems 
have assumed that the FPGA implementation is simply a 
static data modifying piece in a processing chain [13,14]. 
Logic Foundry components are designed assuming that 
they will require run-time control and thus are specified as 
having a single attribute interface through which all data 
asynchronous control information flows. The specification 
of this interface is left as an implementation specific detail 
for each platform (interface mapping to platforms is 
described in Section 0).  Each FPGA in a system has 
exactly one controlling attribute interface and every 
component has exactly one attribute interface. All data 
asynchronous communications to the components are done 
through this interface. 

An attribute interface consists of: an attribute bus, a 
strobe signal from the attribute interface, and an event 
signal from each component. We have implemented the 
attribute bus with a tri-state bus that traverses the entire 
chip and connects each component’s attribute interface to 
the main attribute interface. Because attribute accesses are 
relatively infrequent and asynchronous, the attribute bus 
uses a multi-cycle path to eliminate timing concerns and 
minimize routing resources.  

The strobe line from the attribute interface is sent to 
every component via distributed delay chains and is used 
by the components for bus synchronization on the attribute 
bus. Using delay chains costs very little in an FPGA as 
there are typically a large number of unused registers 
throughout a given design. Data and control are 
multiplexed on the bus and handled by small state 
machines in each component which provide simple 
address, control, and data buses inside each component. 

Each component also has an individual event signal that 
is passed back to the main attribute interface. With the 
strobe and the event lines, communication can be initiated 
by each end of the system. This architecture elegantly 
handles data-asynchronous communication requirements 
for our FPGA-based processing systems. 

B. Data Portals   

Components may have any number of input/output 
portals, and in a DSP system, these are generally 
characterized by a streaming data portal. Each streaming 
portal is implemented using a FIFO with ready and valid 
signals. Using FIFO’s on the inputs and outputs of a 
component isolates both the input and the output of each 
cell from timing concerns as all signals going to and 
coming from an interface are registered. This allows 

components to be assembled in a larger system without fear 
of timing restrictions arising from component loading. 

By using FIFO’s to monitor data flow, flow-control is 
automatically propagated throughout the system. It is the 
responsibility of every component to ensure that this 
behavior is followed inside the component. When an 
interface cannot accept data, the component is responsible 
for stopping. If the component cannot stop, then it is up to 
the component to handle any dropped data. In our DSP 
environment, each data transfer represents a sample. By 
using flow control on each stream, there is no need to 
insert delay elements for balancing stream paths – 
synchronization is self-timed. 

FIFO’s are extremely easy to implement in modern 
FPGA’s by using the Lookup Table (LUT) as a small RAM 
component. So, rather than providing a flip-flop for each 
bit as a registration between components, a single LUT can 
be used and (in the case of the Xilinx Virtex part), a 16 
deep FIFO is created. In the Virtex parts, each FIFO 
controller requires but 4 configurable logic blocks (CLB’s). 
In the larger FPGA’s that we are targeting, this usage of 
resources is barely noticeable.  

While the attribute interface handles data-asynchronous 
control, we have defined a packet specification that allows 
for data-synchronous control by allowing control and data 
to flow serially on the same paths between components. 
This specification is beyond the scope of this paper. 

C. The Component Specification  

A component is implemented as a MEADE node that 
contains a component specification file. This file describes 
all attributes for a component, as well as its portals. 
Attributes can be declared with varying widths, lengths, 
and initial values. Because attribute portals and streaming 
portals are typical for components, EP3 directives exist for 
simple construction of these ports. If desired, unique portal 
types can easily be declared and constructed. The 
component specification file is included via EP3 in the 
component HDL specification. EP3 automatically 
generates all of the attribute assignment and read 
statements and connects up the attribute interface. 

IV. Platform Integration 

When designing on a particular platform, certain 
aspects of the component such as memory and control 
interfaces are often built into the design. This poses a 
difficulty in altering the design, even on the same platform. 
Changing a data source from an external source to DMA 
from the PCI bus could amount to a considerable design 
change as memory resources and data availability are 
considerably altered. This problem is exacerbated when 
completely changing platforms. However, as considerably 



better platforms are always being developed, it is necessary 
to be able to rapidly port to these platforms. 

To combat this problem, we are using an abstract portal 
for design level interfaces. A design can be specified in a 
design node (as opposed to a component node) with 
abstract portals. Design nodes are completely platform 
independent and use generic portals. Abstract portals are 
connected to component portals when building a design. 
These abstract portals can then be mapped to a specific 
platform portal in what we call an implementation node.  

A. Abstract Portal Types 

There are various portal types for differing needs. While 
new portal types can easily be developed to suit any given 
need, each abstract portal type requires a corresponding 
implementation portal for every platform. For this reason, 
we attempt to reuse existing portals whenever possible. We 
currently support three portal types: the Streaming Portal, 
the Memory Portal, and the Block Portal. 

A streaming portal is used whenever an application 
expects to stream data continuously. Depending on the 
implementation, this may or may not be the case (compare 
an A/D converter direct input to a PCI bus input that is 
buffered in memory via a DMA), but the design will be 
able to handle a streaming input with flow control. A 
streaming input portal consists of a data output, a data 
valid output, and a data ready input. Streaming portals 
connect directly to the streaming portals of a component.  

Streaming portals may be implemented in many 
different ways — among these, a direct DMA input to the 
design, a direct hardware input, a gigabit Ethernet input, 
or a PMC bus interface. At the design level, all of these 
interface types can be abstracted as a streaming portal. 

Memory portals implement a standard memory interface 
with arbitration via request and acknowledge lines. By 
using these control signals for every external memory 
portal, the implementation will be able to map the abstract 
memory portals to available memory resources, using 
arbitered or dedicated memories wherever appropriate. 

A block portal is similar to the memory portal and 
provides the same memory interface to access a block of 
data. It differs from the memory portal in that the block 
portal also provides transfer initiation control signals that 
allow an entity on the other side of the portal to transfer 
in/out the block. The block portal differs from the 
streaming portal in the location of the transfer initiation 
control. In the streaming portal, all transfers are initiated 
outside of the design block and the design block responds 
in a continuous manner. In the block portal, transfer 
initiation and block size are dictated by the block portal. 

B. The Design Specification  

The design is constructed as a MEADE node that 
contains a design specification file. This file describes the 
components included in a design as well as the design 
portals.  Components are connected to other components or 
portals via their ports. Designs are platform independent. 

The design specification file is included via EP3 in the 
design HDL specification. The design HDL specification is 
a shell HDL template that is completely filled in as EP3 
instantiates and interconnects all of the design 
components. The portals become nothing more than HDL 
ports in the top-level HDL design file. EP3 checks to 
ensure that all port connections are correct in type, 
direction, and size. It also assigns addresses to each 
component. In the HDL testbench, all of the portals supply 
test models so that the design can be fully simulated as a 
platform independent design.  

In the MEADE design node, the top-level HDL 
specification is generated via EP3, and the entire design 
can be simulated and synthesized with MEADE.  

C. The Implementation Specification  

The final platform implementation is implemented as a 
MEADE node that contains an implementation 
specification file. The implementation specification file 
includes the design to be implemented as well as a map for 
each portal to an implementation specific interface.  
Individual components of the design may be mapped to 
different FPGA’s on a platform with multiple different 
FPGA’s. The implementation specification file is included 
via EP3 in the implementation HDL specification. 

For the purpose of this work, we will focus on a single 
FPGA implementation and do the implementation by hand. 
However, it is at this point that other research efforts could 
be facilitated, performing partitioning and mapping of the 
design components. This problem becomes more 
interesting when each component has both FPGA and DSP 
chip implementation described within the node. If a 
platform consists of both an FPGA and a DSP chip, the 
system we are describing would provide an excellent 
foundation for research work in automated partitioning and 
mapping for hardware software co-synthesis [ 18]. 

Each platform to be used in the Logic Foundry requires 
that implementation specific portals are written for that 
platform. Once this has been completed, any prior Logic 
Foundry design can be mapped to that platform - assuming 
the platform can support all specified design portals. For 
our DSP applications on standard FPGA platforms, this is 
a reasonable assumption. 



V. Software Integration 

Another challenge encountered when creating a special 
purpose hardware solution is the custom software that must 
be developed to access the hardware. Often, a completely 
new software interface is developed for each application to 
be placed on a platform. When changing platforms, the 
entire software development process may be redone for the 
new application. It is also desirable to embed the 
performance of FPGA-based processors into different 
application environments. This requires understanding of 
both the application environment and the underlying 
FPGA-based system – knowledge that is difficult to find. 

To resolve this problem we have developed the Dynamic 
Object (DynamO) model. This model provides a very thin 
API designed to provide a clean abstraction between FPGA 
boards or emulators and application environments. 

The DynamO API represents the contract that DynamO 
back ends and front ends need to follow. Dynamo back 
ends are wrappers around the board-specific drivers or 
emulators. The front ends are plug-ins to higher level 
development environments like MATLAB, Python, Perl, 
and Midas 2k (a commercial DSP software product). The 
DynamO API consists of a few calls to allocate a system, to 
get and set attributes, and to write and read portals. These 
calls are implemented by the back-end library as the 
functionality is unique to each back-end platform. 

A. DynamO API 

The API system call uses a system specification file as 
an argument. The very beginning of this file points to a 
back-end implementation and a library to parse the rest of 
the specification file. In this manner, different back ends 
can, if desired, have their own specifications unique to a 
given platform.  By making the parsing of a specification 
file the responsibility of the back end, there is no limitation 
on future back-end implementations.  

The result of the system call is an object representing 
the system being allocated (typically an FPGA board). This 
object is dynamically built at allocation time and contains 
objects representing every component and portal in the 
system. Each component can contain attributes as well as 
other components. Each object also has methods that allow 
access to the attributes and portals. In this manner, the 
application environment is given an object with methods 
that represent the architecture of the system that is to be 
interacted with. No understanding of the implementation 
details of the underlying hardware is required.  

This methodology allows an application to be developed 
focusing on the elements to be interacted with and not the 
interfaces. By using a software back end (such as C code 
written in SystemC), an FPGA system can be modeled in 
software. Then the entire application can be developed and 

run before the FPGA-based application is completed. 
When the FPGA is complete, a new specification file for 
that back end is used and the front-end application requires 
no change. 

B. DynamO Back Ends 

The DynamO back end connects a platform to the 
DynamO API. When the DynamO is allocated, the back 
end provides a library method to parse the specification 
file, and returns a hierarchical DynamO object that 
contains all of the information for the requested system. 

With the Logic Foundry, each portal that has been 
mapped in an implementation requires a software library 
method to access it. Consider the Annapolis MicroSystems 
Starfire board. For the attribute portal, set and get methods 
are provided for the Starfire board that wrap the driver 
calls to communicate with the attribute portal. Read, write, 
and query methods are provided for the DMA driver calls 
that communicate with dma_stream_in and 
dma_stream_out implementation portals.  

While we hope that others find the Logic Foundry easy 
to use, it is important to note that the DynamO 
specification file does not require any of the former Logic 
Foundry components. A designer could build a completely 
unique implementation, and then specify the underlying 
objects and methods for accessing them in a specification 
file.  

C. DynamO Front Ends 

The DynamO front end is responsible for taking the 
DynamO object returned by the allocate method and 
transforming it into an object that the software 
environment can understand and access. For instance, 
using a Python front end, the DynamO object is recreated 
in Python objects, with its methods mapped to the supplied 
DynamO object methods. Additionally, the front end is 
responsible for any type conversion that may be required.  

A DynamO front end is possible for many software 
environments. It is easier to implement applications in a 
multi-threaded environment as the application does not 
have to be concerned with the possibility of blocking on 
portal reads and writes. We have implemented a DynamO 
front end in C++, Python, and Midas2k. 

VI. Design  Case Studies 

We have developed the Logic Foundry including all of 
the major building blocks described — attribute interfaces, 
component abstractions and interface portals, the get/set 
and data write/read portions of the DynamO API, DynamO 
back-ends for an Annapolis MicroSystems Starfire board, 
and Dynamo front-ends for C++, Python, and Midas 2k. 
To test the effectiveness of the Logic Foundry, three 



systems have been developed, a series incrementer, the 
TFD, and a TurboDecoder. 

A. Incrementer Design 

The incrementer component consists of a streaming 
input portal, a streaming output portal, and an amount 
attribute that is added to the input before being passed to 
the output. To test the scalability of the Logic Foundry 
architecture, we created incrementer designs consisting of 
1, 10, and 50 incrementer components connected together 
in series. In each case, system timing remained the same as 
the synthesis and layout tools were able to achieve the 
required 66 MHz control timing for the Starfire control 
bus, while the attribute interface scaled using the multi-
cycle attribute bus (see Table 1). It was initially our 
intention to do a design consisting of 100 serial 
incrementers, however, we reached a limit for the 
XCV1000 parts that only allows a tri-state net to drive 98 
locations. This limits an XCV1000 part to 98 components 
which is acceptable for our typical designs. 

B. TFD Design 

The TFD design was created to test the component 
reuse aspects of the Logic Foundry architecture along with 
the Logic Foundry’s automated design flow. By creating a 
tuner, filter, and decimator component in the Logic 
Foundry, we were able to use the Logic Foundry software 
to automatically implement the TFD design and 
corresponding DynamO object. In order to test the ease of 
component reuse in the Logic Foundry, we opted to create 
a filter/tune/decimate (FTD) system out of the TFD system 
components by rearranging the top-level connection 
specifications. In both cases, control timing was achieved 
and system timing limited by the speed of the tuner 
component (see Table 1). 

C. The Turbo Decoder Design 

The Turbo Decoder was a large design (several 
thousand lines of VHDL code) constructed with a view to 
fitting into the Logic Foundry attribute/portal design 
structure. This design required seven attributes and these 
were easily included via the attribute interface model. 
Implementing the block portals was more difficult as the 
completed Turbo Decoder design required eight unique 
block portals, five of which requiring simultaneous access. 
As the Starfire board had but four memories, this was a 
problem. However, as some of the portals did not require 
independent addressing, we were able to merge them into a 
single memory and achieve an implementation that 
required four independently addressable memories.  

D. Summary of Designs 

Table 1 shows results for each of the test designs 
implemented for the XCV1000-4 FPGA on the Annapolis 

MicroSystems Starfire board. Because control on this 
system is achieved via a 66 MHz PCI bus, the control 
clocks were all constrained to achieve this timing. In the 
case of the incrementer designs, the system clock 
performance was limited by the portal implementations. 
The other designs (TFD, FTD, TurboDecoder) were 
limited by issues internal to their design components. 
Further development will be done to optimize the portal 
implementations for this architecture. The differences 
within design groups (incrementers and downconverters) 
are attributable to variances in the Xilinx software. The 
pseudo-random nature of the algorithms often results in 
variances. By doing a more extensive place-and-route 
operation, we would likely see these numbers converge. 

Table 1: Summary of Designs 

 Ctrl Clk Sys Clk LUT’s FF’s RAM’s 

1 Incrementer 68.648 62.278 1328 1809 5 

10 Incrementers 68.078 65.557 2007 2244 5 

50 Incrementers 66.885 70.299 4959 4076 5 

TFD 68.018 35.661 2873 2238 6 

FTD 67.604 35.177 2873 2222 6 

Turbo Decoder 67.290 39.787 17031 5600 27 

VII. Conclusion 

We have shown how the Logic Foundry approach 
allows for the rapid prototyping and deployment of FPGA-
based systems. Using MEADE and EP3, FPGA 
implementations can be rapidly developed from 
specifications. Using design portals for interface 
abstractions, designs can be created in a platform 
independent manner and easily ported from one FPGA 
platform to another where implementation portals exist. By 
using the DynamO software construction, applications can 
be built that have no dependence on the underlying FPGA 
platform and can easily be ported from platform to 
platform. Inserting a platform into a different software 
environment can also be done with relative ease. 

Our future work will focus on the complete 
implementation of data-synchronous control packets, 
component event control, and the control write/read 
portions of the DynamO API. We have implemented the 
Logic Foundry and the tool is being used extensively in the 
development of high performance FPGA implementations 
of DSP applications, including turbo coding, digital 
downconversion, and despreading applications. 
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