
Logic Foundry: Rapid Prototyping of FPGA-based DSP Systems

Gary Spivey
Rincon Research

Corporation
Tucson, AZ, USA

spivey@rincon.com

Shuvra S. Bhattacharyya*

ECE Department &
UMIACS

University of Maryland,
USA

ssb@eng.umd.edu

Kazuo Nakajima
ECE Dept, University of Maryland, USA &

Graduate School of Information Science,
Nara Institute of Science and Technology,

Ikoma, Nara, Japan
kazuo@is.aist-nara.ac.jp

Abstract – The Logic Foundry is a system for the creation

and integration of FPGA-based DSP systems. Recognizing
that some of the greatest challenges in creating FPGA-based
systems occur in the integration of the various components,
we have developed a system that addresses the following four
areas of integration: design flow integration, component
integration, platform integration, and software integration.
Using the Logic Foundry, a system can easily be specified,
and then automatically constructed and integrated with
system level software.

I. Introduction*

A large number of system development and integration
companies, laboratories, and government organizations
exist that have traditionally produced applications
requiring rapid development and deployment as well as
ongoing design flexibility. These applications are generally
low-volume and frequently specific to defense and
government requirements. This task has generally been
performed by software applications on general-purpose
computers. Often these general-purpose solutions are not
adequate for the processing requirements of the
applications and the designers have been forced to employ
solutions involving special purpose hardware acceleration
capabilities.

These special purpose hardware accelerators come at a
significant cost. This community does not possess the large
infrastructure or volume requirements necessary to produce
or maintain special-purpose hardware. Additionally, the
investment made in integrating special purpose hardware
makes technology migration difficult in an environment
where utilization of leading-edge technology is critical and
often pioneered. Many of these entities are eyeing FPGA-
based platforms as a way to rapidly provide deployable,
flexible, and portable hardware solutions.

Introducing FPGA components into DSP system
implementations creates an assortment of challenges across

* S.S. Bhattacharyya was supported in part by the National
Science Foundataion (Grant #9734275), and the
Advanced Sensors Collaborative Technology Alliance.

system architecture and logic design. Where system
architects may be available, skilled logic designers are a
scarce resource. There is a growing need for tools to allow
system architects to be able to implement FPGA-based
platforms with limited input from logic designers.
Unfortunately, getting designs translated from software
algorithms to hardware implementations has proven to be
difficult.

Earlier efforts such as the GRAPE-II [1] system tended
to focus on creating a heterogeneous multiprocessor rather
than an FPGA-based subsystem — typically enforcing a
static dataflow model. Current efforts like MATCH [2]
have attempted to compile high-level languages such as
MATLAB directly into FPGA implementations. Certain
tools such as C-Level Design [3] have attempted to convert
“C” software into a hardware description language (HDL)
format such as the Verilog HDL (hereafter referred to as
Verilog) or VHDL that can be processed by traditional
FPGA design flows. Other tools use derived languages
based on C such as Handel-C [4], C++ extensions such as
SystemC [5], or Java classes such as JHDL [6]. These tools
give designers the ability to more accurately model the
parallelism offered of the underlying hardware elements.
While these approaches attempt to raise the abstraction
level for design entry, many experienced logic designers
argue that these higher levels of abstraction do not address
the underlying complexities required for efficient hardware
implementations.

Another approach has been to use block-based design
[7] where system architects can behaviorally model at the
system level, and then partition and map design
components onto specific hardware blocks, which are then
designed to meet timing, power, and area constraints. An
example of this technique is the Xilinx System Generator
for the MathWorks Simulink Interface [8]. Using this tool,
a system architect can “develop high-performance DSP
systems for Xilinx FPGA's. Designers can design and
simulate a system using MATLAB, Simulink, and a Xilinx
library of bit/cycle-true models. The tool will then
automatically generate synthesizable Hardware Description
Language (HDL) code mapped to Xilinx pre-optimized

algorithms” [9]. However, this block-based approach still
requires that the designer be intimately involved with the
timing and control aspects of cores in addition to being
able to execute the back-end processes of the FPGA design
flow. Furthermore, the only blocks available to the
designer are the standard library of Xilinx IP Cores. Other
black-box cores can be developed by a logic designer using
standard HDL techniques, but these cannot currently be
modeled in the same environment. Annapolis Micro
Systems has developed a tool entitled “CoreFire” that uses
pre-built blocks to obviate the need for the back-end
processes of the FPGA design flow, but is limited in
application to Annapolis Micro Systems hardware [10]. In
both of the above cases, the system architect must still be
intimate with the underlying hardware in order to
effectively integrate the hardware into a given software
environment.

 Some have proposed using high-level, embedded
system design tools, such as Ptolemy [11] and Polis [12].
These tools emphasize overall system simulation and
software synthesis rather than the details required in
creating and integrating FPGA-based hardware into an
existing system. An effort funded by the DARPA Adaptive
Computing Systems (ACS) program was performed by
Sanders (now BAE Systems) [13] that was successful in
transforming a synchronous dataflow graph into a
reasonable FPGA implementation. However, this effort
was strictly limited to the implementation of a signal
processing datapath with no provisions for run-time
control of processing elements. Another ACS effort,
Champion [14] was implemented using Khoros’s Cantata
[15] as a development and simulation environment. This
effort was also limited to datapaths without run-time
control considerations. While datapath generation is easily
scalable, control synthesis is not. Increased amounts of
control will rapidly degrade system timing, often to the
point where the design becomes unusable.

In the brief survey above of relevant work, we have
observed that while some of these efforts have focused on
the design of FPGA-based DSP processing systems, there
has been less work in the area of implementing and
integrating these designs into existing software application
environments. Typically a specific hardware platform has
been targeted and integration into this platform is left as a
task for the user. Software front-ends are generally
designed on an application-by-application basis and for
specific software environments. Because the community
requirements are often rapidly changing and increasing in
complexity, it is necessary for any solution to be rapidly
designed and modified, portable to the latest, most
powerful processing platform, and easily integrated into a
variety of front-end software application environments. In

other words, in addition to the challenge of creating an
FPGA-based DSP design, there is another great challenge
in implementing that design and integrating it into a
working software application environment.

 It is our experience that one of the greatest challenges
in designing these solutions is the integration of the
hardware into a pre-existing system. To help address this
challenge we have created the “Logic Foundry”. The Logic
Foundry uses a “platform-based” design approach.
Platform-based design starts at the system level and
“achieves its high productivity through extensive, planned
design reuse … productivity is increased by using
predictable, pre-verified blocks that have standardized
interfaces” [7]. To facilitate the rapid implementation and
deployment of these platform-based designs, we have
created a component-based architecture that allows for run-
time control of processing elements. Using this
architecture, an FPGA-based DSP system can be easily
constructed from pre-built components and implemented
on a variety of back-end FPGA platforms. The resulting
implementation can then be automatically encapsulated
and integrated into a variety of front-end software
application environments.

The Logic Foundry was created for four areas of
integration that present challenges in rapid prototyping of
FPGA-based DSP systems: design flow integration,
component integration, platform integration, and software
integration. Each area of integration in the Logic Foundry
operates independently. While the Logic Foundry provides
easy linkages between all areas, a user might make use of
but one area, allowing the Logic Foundry to be adopted
incrementally throughout the design community.

This paper gives an overview of how the Logic Foundry
is used in the rapid prototyping, development, and
deployment of FPGA-based DSP systems. Sections II
through V detail the four areas of integration and how they
are addressed by the Logic Foundry design environment.

II. Design Flow Integration

An FPGA design flow is the process of turning an
FPGA design into a correctly timed image file used to
program the FPGA. Due to the difference in resources
between FPGA’s and general-purpose processors, the
realized algorithm on an FPGA may be quite different than
an algorithm originally specified by a system designer.
While many languages are being proposed as system
design languages (among them C++, Java, and MATLAB),
none of these languages perform this algorithmic
translation step. Therefore, a uniquely skilled logic
designer is generally required to construct an FPGA design
in a Hardware Description Language (HDL). While this
expert may be required for optimal design entry, many

mundane tasks are performed in the process of converting
the design into an FPGA image file using Electronic
Design Automation (EDA) tools. We desire to automate
many of these steps without inhibiting the abilities of the
skilled logic designer.

A. MEADE

To efficiently integrate designs into a user-defined EDA
tool flow, we have developed MEADE – the Modular,
Extensible, Adaptable Design Environment [16]. MEADE
allows users to specify a node to represent a design
building block. A node can be a small function such as an
adder, or a large design like a Turbo-Decoder.
Furthermore, nodes can be connected to other nodes or
contain other nodes, allowing for design reuse and large
system definitions. A node not only contains the elements
that are required for a design (e.g., HDL files, synthesis
files), but also the information required by the design flow
to build the node (e.g., HDL libraries and packages
required, sub-nodes included, element dependencies).

MEADE provides an extensible set of procedures,
actions, and agents. MEADE procedures are sequences of
MEADE actions. A MEADE action can be performed by
one or more MEADE agents. These agents are used to
either perform specific design flow tasks or encapsulate
EDA tools. For example, a simulation procedure can be
defined that has a sequence of actions – make, analysis
setup, simulate, output comparison, and analysis. If a
design house has multiple different simulators, such as
ModelSim and NC-Sim, an agent for each simulator exists
and is selectable by the user at run-time. The same holds
true for any other tools (analysis, synthesis, etc.).

The MEADE agents extract design information from
the nodes when operating on them. Design flow details are
localized in the node by the designer building the node.
When the node is used in a larger system, the system
designer does not need to know the information required to
build a sub-node as that information is automatically
acquired from the sub-node by MEADE. This feature
enables efficient design reuse and provides a mechanism
for IP transfer between different design groups.

MEADE also provides the ability to specify unique
‘builds’ within a given node. For example, a node can be
delivered with Verilog HDL, VHDL, or SystemC
implementations, or with generic, Xilinx, or Altera
implementations. These builds can easily be specified by a
top-level so that if an Altera build is desired, the top node
specifies the Altera build, and then any build that has an
Altera option uses its custom Altera elements. Those
elements that are generic continue to be used.

B. EP3

While most of the flow management in MEADE can be
done by tracking files and data through the MEADE
agents, some processes require that files be generated or
modified in unique and complex manners. For these
instances, a preprocessor step has proved effective for
many of the detailed MEADE files.

The advantage of using a preprocessor rather than a
code generation program is that it gives the HDL designer
the ability to use automation where wanted, but the
freedom to enter absolute specifications at will. This is an
important feature when developing sophisticated systems
as the designer typically ventures into areas that the tool
programmer had not thought of.

Traditional preprocessors come with a limited set of
directives, making some file manipulations hard or
impossible. To rectify this we developed the extensible Perl
pre-processor (EP3) [17]. EP3 enables a designer to create
their own directives and embed the power of the Perl
language into all of their files – linking them with the node
and enabling MEADE to dynamically create files for its
processes. Because it is a preprocessor rather than an
explicit file manipulator, the designer can easily and
selectively enact or eliminate special preprocessing
directives in choice files for specific agents.

EP3 has been extended not only to parse files, but to
read in specification files, build large tables of information,
and subsequently do dynamic code construction based on
the information. This allows for a simple template file to
create a very complex HDL description with component
instantiations and interconnections done automatically and
with error checking.

III. Component Integration

One of the challenges in rapidly creating FPGA-based
systems is effective design reuse. Many designers find it
preferable to redesign a component rather than invest the
time required to effectively integrate a previously designed
component. As integration is typically done in the realm of
the logic designer, a system designer cannot prototype a
system without requiring the detailed skills of the logic
designer. The Logic Foundry provides a component
abstraction that makes component integration efficient and
provides MEADE constructs that allow a system designer
to create prototype systems from existing components.

A Logic Foundry component specifies attributes and
portals. If you think of a component as a black box
containing some kind of functionality, then attributes are
the lights, knobs, and switches on that box. Essentially, an
attribute is any publicly accessible part of the component,
providing state inspectors and behavioral controls. Portals

are the elements on a component that provide
interconnection to the outside and are made up of user-
defined pins.

A. The Attribute Interface

Other attempts at FPGA-based development systems
have assumed that the FPGA implementation is simply a
static data modifying piece in a processing chain [13,14].
Logic Foundry components are designed assuming that
they will require run-time control and thus are specified as
having a single attribute interface through which all data
asynchronous control information flows. The specification
of this interface is left as an implementation specific detail
for each platform (interface mapping to platforms is
described in Section 0). Each FPGA in a system has
exactly one controlling attribute interface and every
component has exactly one attribute interface. All data
asynchronous communications to the components are done
through this interface.

An attribute interface consists of: an attribute bus, a
strobe signal from the attribute interface, and an event
signal from each component. We have implemented the
attribute bus with a tri-state bus that traverses the entire
chip and connects each component’s attribute interface to
the main attribute interface. Because attribute accesses are
relatively infrequent and asynchronous, the attribute bus
uses a multi-cycle path to eliminate timing concerns and
minimize routing resources.

The strobe line from the attribute interface is sent to
every component via distributed delay chains and is used
by the components for bus synchronization on the attribute
bus. Using delay chains costs very little in an FPGA as
there are typically a large number of unused registers
throughout a given design. Data and control are
multiplexed on the bus and handled by small state
machines in each component which provide simple
address, control, and data buses inside each component.

Each component also has an individual event signal that
is passed back to the main attribute interface. With the
strobe and the event lines, communication can be initiated
by each end of the system. This architecture elegantly
handles data-asynchronous communication requirements
for our FPGA-based processing systems.

B. Data Portals

Components may have any number of input/output
portals, and in a DSP system, these are generally
characterized by a streaming data portal. Each streaming
portal is implemented using a FIFO with ready and valid
signals. Using FIFO’s on the inputs and outputs of a
component isolates both the input and the output of each
cell from timing concerns as all signals going to and
coming from an interface are registered. This allows

components to be assembled in a larger system without fear
of timing restrictions arising from component loading.

By using FIFO’s to monitor data flow, flow-control is
automatically propagated throughout the system. It is the
responsibility of every component to ensure that this
behavior is followed inside the component. When an
interface cannot accept data, the component is responsible
for stopping. If the component cannot stop, then it is up to
the component to handle any dropped data. In our DSP
environment, each data transfer represents a sample. By
using flow control on each stream, there is no need to
insert delay elements for balancing stream paths –
synchronization is self-timed.

FIFO’s are extremely easy to implement in modern
FPGA’s by using the Lookup Table (LUT) as a small RAM
component. So, rather than providing a flip-flop for each
bit as a registration between components, a single LUT can
be used and (in the case of the Xilinx Virtex part), a 16
deep FIFO is created. In the Virtex parts, each FIFO
controller requires but 4 configurable logic blocks (CLB’s).
In the larger FPGA’s that we are targeting, this usage of
resources is barely noticeable.

While the attribute interface handles data-asynchronous
control, we have defined a packet specification that allows
for data-synchronous control by allowing control and data
to flow serially on the same paths between components.
This specification is beyond the scope of this paper.

C. The Component Specification

A component is implemented as a MEADE node that
contains a component specification file. This file describes
all attributes for a component, as well as its portals.
Attributes can be declared with varying widths, lengths,
and initial values. Because attribute portals and streaming
portals are typical for components, EP3 directives exist for
simple construction of these ports. If desired, unique portal
types can easily be declared and constructed. The
component specification file is included via EP3 in the
component HDL specification. EP3 automatically
generates all of the attribute assignment and read
statements and connects up the attribute interface.

IV. Platform Integration

When designing on a particular platform, certain
aspects of the component such as memory and control
interfaces are often built into the design. This poses a
difficulty in altering the design, even on the same platform.
Changing a data source from an external source to DMA
from the PCI bus could amount to a considerable design
change as memory resources and data availability are
considerably altered. This problem is exacerbated when
completely changing platforms. However, as considerably

better platforms are always being developed, it is necessary
to be able to rapidly port to these platforms.

To combat this problem, we are using an abstract portal
for design level interfaces. A design can be specified in a
design node (as opposed to a component node) with
abstract portals. Design nodes are completely platform
independent and use generic portals. Abstract portals are
connected to component portals when building a design.
These abstract portals can then be mapped to a specific
platform portal in what we call an implementation node.

A. Abstract Portal Types

There are various portal types for differing needs. While
new portal types can easily be developed to suit any given
need, each abstract portal type requires a corresponding
implementation portal for every platform. For this reason,
we attempt to reuse existing portals whenever possible. We
currently support three portal types: the Streaming Portal,
the Memory Portal, and the Block Portal.

A streaming portal is used whenever an application
expects to stream data continuously. Depending on the
implementation, this may or may not be the case (compare
an A/D converter direct input to a PCI bus input that is
buffered in memory via a DMA), but the design will be
able to handle a streaming input with flow control. A
streaming input portal consists of a data output, a data
valid output, and a data ready input. Streaming portals
connect directly to the streaming portals of a component.

Streaming portals may be implemented in many
different ways — among these, a direct DMA input to the
design, a direct hardware input, a gigabit Ethernet input,
or a PMC bus interface. At the design level, all of these
interface types can be abstracted as a streaming portal.

Memory portals implement a standard memory interface
with arbitration via request and acknowledge lines. By
using these control signals for every external memory
portal, the implementation will be able to map the abstract
memory portals to available memory resources, using
arbitered or dedicated memories wherever appropriate.

A block portal is similar to the memory portal and
provides the same memory interface to access a block of
data. It differs from the memory portal in that the block
portal also provides transfer initiation control signals that
allow an entity on the other side of the portal to transfer
in/out the block. The block portal differs from the
streaming portal in the location of the transfer initiation
control. In the streaming portal, all transfers are initiated
outside of the design block and the design block responds
in a continuous manner. In the block portal, transfer
initiation and block size are dictated by the block portal.

B. The Design Specification

The design is constructed as a MEADE node that
contains a design specification file. This file describes the
components included in a design as well as the design
portals. Components are connected to other components or
portals via their ports. Designs are platform independent.

The design specification file is included via EP3 in the
design HDL specification. The design HDL specification is
a shell HDL template that is completely filled in as EP3
instantiates and interconnects all of the design
components. The portals become nothing more than HDL
ports in the top-level HDL design file. EP3 checks to
ensure that all port connections are correct in type,
direction, and size. It also assigns addresses to each
component. In the HDL testbench, all of the portals supply
test models so that the design can be fully simulated as a
platform independent design.

In the MEADE design node, the top-level HDL
specification is generated via EP3, and the entire design
can be simulated and synthesized with MEADE.

C. The Implementation Specification

The final platform implementation is implemented as a
MEADE node that contains an implementation
specification file. The implementation specification file
includes the design to be implemented as well as a map for
each portal to an implementation specific interface.
Individual components of the design may be mapped to
different FPGA’s on a platform with multiple different
FPGA’s. The implementation specification file is included
via EP3 in the implementation HDL specification.

For the purpose of this work, we will focus on a single
FPGA implementation and do the implementation by hand.
However, it is at this point that other research efforts could
be facilitated, performing partitioning and mapping of the
design components. This problem becomes more
interesting when each component has both FPGA and DSP
chip implementation described within the node. If a
platform consists of both an FPGA and a DSP chip, the
system we are describing would provide an excellent
foundation for research work in automated partitioning and
mapping for hardware software co-synthesis [18].

Each platform to be used in the Logic Foundry requires
that implementation specific portals are written for that
platform. Once this has been completed, any prior Logic
Foundry design can be mapped to that platform - assuming
the platform can support all specified design portals. For
our DSP applications on standard FPGA platforms, this is
a reasonable assumption.

V. Software Integration

Another challenge encountered when creating a special
purpose hardware solution is the custom software that must
be developed to access the hardware. Often, a completely
new software interface is developed for each application to
be placed on a platform. When changing platforms, the
entire software development process may be redone for the
new application. It is also desirable to embed the
performance of FPGA-based processors into different
application environments. This requires understanding of
both the application environment and the underlying
FPGA-based system – knowledge that is difficult to find.

To resolve this problem we have developed the Dynamic
Object (DynamO) model. This model provides a very thin
API designed to provide a clean abstraction between FPGA
boards or emulators and application environments.

The DynamO API represents the contract that DynamO
back ends and front ends need to follow. Dynamo back
ends are wrappers around the board-specific drivers or
emulators. The front ends are plug-ins to higher level
development environments like MATLAB, Python, Perl,
and Midas 2k (a commercial DSP software product). The
DynamO API consists of a few calls to allocate a system, to
get and set attributes, and to write and read portals. These
calls are implemented by the back-end library as the
functionality is unique to each back-end platform.

A. DynamO API

The API system call uses a system specification file as
an argument. The very beginning of this file points to a
back-end implementation and a library to parse the rest of
the specification file. In this manner, different back ends
can, if desired, have their own specifications unique to a
given platform. By making the parsing of a specification
file the responsibility of the back end, there is no limitation
on future back-end implementations.

The result of the system call is an object representing
the system being allocated (typically an FPGA board). This
object is dynamically built at allocation time and contains
objects representing every component and portal in the
system. Each component can contain attributes as well as
other components. Each object also has methods that allow
access to the attributes and portals. In this manner, the
application environment is given an object with methods
that represent the architecture of the system that is to be
interacted with. No understanding of the implementation
details of the underlying hardware is required.

This methodology allows an application to be developed
focusing on the elements to be interacted with and not the
interfaces. By using a software back end (such as C code
written in SystemC), an FPGA system can be modeled in
software. Then the entire application can be developed and

run before the FPGA-based application is completed.
When the FPGA is complete, a new specification file for
that back end is used and the front-end application requires
no change.

B. DynamO Back Ends

The DynamO back end connects a platform to the
DynamO API. When the DynamO is allocated, the back
end provides a library method to parse the specification
file, and returns a hierarchical DynamO object that
contains all of the information for the requested system.

With the Logic Foundry, each portal that has been
mapped in an implementation requires a software library
method to access it. Consider the Annapolis MicroSystems
Starfire board. For the attribute portal, set and get methods
are provided for the Starfire board that wrap the driver
calls to communicate with the attribute portal. Read, write,
and query methods are provided for the DMA driver calls
that communicate with dma_stream_in and
dma_stream_out implementation portals.

While we hope that others find the Logic Foundry easy
to use, it is important to note that the DynamO
specification file does not require any of the former Logic
Foundry components. A designer could build a completely
unique implementation, and then specify the underlying
objects and methods for accessing them in a specification
file.

C. DynamO Front Ends

The DynamO front end is responsible for taking the
DynamO object returned by the allocate method and
transforming it into an object that the software
environment can understand and access. For instance,
using a Python front end, the DynamO object is recreated
in Python objects, with its methods mapped to the supplied
DynamO object methods. Additionally, the front end is
responsible for any type conversion that may be required.

A DynamO front end is possible for many software
environments. It is easier to implement applications in a
multi-threaded environment as the application does not
have to be concerned with the possibility of blocking on
portal reads and writes. We have implemented a DynamO
front end in C++, Python, and Midas2k.

VI. Design Case Studies

We have developed the Logic Foundry including all of
the major building blocks described — attribute interfaces,
component abstractions and interface portals, the get/set
and data write/read portions of the DynamO API, DynamO
back-ends for an Annapolis MicroSystems Starfire board,
and Dynamo front-ends for C++, Python, and Midas 2k.
To test the effectiveness of the Logic Foundry, three

systems have been developed, a series incrementer, the
TFD, and a TurboDecoder.

A. Incrementer Design

The incrementer component consists of a streaming
input portal, a streaming output portal, and an amount
attribute that is added to the input before being passed to
the output. To test the scalability of the Logic Foundry
architecture, we created incrementer designs consisting of
1, 10, and 50 incrementer components connected together
in series. In each case, system timing remained the same as
the synthesis and layout tools were able to achieve the
required 66 MHz control timing for the Starfire control
bus, while the attribute interface scaled using the multi-
cycle attribute bus (see Table 1). It was initially our
intention to do a design consisting of 100 serial
incrementers, however, we reached a limit for the
XCV1000 parts that only allows a tri-state net to drive 98
locations. This limits an XCV1000 part to 98 components
which is acceptable for our typical designs.

B. TFD Design

The TFD design was created to test the component
reuse aspects of the Logic Foundry architecture along with
the Logic Foundry’s automated design flow. By creating a
tuner, filter, and decimator component in the Logic
Foundry, we were able to use the Logic Foundry software
to automatically implement the TFD design and
corresponding DynamO object. In order to test the ease of
component reuse in the Logic Foundry, we opted to create
a filter/tune/decimate (FTD) system out of the TFD system
components by rearranging the top-level connection
specifications. In both cases, control timing was achieved
and system timing limited by the speed of the tuner
component (see Table 1).

C. The Turbo Decoder Design

The Turbo Decoder was a large design (several
thousand lines of VHDL code) constructed with a view to
fitting into the Logic Foundry attribute/portal design
structure. This design required seven attributes and these
were easily included via the attribute interface model.
Implementing the block portals was more difficult as the
completed Turbo Decoder design required eight unique
block portals, five of which requiring simultaneous access.
As the Starfire board had but four memories, this was a
problem. However, as some of the portals did not require
independent addressing, we were able to merge them into a
single memory and achieve an implementation that
required four independently addressable memories.

D. Summary of Designs

Table 1 shows results for each of the test designs
implemented for the XCV1000-4 FPGA on the Annapolis

MicroSystems Starfire board. Because control on this
system is achieved via a 66 MHz PCI bus, the control
clocks were all constrained to achieve this timing. In the
case of the incrementer designs, the system clock
performance was limited by the portal implementations.
The other designs (TFD, FTD, TurboDecoder) were
limited by issues internal to their design components.
Further development will be done to optimize the portal
implementations for this architecture. The differences
within design groups (incrementers and downconverters)
are attributable to variances in the Xilinx software. The
pseudo-random nature of the algorithms often results in
variances. By doing a more extensive place-and-route
operation, we would likely see these numbers converge.

Table 1: Summary of Designs

 Ctrl Clk Sys Clk LUT’s FF’s RAM’s

1 Incrementer 68.648 62.278 1328 1809 5

10 Incrementers 68.078 65.557 2007 2244 5

50 Incrementers 66.885 70.299 4959 4076 5

TFD 68.018 35.661 2873 2238 6

FTD 67.604 35.177 2873 2222 6

Turbo Decoder 67.290 39.787 17031 5600 27

VII. Conclusion

We have shown how the Logic Foundry approach
allows for the rapid prototyping and deployment of FPGA-
based systems. Using MEADE and EP3, FPGA
implementations can be rapidly developed from
specifications. Using design portals for interface
abstractions, designs can be created in a platform
independent manner and easily ported from one FPGA
platform to another where implementation portals exist. By
using the DynamO software construction, applications can
be built that have no dependence on the underlying FPGA
platform and can easily be ported from platform to
platform. Inserting a platform into a different software
environment can also be done with relative ease.

Our future work will focus on the complete
implementation of data-synchronous control packets,
component event control, and the control write/read
portions of the DynamO API. We have implemented the
Logic Foundry and the tool is being used extensively in the
development of high performance FPGA implementations
of DSP applications, including turbo coding, digital
downconversion, and despreading applications.

VIII. References

[1] R. Lauwereins, M. Engels, M. Adé and J. Peperstraete, “Grape-II: A

system-level prototyping environment for DSP applications”, IEEE
Computer, vol. 28, no. 2, pp. 35-43, February, 1995.

[2] P. Banerjee et al, “MATCH: A MATLAB Compiler for Configurable

Computing Systems,” Technical Report, Center for Parallel and
Distributed Computing, Northwestern University, Aug. 1999,
CPDC-TR-9908-013.

[3] http://www.synopsys.com/C-level.html

[4] OXFORD Hardware Compilation Group, The Handel language,
Technical Report, Oxford University 1997.

[5] J. Gerlach and W. Rosenstiel, “System Level Design Using the
SystemC Modeling Platform,” http://www.systemc.org/papers/sda-
2000.pdf.

[6] P. Bellows and B. Hutchings. “JHDL — an HDL for Reconfigurable
Systems,” Proceedings of the IEEE Symposium on FPGA's for
Custom Computing Machines, pp. 175-184, April 1998.

[7] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly and L. Todd,
Surviving the SOC Revolution: A Guide to Platform-Based Design,
Kluwer Academic Publishers, 1999.

[8] Xilinx System Generator v2.1 for Simulink Reference Guide, Xilinx,
2000.

[9] Xilinx System Generator v2.1 for Simulink Reference Guide, Xilinx,
2000.

[10] J. Donaldson, “From Algorithm to Hardware — The Great Tools
Disconnect”, COTS Journal, pp. 48-54, October 2001.

[11] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,”
International Journal of Computer Simulation, Vol. 4, pp. 155-182,
April 1994.

[12] F. Balarin, et al., Hardware-Software Co-Design of Embedded
Systems: The Polis Approach, pp. 10-33, Kluwer Academic
Publishers, 1997.

[13] E. Pauer, C. Myers, P. D. Fiore, C. M. Crawford, E. A. Lee, J. A.
Lundblad, and C. X. Hylands. “Algorithm analysis and mapping
environment for adaptive computing system,” Proc. Second Annual
Workshop on High Performance Embedded Computing. Boston,
MA, pp. 264-265, Sept. 1998.

[14] S. Natarajan, B. Levine, C. Tan, D. Newport, and D. Bouldin,
“Automatic Mapping of Khoros-based Applications to Adaptive
Computing Systems”, Proc. of 1999 Military and Aerospace
Applications of Programmable Devices and Technologies
International Conference (MAPLD) , pp. 101-107, Laurel, MD,
Sept. 1999.

[15] D. Argiro, S. Kubica, “Cantata: The Visual Programming Environment
for the Khoros System”, Visualization, Imaging and Image
Processing (VIIP) Conference Proceedings, Sep. 2001.

[16] G. Spivey and K. Nakajima, “The Philosophy of MEADE: A Modular,
Extensible, Adaptable Design Environment,” Proc. of the
International HDL Conference and Exhibition (HDLCON), San
Jose, CA, pp. 159-165, March 1999.

[17] G. Spivey, “EP3: An Extensible Perl PreProcessor,” Proc. of the
International Verilog HDL Conference and VHDL International
Users Forum (IVC/VIUF), Santa Clara, CA, pp. 106-113, March
1998.

[18] S. S. Bhattacharyya. “Hardware/software co-synthesis of DSP
systems,” in Y. H. Hu, editor, Programmable Digital Signal
Processors: Architecture, Programming, and Applications, pp. 333-
378, Marcel Dekker, Inc., 2002.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

