
An Image Retrieval System Using FPGAs
�

Koji Nakano Etsuko Takamichi

School of Information Science School of Information Science
JAIST JAIST

Tatsunokuchi, Ishikawa 923-1292 Japan Tatsunokuchi, Ishikawa 923-1292 Japan
Tel: +81-761-51-1220 Tel: +81-761-51-1699(ext.1367)
Fax: +81-761-51-1149 Fax: +81-761-51-1149

e-mail: knakano@jaist.ac.jp e-mail e-takami@jaist.ac.jp

Abstract— The main contribution of this paper is to present
an image retrieval system using FPGAs. Given a template im-
age

�
and a database of a number of images �������	�
������ , our sys-

tem lists all images that contain a subimage similar to
�

. More
specifically, a hardware generator in our system creates the Ver-
ilog HDL source of a hardware that determines whether �
� has a
similar subimage to

�
for any image �� and a particular template�

. The created Verilog HDL source is embed in an FPGA using
the design tool provided by the FPGA vendor. Since the hardware
embedded in the FPGA is designed for a particular template

�
, it

is an instance-specific hardware that allows us to achieve extreme
acceleration. We evaluate the performance of our image match-
ing hardware using a PCI-connected Xilinx FPGA and a timing
analyzer. Since the generated hardware attains up to 3000 speed-
up factor over the software solution, our approach is promising.

I. INTRODUCTION

Suppose that an image database � containing a number of
gray-scale images ���������	�����
����� and a template image � are
given. We assume that � is small, say, ���! "��� while each
�	# is large, say, $�%&��'()$�%���' or larger. We are interested in the
task of listing all images in � that contains a similar subimage
to � . This task has many applications in the areas such as ob-
ject recognition, vehicle tracking, finding a particular pattern
in VLSI masks, among others [1]. The main contribution of
this paper is to present an FPGA-based instance-specific hard-
ware solution for this task. More precisely, let *,+-�.�/� #10 de-
note a function that returns a value indicating the difference
between � and � # such that the value of *,+-�2��� #30 is small if � #
has similar subimage to � . Our idea is to embedded a hard-
ware that computes *546+7�	# 0 (89*,+7�2�/�
0) in a PCI-connected
FPGA. We have developed a system illustrated in Figure 1 that
computes *:4;+<��� 0 �/*54;+<�	� 0 �
���
� using the FPGA. Given a tem-
plate image � , our hardware generator automatically creates a
Verilog HDL source program which is designed for computing
*54;+7� 0 . The source program is complied using a design tool
provided by an FPGA vendor. The created hardware is embed-
=
Work supported in part by the Ministry of Education, Science, Sports,

and Culture, Government of Japan, Grant-in-Aid for Exploratory Research
(90113133).

ded in the PCI-connected FPGA. The host PC sends images
�����/�	���
���
� stored in an image database � to the PCI-connected
FPGA. The FPGA computes the values *>4;+<�	# 0 in turn, and
returns each of them to the host PC. The host PC lists the im-
ages whose *:4;+7�
0 is no larger than the threshold value. Al-
though the time necessary to compile the Verilog HDL source
and embedded into the FPGA is very long, say, several hours,
the total computing time can be decreased if database � has a
large number of images.

a template mage ?

Verilog HDL source of
a hardware computing @6ACBED
F

Our hardware generator

Design tool
host PC

FPGA
Images D ��G D �
G DIHKJIJIJ

@ A BED � F G @ A BLD � F G @ A BED H F G JMJMJ
PCI bus

Fig. 1. Our FPGA-based image retrieval system

Let � be a template image with NO ,N pixels and � be an
image with PQ RP pixels. We assume that � has S effective
pixels (SUTVN �) that are taken into account for image match-
ing. As we are going to show later, the evaluation of *)+-�2��� 0
for W -level gray-scale images takes X5+-P � S 0 time by a software
solution. Our instance-specific FPGA solution runs in Y�Z[lo-
cal clock cycles using X5+7N\S 0 gates, X5+-N � 0 flip-flops, and an

+-N^]_$ 0 P -bit block RAM for binary images, and in Y Z&` a/bdc[
local clock cycles using X5+-NeS 0 gates, X5+-N �Cfhg�i W 0 flip-flops,
and fhg�i W block RAMs with NUP bits each for W -level gray-
scale images. Thus, from the theoretical point of view, our
FPGA-based instance-specific solution is much faster than the
conventional software solution.

We evaluate the performance of our hardware using a tim-
ing analyzer for the Xilinx VirtexII series FPGA XC2V8000.
Further, we test our hardware using Spartan2(XC2S150) PCI
card Strathnuey [3]. Since the generated hardware attains up
to 3000 speed-up factor over the sequential algorithm, our ap-
proach is a promising solution. An image matching hardware
using an FPGA has been proposed [2]. Their hardware is not

instance-specific, does not support gray-scale images, and runs
in X5+7P � 0 clock cycles. Thus, our hardware is a significant
improvement on the FPGA-based image matching hardware.
Also, an isntance-speicific solution for image matching has
been shown[6]. However, it does not support gray-scale im-
age and parallel matching.

II. THE IMAGE DIFFERENCE FUNCTION

An W -level gray-scale image � of size N^ !N is an N^ eN
two dimensional array with each element (or pixel) taking an
integer in the range � % �/W] $�� . The value of an +������ 0 pixel
� #�� � ($ T	����� T N) of � corresponds to its brightness. In other
words, pixel +
����� 0 is black if � #�� � 8 % and white if � #
� � 8 W5]U$.
We assume that pixel +I$��
$ 0 is the top of the leftmost column of
� . An W -level gray-scale image � is a binary image if W 8 � .
An N)N template image � is an image with “don’t care”,
that is, an N RN two dimensional array with each element
taking either an integer in � %d��W] $�� or a special value � . An
+
����� 0 pixel ($,T����� T N) of � is “don’t care” if � #�� �e8�� .
Let S denote the number of effective pixels, which are non-
“don’t care” pixels in � . The value of S , which depends on the
applications, can be much smaller than N � .

Let * be the function that returns an integer for a template
image � and an image � such that

*,+7�2�/� 0 8 �
4��
� �������� � #�� �]R�	#�� � � � (1)

Intuitively, *,+-�.�/� 0 is the sum of the difference of the bright-
ness over all effective pixels. Clearly, *,+7�2�/� 0 takes a larger
value if they are less similar. Note that, for a binary template
� and a binary image � , their difference is

*,+-�.�/� 0 8 �
4���� ������ � #�� ��� �	#�� ��� (2)

where � denotes the exclusive OR operator.
Suppose that an image � is larger than a template image � .

Let P eP (P �QN) be the size of image � . Further, let �!� " �$#%�
($ T&"C�'#UT Pe] N(Q$) denote an N UN subimage of � that
includes all pixels �
#*)�� �') (" T+�-,6T+".(N] $ and #RT/�%,6T#0("N] $). The image difference function *,+-�2��� 0 between a
template � and an image � is

*,+-�2��� 0 8 132*4�65!78� 9�5 Y;: [=< � *,+-�.�/�!� " �$#%� 0 � (3)

Clearly, *,+-�2��� 0 is small if � has a similar subimage to � .
Also, let * 4 denote a function such that * 4 +7� 0 8 *,+-�2��� 0 .

By evaluating *)+-�2����� 0 ��*,+-�.�/�	� 0 ���
�
� in turn, we can re-
trieve all images in a database of images �����/�	� �
���
� , which have
a similar subimage to � . Our goal is to accelerate the computa-
tion of evaluating *,+-�.�/� 0 . For later reference, let us evaluate
the computing time necessary to compute *,+7�2�/� 0 by a soft-
ware (or a sequential algorithm). For an N N template image
� with S effective pixels and a subimage �!� " �$#%� , the value of

*,+-�.�/�!� " �$#%� 0 can be computed in X5+7S 0 time. Hence, the eval-
uation of *)+-�2���>� "C�'#?� 0 for all �!� " �$#%� ($ T@" �$#\T P\]RNA($)
takes +-P] NB(V$ 0 � X5+7S 0 8 X5+-P � S 0 time. Therefore, the
task of computing the image difference *,+7�2�/� 0 takes X5+-P � S 0
time.

III. AN IMAGE MATCHING HARDWARE FOR BINARY IMAGE

RETRIEVAL

In this section, we are going to show our FPGA-based
instance-specific hardware that computes *>4;+<� 0 (8 *,+-�2��� 0)
for a fixed template � and various images � . We start with a
binary template � and a binary image � . We then go on to
extend our hardware to support gray-scale images later.

Figure 2 illustrates our hardware for N 8 ' that evaluates
*,+-�.�/� 0 using formulas (2) and (3). For simplicity, we assume
that, for a template � of size N \N , N pixels of image � can
be supplied via PCI-bus in every local clock cycle.

CDC -bit registers

Muller-Preparata’s circuit
for computing the number of 1 ’s

@6A BED�E F GHG�I Fcircuit for computing @ A BLD�E F G�G�I F
J

J

J

J
1

01

0

0

1

1

1

1

template ?

C
C J JJ

comparatorKML6N!O
-bit

register

Image D

Fig. 2. A hardware implementation of our circuit computing @ A BLD
F .

Next, we are going to show how our hardware works. Let
� [� �����P� denote the set of vertical adjacent N pixels � #
� � , � # < �6� � ,
�
��� , �
< [: �Q� � . Note that the N pixels in any � [� �����8� can be
transferred to the register in a local clock cycle. Every pixel in
image � of size P! >P is transferred to the N N -bit registers in
PSR +-Pe] NT(Q$ 0 clock cycles as follows:

for �VU $ to PU] NA($ do
for �WU $ to P do

Perform the following two operations in parallel:
1. � [� �����8� is transfered to the rightmost register;
2. the N registers are shifted to the left by one.

It should be clear that, subimage �>�h$ ��$�� is stored in the registers
when +������ 0 8 +I$��MN 0 . Further, every subimage �!� "C�$#%� ($RT"C�'# T P,]"N�(V$) is stored in the registers when � 8X" and� 8Y#0("N] $.

We use a combinatorial circuit that computes *:4 +7�!� "C�$#%� 0
for subimage �!� "C�$#%� currently stored in the N N -bit registers.
It consists of parallel inversions and the Muller-Preparata’s cir-
cuit [4, 5] that computes the number 1’s in the input bits. For
every pixel of template image � , the corresponding register bit
or its inversion is connected to the Muller-Preparata’s circuit
if it is 1 or 0, respectively. Since � has S effective pixels, the
Muller-Preparata’s circuit computes the sum of S bits, which is
equal to the value of *:4;+<�>� "C�'#%� 0 .

To compute the minimum of *:4;+<�>� "C�'#?� 0 over all " and # ,
a comparator and a fEg i S -bit register is used. The comparator
computes the minimum of two fEg i S -bit integers. The register
is storing the temporary minimum value of *>4;+<�>� "C�'#%� 0 so far.
If the current value of *:4;+<�>� "C�'#%� 0 is smaller, then it is stored
in the register. It should be clear that, after every pixel in image
� is supplied to this circuit, the fhg�i S -bit register stores *>46+7� 0 .

Next, let us evaluate the performance and the hardware re-
souses used by our hardware. As we discussed, our hardware
computes * 4 +7� 0 in less than P � clock cycles. The Muller-
Preparata’s circuit [4] that counts the number of 1’s in S bits has
X5+7S 0 gates. Furhter, the fEg i S -bit comparator has no more than
X5+ fEg i S 0 gates. The N N -bit registers uses N � flips-flops and
the fhg�i S -bit register uses fhg�i S (� � fhg�i N) flip-flops. Thus,
our hardware uses X5+7S 0 gates and X5+7N � 0 flip-flops.

IV. PARALLEL IMAGE MATCHING FOR BINARY IMAGES

This section is devoted to show our parallel image matching
architecture for further acceleration.

���
Z
�����	� -bit registers

� circuits for

evaluating
��

B C��� F���� -bit
cache

�� ����� � �	��� �

�� ����� ����� �	��� �

�� ����� ��� Z

�	��� �

�� ����� ����� �	��� �

Image D

Fig. 3. Implementation of parallel C circuits computing @ ACBED
F .

Figure 3 illustrates a part of our parallel image match-

ing hardware. In order to reduce the number of clock cy-
cles, we use N circuits computing *>4;+7�!� "C�$#%� 0 ��* 46+7�!� "	(
$ �'#?� 0 ���
���	�/* 4 +<�>� " (N] $ �'#?� 0 in parallel. Note that,
* 4 +7�!� "C�$#%� 0 ��* 4 +7�!� " ($ �$#%� 0 ���
�
�
�/* 4 +<�>� " (N9] $ �$#%� 0 com-
bined correspond to a subimage with +<��N]_$ 0 N pixels.
Thus, we use N registers with +<��N] $ 0 bits each to store a
subimage of +<��N]Q$ 0 !N pixels. Again, we assume that N
pixels in an image � are supplied in every local clock cycle.
Hence, vertical +<��N]V$ 0 pixels cannot be transferred to the
rightmost +<��N]Q$ 0 -bit register in every local clock cycle. To
supply the +<��N] $ 0 pixels to the register in every local clock
cycle, we use an +-N] $ 0 ,P -bit cache, that is, a cache with
+-N] $ 0 -bit data and fhg�i P -bit address.

In what follows, we will describe how our parallel image
matching hardware illustrated in Figure 3 works. An image �
is transferred to the registers as follows.

for �VU $ to Y[do
for �WU $ to P do

Perform the following four operations in parallel:
1. � [�E+
�] $ 0 R
NT($ ���P� is transfered to the

rightmost register;
2. � [: � �E+
�] $ 0 R
NT(� ���P� is transfered to the

address � of the cache;
3. the N] $ pixels stored in the address � of the

cache is transferred to the rightmost register;
4. the N registers are shifted by one to the left.

As illustrated in Figure 3, N circuits for evaluating *>4 are
connected to the N +1��N] $ 0 -bit registers. When the regis-
ters are storing �>� "C�'#%�1���>� " ($ �$#%�3�
���
�	���>� " (RN9] $ �$#%� , the N
circuits compute *546+7�!� " �$#%� 0 �/*54 +7�!� " ($ �'#%� 0 �
�
������*54 +7�!� " (
N] $��$#%� 0 in parallel. Their minimum is computed by a tree
of comparators in obvious way. Consequently, our parallel
hardware computes *:4;+<� 0 in P R Y[8^Y�Z[clock cycles. Fur-
ther it has X5+7N � 0 flip-flops for registers, X5+7N\S 0 gates, and an
+-N] $ 0 P -bit block RAM. We have also constructed the parallel
version of our gray-scale image matching hardware similarly
to that for binary images. However, due to the page limitation,
we omit the description of parallel gray-scale image matching
hardware.

V. THE PERFORMANCE EVALUATION

The main purpose of this section is to evaluate the perfor-
mance of our image matching hardware to compute * 4 +7� 0 for
templates � with ��� 2�&� pixels and images � with $�%���'; $�%���'
pixels.

Before we evaluate the performance of our hardware, we
will show the computing time by the software approach as
counterparts. Table I shows the computing time of *,+-�.�/� 0 on
a 2.4GHz Pentium4-based PC. For W 8 ' and 16, the value of
*,+-�.�/� 0 is computed by evaluating formulas (1) and (3) in Sec-
tion II combined. Since *,+7�2�/�!� " �$#%� 0 is evaluated using for-
mula (1), the computing time is proportional to S . For W 8_� ,
we use the bitwise XOR operation of a word of 32-bit data to
evaluate formula (2). Also, we accelerate the computation of

the sum in formula (2) using the look-up table storing the num-
ber of 1’s in a 16-bit data. More precisely, let � be a table of
size �(e� ��� 8Q�&��%���� 2	��
 such that � � " � is storing the number
of 1’s in a 16-bit word " . The number of 1’s in a word of 32-
bit data can be computed by looking up table � twice. Note
that the computing time in Talbe I does not include the time
necessary to build the table � .

TABLE I
THE COMPUTING TIME OF @ B�? G D
F BY SOFTWARE (msec)

�� 128 256 512 768� �� 1256 1345 1652 1797� �� 1495 2958 5812 8667� ���� 1530 3042 5970 8918

We have tested our image matching hardware using Spar-
tan2(XC2S150) PCI card Strathnuey [3]. This PCI card is con-
nected to the host PC through the 33-MHz 32-bit PCI bus. Ta-
ble II illustrates the performance of our image matching hard-
ware which includes the clock frequency given by the tim-
ing analyzer, the actual time to evaluate *:46+7� 0 , the speed-
up over the software, the number of used slices over 1728
available slices, and the number of used slice flip-flops over
3456 available flip-flops. Unfortunately, due to the small ca-
pacity of XC2S150, we could test our non-parallel hardware
for binary images with S 8O$���� �������d��� $��d������� effective pix-
els and 4-level gray-scale images with S_8 $���� ������� . For
our parallel image matching hardware, we could test for bi-
nary images with only S!8 $�� pixels. Consequently, even if
we use non-parallel image matching hardware embedded in
the small FPGA, * 4 +7� 0 can be computed more than 16 times
faster than the software. The computing time for binary im-
ages is approximately 75msec, which is bounded by the band-
width of the 33MHz 32-bit PCI bus. More presicely, since
$�%&��' +I$�%&��'] ���0($ 0 8 $ � %d$���� words of 32-bit data are
transfered in 75msec, the PCI bus sends images in 434Mbit/s,
which is close to the actual maximum bandwidth of the 33MHz
32-bit PCI bus.

TABLE II
THE PERFORMANCE OF OUR IMAGE MATCHING HARDWARE

IMPLEMENTED ON SPARTAN2
� � Freq. Time Speed Slices Slice

(MHz) (msec) -up FFs
2 128 39.6 75.2 16.7 714 902
2 256 35.8 75.2 17.9 926 1018
2 512 32.7 75.0 22.0 1316 1107
2 768 30.1 75.1 23.9 1681 1122
4 128 33.0 76.5 19.5 1334 1747
4 256 34.3 76.2 38.7 1726 1978

2 16 24.1 4.9 - 1682 1741

We have also estimated the performance of our im-
age matching hardware using the VirtexII series FPGA
XC2V8000. Again, we assume that a template image � has
���\ R��� pixels and an image � has $�%���'e $�%&��' pixels. We
have estimated our hardware for randomly generated templates
� of size ���> !��� with effective pixels S(8 $����d������� ���d$�� and

768. Due to the stringent page limitation, we omit the perfor-
mance of our non-parallel image matching hardware. Table III
shows the performance of parallel image matching hardware.
For W 8 � �/' , and 16, we use

[
` a�bdc 8 �&� �
$�� , and 8 circuits

that compute * 4 +<� 0 in parallel, respectively. For WQ89$�� and
S 8 �!��� , the hardware uses " �/��#��" �$#�%/�'&)(%d�*��+ of available slices.
For W 8 �d�M' and 16, the hardware also uses 2, 4, and 8 block
RAMs out of 168 block RAMs. The speedup factors over the
software solution are in the range 349-3198. Thus, our ap-
proach for image matching and retrieval is promising.

TABLE III
THE PERFORMANCE OF OUR PARALLEL IMAGE MATCHING HARDWARE

IMPLEMENTED ON VIRTEXII
� � Freq. Time Speed Slices Slice

(MHz) (msec) -up FFs
2 128 28.0 1.17 1074 6188 2277
2 256 26.2 1.25 1076 11307 2899
2 512 24.6 1.33 1242 21765 4557
2 768 23.1 1.42 1265 32310 6243
4 128 29.3 2.24 667 6457 3197
4 256 27.3 2.40 1233 11403 3663
4 512 25.6 2.57 2261 21659 5276
4 768 24.2 2.71 3198 32056 7046
16 128 29.9 4.39 349 8860 5071
16 256 27.8 4.72 644 15021 5184
16 512 26.1 5.03 1187 27146 5264
16 768 24.6 5.31 1679 42251 5433

REFERENCES

[1] M. Gavrilov, P. Indyk, R. Motwani, and S. Venkatasub-
ramanian. Geometric pattern matching: A performance
study. In Proc. of Symposium on Computational Geome-
try, pages 79–85, 1999.

[2] T. Kean and A. Duncan. A 800Mpixel/sec reconfigurable
image correlator on XC6216. In Proc. of International
Conference on Field Programmable Logic and Applica-
tions (FPL), pages 382–391, 1997.

[3] Nallatech Ltd. Strathnuey SPATAN-II PCI card users
guide, 2000.

[4] D. E. Muller and F. P. Preparata. Bounds to complexityies
of network for sorting and for switching. J. ACM, 22:195–
201, 1975.

[5] K. Nakano and K. Wada. Integer summing algorithms
on reconfigurable meshes. Theoretical Computer Science,
197:57–77, 1998.

[6] John Villasenor, Brian Schoner, Kang-Ngee Chia, Charles
Zapata, Hea Joung Kim, Chris Jones, Shane Lansing, and
Bill Mangione-Smith. Configurable computing solutions
for automatic target recognition. In 4th IEEE Symposium
on FPGAs for Custom Computing Machines (FCCM ’96),
1996.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

