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Abstract— The main contribution of this paper is to present
an image retrieval system using FPGAs. Given a template im-
age T and a database of a number of images I, I», .. ., our sys-
tem lists all images that contain a subimage similar to 7. More
specifically, a hardware generator in our system creates the Ver-
ilog HDL source of a hardware that determines whether I; has a
similar subimage to 7" for any image I; and a particular template
T. The created Verilog HDL source is embed in an FPGA using
the design tool provided by the FPGA vendor. Since the hardware
embedded in the FPGA is designed for a particular template 7', it
is an instance-specific hardware that allows us to achieve extreme
acceleration. We evaluate the performance of our image match-
ing hardware using a PCI-connected Xilinx FPGA and a timing
analyzer. Since the generated hardware attains up to 3000 speed-
up factor over the software solution, our approach is promising.

. INTRODUCTION

Suppose that an image database Z containing a number of
gray-scale images {I1,I>,...} and a template image T' are
given. We assume that 7" is small, say, 32 x 32 while each
I; is large, say, 1024 x 1024 or larger. We are interested in the
task of listing all images in Z that contains a similar subimage
to T'. This task has many applications in the areas such as ob-
ject recognition, vehicle tracking, finding a particular pattern
in VLSI masks, among others [1]. The main contribution of
this paper is to present an FPGA-based instance-specific hard-
ware solution for this task. More precisely, let D(T,I;) de-
note a function that returns a value indicating the difference
between T" and I; such that the value of D(T, I;) is small if I;
has similar subimage to 7. Our idea is to embedded a hard-
ware that computes Dr(I;) (= D(T,I;)) in a PCl-connected
FPGA. We have developed a system illustrated in Figure 1 that
computes Dr(I1), Dr(I2), ... using the FPGA. Given a tem-
plate image 7', our hardware generator automatically creates a
Verilog HDL source program which is designed for computing
Dy (I). The source program is complied using a design tool
provided by an FPGA vendor. The created hardware is embed-
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ded in the PCl-connected FPGA. The host PC sends images
I, I, ... stored in an image database Z to the PCI-connected
FPGA. The FPGA computes the values Dr(Z;) in turn, and
returns each of them to the host PC. The host PC lists the im-
ages whose Dr(I;) is no larger than the threshold value. Al-
though the time necessary to compile the Verilog HDL source
and embedded into the FPGA is very long, say, several hours,
the total computing time can be decreased if database Z has a
large number of images.
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Fig. 1. Our FPGA-based image retrieval system

Let T" be a template image with m x m pixels and I be an
image with n x n pixels. We assume that T" has e effective
pixels (e < m?) that are taken into account for image match-
ing. As we are going to show later, the evaluation of D(T, I)
for L-level gray-scale images takes O(n2e) time by a software
solution. Our instance-specific FPGA solution runs in %2 lo-
cal clock cycles using O(me) gates, O(m?) flip-flops, and an
(m — 1)n-bit block RAM for binary images, and in ”Q—ln‘;gi
local clock cycles using O(me) gates, O(m? log L) flip-flops,
and log L block RAMs with mn bits each for L-level gray-
scale images. Thus, from the theoretical point of view, our
FPGA-based instance-specific solution is much faster than the
conventional software solution.

We evaluate the performance of our hardware using a tim-
ing analyzer for the Xilinx VirtexIl series FPGA XC2Vv8000.
Further, we test our hardware using Spartan2(XC2S150) PCI
card Strathnuey [3]. Since the generated hardware attains up
to 3000 speed-up factor over the sequential algorithm, our ap-
proach is a promising solution. An image matching hardware
using an FPGA has been proposed [2]. Their hardware is not



instance-specific, does not support gray-scale images, and runs
in O(n?) clock cycles. Thus, our hardware is a significant
improvement on the FPGA-based image matching hardware.
Also, an isntance-speicific solution for image matching has
been shown[6]. However, it does not support gray-scale im-
age and parallel matching.

Il. THE IMAGE DIFFERENCE FUNCTION

An L-level gray-scaleimage I of size m x m isanm x m
two dimensional array with each element (or pixel) taking an
integer in the range [0, L — 1]. The value of an (7,7) pixel
I; ; (1 <i,57 < m)of I corresponds to its brightness. In other
words, pixel (3, j) is black if I; ; = 0 and white if I; ; = L—1.
We assume that pixel (1, 1) is the top of the leftmost column of
I. An L-level gray-scale image I is a binary image if L = 2.
An m x m template image T is an image with “don’t care”,
that is, an m x m two dimensional array with each element
taking either an integer in [0, L — 1] or a special value d. An
(¢,7) pixel 1 < i,j < m)of T is “don’t care” if T; ; = d.
Let e denote the number of effective pixels, which are non-
“don’t care” pixels in T'. The value of e, which depends on the
applications, can be much smaller than m?2.

Let D be the function that returns an integer for a template
image T" and an image I such that

> 1T — Tl 1)

Ti,;#d

D(T,I) =

Intuitively, D(T, I) is the sum of the difference of the bright-
ness over all effective pixels. Clearly, D(T, I) takes a larger
value if they are less similar. Note that, for a binary template
T and a binary image I, their difference is

D(T,I) = Y Ti;ely, )

T; ;#d

where & denotes the exclusive OR operator.

Suppose that an image I is larger than a template image 7.
Letn x n (n > m) be the size of image I. Further, let I[z, y]
(1 <z,y <n —m + 1) denote an m x m subimage of I that
includes all pixels I;; j; (z <i' <z+m—1landy < j' <
y + m — 1). Theimage difference function D (T, I') between a
template 7" and an image I is

min

D(T’ I) - 1<z, y<n—m+1

D(T, Iz, y)). @)
Clearly, D(T,I) is small if I has a similar subimage to 7.
Also, let D denote a function such that Dr(I) = D(T, I).
By evaluating D(T,I1,),D(T, Iz), ... in turn, we can re-
trieve all images in a database of images I, I, . . ., which have
asimilar subimage to 7". Our goal is to accelerate the computa-
tion of evaluating D(T', I'). For later reference, let us evaluate
the computing time necessary to compute D(T', I) by a soft-
ware (or a sequential algorithm). For an m xm template image
T with e effective pixels and a subimage I[z,y], the value of

D(T, Iz, y]) can be computed in O(e) time. Hence, the eval-
uation of D(T, I[z,y]) forall I[z,y] 1 < z,y <n—m+ 1)
takes (n — m + 1)2 x O(e) = O(n2e) time. Therefore, the
task of computing the image difference D(T, I) takes O(n2e)
time.

I1l. AN IMAGE MATCHING HARDWARE FOR BINARY IMAGE
RETRIEVAL

In this section, we are going to show our FPGA-based
instance-specific hardware that computes Dr(I) (= D(T, I))
for a fixed template 7" and various images I. We start with a
binary template T" and a binary image I. We then go on to
extend our hardware to support gray-scale images later.

Figure 2 illustrates our hardware for m = 4 that evaluates
D(T, I) using formulas (2) and (3). For simplicity, we assume
that, for a template T" of size m x m, m pixels of image I can
be supplied via PCl-bus in every local clock cycle.
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Fig. 2. A hardware implementation of our circuit computing D7 (I).

Next, we are going to show how our hardware works. Let
I, [i, j] denote the set of vertical adjacent m pixels I; ;, I;y1 ;,
-« Tizm—1,5. Note that the m pixels in any I,,[¢, j] can be
transferred to the register in a local clock cycle. Every pixel in
image I of size n x n is transferred to the m m-bit registers in
n - (n —m + 1) clock cycles as follows:

fori+ 1lton—m+1do
for j « 1ton do
Perform the following two operations in parallel:
1. I, [, 4] is transfered to the rightmost register;
2. the m registers are shifted to the left by one.

It should be clear that, subimage I[1, 1] is stored in the registers
when (i,5) = (1,m). Further, every subimage I[z,y] (1 <
z,y < n —m + 1) is stored in the registers when i = z and
j=y+m-—1.



We use a combinatorial circuit that computes Dr(I[z, y])
for subimage I[z, y] currently stored in the m m-bit registers.
It consists of parallel inversions and the Muller-Preparata’s cir-
cuit [4, 5] that computes the number 1’s in the input bits. For
every pixel of template image 7', the corresponding register bit
or its inversion is connected to the Muller-Preparata’s circuit
if it is 1 or O, respectively. Since T has e effective pixels, the
Muller-Preparata’s circuit computes the sum of e bits, which is
equal to the value of Dr(I[z,y]).

To compute the minimum of Dr(I[z,y]) over all z and y,
a comparator and a log e-bit register is used. The comparator
computes the minimum of two log e-bit integers. The register
is storing the temporary minimum value of D¢ (I[z,y]) so far.
If the current value of Dy (I[x,y]) is smaller, then it is stored
in the register. It should be clear that, after every pixel in image
I is supplied to this circuit, the log e-bit register stores D(I).

Next, let us evaluate the performance and the hardware re-
souses used by our hardware. As we discussed, our hardware
computes Dr(I) in less than n? clock cycles. The Muller-
Preparata’s circuit [4] that counts the number of 1’s in e bits has
O(e) gates. Furhter, the log e-bit comparator has no more than
O(log e) gates. The m m-bit registers uses m? flips-flops and
the log e-bit register uses loge (< 2logm) flip-flops. Thus,
our hardware uses O(e) gates and O(m?) flip-flops.

IV. PARALLEL IMAGE MATCHING FOR BINARY IMAGES

This section is devoted to show our parallel image matching
architecture for further acceleration.
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Fig. 3. Implementation of parallel m circuits computing D ().

Figure 3 illustrates a part of our parallel image match-

ing hardware. In order to reduce the number of clock cy-
cles, we use m circuits computing Dr(I[z,y]), Dr(I[z +
1,9]),...,Dr(I[x + m — 1,y]) in parallel. Note that,
DT(I['Z-J y]): DT(I['Z. + 17 y]): R DT(I['T +m— l)y]) com-
bined correspond to a subimage with (2m — 1) x m pixels.
Thus, we use m registers with (2m — 1) bits each to store a
subimage of (2m — 1) x m pixels. Again, we assume that m
pixels in an image I are supplied in every local clock cycle.
Hence, vertical (2m — 1) pixels cannot be transferred to the
rightmost (2m — 1)-bit register in every local clock cycle. To
supply the (2m — 1) pixels to the register in every local clock
cycle, we use an (m — 1) x n-bit cache, that is, a cache with
(m — 1)-bit data and log n-bit address.

In what follows, we will describe how our parallel image
matching hardware illustrated in Figure 3 works. An image I
is transferred to the registers as follows.

for i <~ 1to > do
for j « 1ton do
Perform the following four operations in parallel:
1. I,[(i — 1) - m + 1, j] is transfered to the
rightmost register;
2. Ip—1[(i — 1) - m + 2, j] is transfered to the
address j of the cache;
3. the m — 1 pixels stored in the address j of the
cache is transferred to the rightmost register;
4. the m registers are shifted by one to the left.

As illustrated in Figure 3, m circuits for evaluating D7 are
connected to the m (2m — 1)-bit registers. When the regis-
ters are storing Iz, y], I[x + 1,9],...,I[x + m —1,y], the m
circuits compute Dy (I[z,y]), Dr(I[x+1,9]), ..., Dr(I[x +
m — 1,y]) in parallel. Their minimum is computed by a tree
of comparators in obvious way. Consequently, our parallel
hardware computes Dz (I) inn - 7 = %2 clock cycles. Fur-
ther it has O(m?) flip-flops for registers, O(me) gates, and an
(m—1)n-bit block RAM. We have also constructed the parallel
version of our gray-scale image matching hardware similarly
to that for binary images. However, due to the page limitation,
we omit the description of parallel gray-scale image matching
hardware.

V. THE PERFORMANCE EVALUATION

The main purpose of this section is to evaluate the perfor-
mance of our image matching hardware to compute D (I) for
templates 7" with 32 x 32 pixels and images I with 1024 x 1024
pixels.

Before we evaluate the performance of our hardware, we
will show the computing time by the software approach as
counterparts. Table I shows the computing time of D(T', I) on
a 2.4GHz Pentium4-based PC. For L = 4 and 16, the value of
D(T, I) is computed by evaluating formulas (1) and (3) in Sec-
tion 1l combined. Since D(T, I[z,y]) is evaluated using for-
mula (1), the computing time is proportional to e. For L = 2,
we use the bitwise XOR operation of a word of 32-bit data to
evaluate formula (2). Also, we accelerate the computation of



the sum in formula (2) using the look-up table storing the num-
ber of 1’s in a 16-bit data. More precisely, let N be a table of
size 5 x 216 = 320Kbits such that N [z] is storing the number
of 1’s in a 16-bit word x. The number of 1’s in a word of 32-
bit data can be computed by looking up table NV twice. Note
that the computing time in Talbe I does not include the time
necessary to build the table V.

TABLEI
THE COMPUTING TIME OF D(T',I) BY SOFTWARE (MSec)

e= 128 | 256 | 512 | 768
L=2 | 1256 | 1345 | 1652 | 1797
L =4 | 1495 | 2958 | 5812 | 8667
L =16 | 1530 | 3042 | 5970 | 8918

We have tested our image matching hardware using Spar-
tan2(XC2S150) PCI card Strathnuey [3]. This PCI card is con-
nected to the host PC through the 33-MHz 32-bit PCI bus. Ta-
ble 11 illustrates the performance of our image matching hard-
ware which includes the clock frequency given by the tim-
ing analyzer, the actual time to evaluate Dr(I), the speed-
up over the software, the number of used slices over 1728
available slices, and the number of used slice flip-flops over
3456 available flip-flops. Unfortunately, due to the small ca-
pacity of XC2S150, we could test our non-parallel hardware
for binary images with e = 128,256, 512, 768 effective pix-
els and 4-level gray-scale images with e = 128,256. For
our parallel image matching hardware, we could test for bi-
nary images with only e = 16 pixels. Consequently, even if
we use non-parallel image matching hardware embedded in
the small FPGA, Dr(I) can be computed more than 16 times
faster than the software. The computing time for binary im-
ages is approximately 75msec, which is bounded by the band-
width of the 33MHz 32-bit PCI bus. More presicely, since
1024 x (1024 — 32 + 1) = 1.016M words of 32-bit data are
transfered in 75msec, the PCI bus sends images in 434Mbit/s,
which is close to the actual maximum bandwidth of the 33MHz
32-bit PCI bus.

TABLEII

THE PERFORMANCE OF OUR IMAGE MATCHING HARDWARE
IMPLEMENTED ON SPARTAN2

L e Freg. Time | Speed | Slices | Slice

(MH2z) | (msec) -up FFs
2| 128 39.6 75.2 16.7 714 | 902
2 | 256 35.8 75.2 17.9 926 | 1018
2 | 512 32.7 75.0 22.0 1316 | 1107
2 | 768 30.1 75.1 239 | 1681 | 1122
4 | 128 33.0 76.5 195 1334 | 1747
4 | 256 34.3 76.2 38.7 | 1726 | 1978

| 2 | 16 | 24.1 | 49 | - | 1682 | 1741 |

We have also estimated the performance of our im-
age matching hardware using the Virtexll series FPGA
XC2Vv8000. Again, we assume that a template image 7' has
32 x 32 pixels and an image I has 1024 x 1024 pixels. We
have estimated our hardware for randomly generated templates
T of size 32 x 32 with effective pixels e = 128,256,512 and

768. Due to the stringent page limitation, we omit the perfor-
mance of our non-parallel image matching hardware. Table 111
shows the performance of parallel image matching hardware.
For L = 2,4, and 16, we use & = 32,16, and 8 circuits
that compute D (I) in parallel, respectively. For L = 16 and
e = 768, the hardware uses 1223 ~ 90.7% of available slices.
For . = 2,4 and 16, the hardware also uses 2, 4, and 8 block
RAMs out of 168 block RAMs. The speedup factors over the
software solution are in the range 349-3198. Thus, our ap-
proach for image matching and retrieval is promising.
TABLE 1|

THE PERFORMANCE OF OUR PARALLEL IMAGE MATCHING HARDWARE
IMPLEMENTED ON VIRTEXII

L e Freqg. Time | Speed | Slices | Slice

(MHZz) | (msec) -up FFs
2 | 128 28.0 117 | 1074 | 6188 | 2277
2 | 256 26.2 125 | 1076 | 11307 | 2899
2 | 512 24.6 133 | 1242 | 21765 | 4557
2 | 768 231 142 | 1265 | 32310 | 6243
4 | 128 29.3 224 667 | 6457 | 3197
4 | 256 27.3 240 | 1233 | 11403 | 3663
4 | 512 25.6 257 | 2261 | 21659 | 5276
4 | 768 24.2 271 | 3198 | 32056 | 7046
16 | 128 29.9 4.39 349 | 8860 | 5071
16 | 256 27.8 472 644 | 15021 | 5184
16 | 512 26.1 5.03 | 1187 | 27146 | 5264
16 | 768 24.6 531 | 1679 | 42251 | 5433
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