
Optimal Reconfiguration Sequence Management
Soheil Ghiasi, Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles

{soheil,majid}@cs.ucla.edu

ABSTRACT
In this paper, we present an efficient optimal algorithm for
minimizing runtime reconfiguration (context switching) delay of
executing an application on a reconfigurable system. We assume
that the basic operations of the application are already scheduled
and each of them has to be realized on the reconfigurable fabric
in order to be executed. The modeling and algorithm are both
applicable to partially reconfigurable platforms as well as Multi-
FPGA systems. The algorithm can be directly applied to minimize
the application runtime for many typical classes of applications,
where the actual execution delay of basic operations is negligible
compared to reconfiguration delay. We prove the optimality and
efficiency of our algorithm and report experimental results, which
demonstrate 40% to 2.5% improvement in total runtime
reconfiguration delay.

1. INTRODUCTION
Many applications contain computationally intensive blocks and
hence they demand hardware implementation to exhibit real-time
performance. Dedicated hardware solutions are capable of
running many operations in parallel. Many researchers have used
reconfigurable hardware units to speed up the application runtime
[3, 6, 7, 8].
Reconfigurable systems provide the flexibility and reuse of
hardware for multiple applications. Reconfigurable hardware can
be used to execute designs, which are larger than the available
hardware resources. In such cases, a part of a large application is
executed on the hardware. By reusing the reconfigurable
hardware, the remaining tasks of the application can be loaded
and executed on the hardware at runtime. This is known as
runtime reconfiguration. Another issue that necessitates the
integration of reconfiguration in a hardware platform is that some
applications require reconfiguration in different abstraction levels
of system [11]. For example, some applications require different
variations of an algorithm to execute their task. A non-flexible
hardware realization for such applications has to fit all required
algorithm variations on the die. This, if possible, makes the design
and fabrication processes more complicated and expensive [17].
A major drawback of using runtime reconfiguration is the
significant delay of reprogramming the hardware. The total
runtime of an application includes the actual execution delay of
each task on the hardware along with the total time spent for
hardware reconfiguration between computations. The latter might
dominate the total runtime, especially for classes of applications
with a small amount of computation between two consecutive
reconfigurations. Many previous works have tried to tackle the
reconfiguration delay problem using different approaches [14, 15,
16].
In many applications, only a small portion of the design changes
at a time and there is no need to reconfigure the entire hardware

for instantiating a new design. This ha
capability of partial reconfiguration
products. FPGAs are examples of su
and most of the recent FPGA devi
runtime reconfiguration [9, 12].
Some earlier works have used partia
and execute an application. For exam
present a partially reconfigurable sy
limited number of similar places on the
module. Figure 1 shows such a rec
module (operation) is instantiated thro
and its instantiation will not affect
Figure 1, operation e can be instant
physical resources currently executing
affect the configuration of resources
and c. Multi-FPGA systems are an
reconfigurable hardware in which ther
on a board. Each FPGA realizing a
reconfigured independently.
Partial Reconfiguration allows the use
design that needs to be updated
reconfiguration time [5]. However, par
still significant and it is dominating th
for many applications. Reconfigurati
order of tens to hundreds of milliseco
12]. While the partial reconfigurable
and many different applications ca
existing basic operations, the partial r
a barrier; hence minimizing it can lea
application [18].
In this paper, we formally state the
runtime reconfiguration delay. We p
algorithm to minimize the total d
reconfiguration. The input applicati

c

2 1 3 a b

4 5 d
b

6 a

7 e

Figure 1. Executing an application on
hardware.
Partially Reconfigurable
Hardware
s led th
 to m
ch reco
ces ha

l recon
ple, r

stem i
 FPGA

onfigur
ugh p

other
iated
 opera
execu

other e
e are m
part o

rs to ch
and h
tial rec
e who

on del
nds fo

 appro
n be
econfig
d to fa

problem
resent
elay

on is

C

a d

 a par
ontroller Controller
e industry to add the
ost of their recent
nfigurable hardware

ve the capability of

figuration to realize
esearchers in [4, 13]
n which there are a

 to plug in and run a
able platform. Each
artial reconfiguration
existing modules. In
by reconfiguring the
tion d. This will not
ting operations a, b,
xample of partially
ore than one FPGA

f the design can be

ange only part of the
ence, decreases the
onfiguration delay is
le computation delay
ay is usually on the
r current FPGAs [9,

ach is very effective
executed using the
uration delay is still
ster execution of the

 of minimizing the
 a provably optimal
incurred by partial
given as a set of

c b

tially reconfigurable

Task 2 Task 1scheduled high-level operations (or simply operations). The data
dependencies among the operations constitute a directed acyclic
graph (DAG). Our algorithm outputs an execution order of the
operations on hardware resources such that the total runtime
reconfiguration is minimized.

The model and algorithm developed in this paper are directly
applicable to current FPGA devices, multi-FPGA systems as well
as other aforementioned partially reconfigurable systems. A
special case of our algorithm applies to traditional non-partially
reconfigurable FPGA platforms as well. We have conducted
simulation-based experiments on some real applications. In terms
of total runtime reconfiguration delay, our method outperforms
other existing heuristics within the range of 40% to 2.5%.

The rest of this paper is organized as follows: In section 2 the
problem of partial reconfiguration delay minimization is formally
described. Section 3 describes our algorithm and proves its
correctness and optimality. Some experimental results based on
simulation are presented in section 4. Section 5 will conclude the
paper along with some future directions and possible extensions.

2. Problem Statement
In this section, we formally present the problem of minimizing the
reconfiguration delay for executing a given application on a
system with multiple reconfigurable resources or with one
partially reconfigurable resource. The application is composed of
a set of basic tasks. At each time step, one or multiple tasks are
revealed to the system. Arriving tasks have to be executed before
next set of upcoming tasks. Executing these tasks (operations) in
the specified order will lead to a correct execution of the
application.
Suppose a partially reconfigurable hardware (PRH) is selected as
the target platform to execute an arbitrary application. The
application can be modeled as a set of operations that have to be
executed in some specific order. Therefore, the functional unit
corresponding to each operation should exist on the hardware
before execution. Due to area constraint, only a subset of
operations can be implemented in the PRH at each time. PRH can
be partially reconfigured to realize the remaining operations. In
such cases, partial reconfiguration delay for instantiating
operations in the PRH imposes a delay on the total application
runtime. Reconfiguration delay is one of the major barriers in
using PRH for some real-time systems.
Partial reconfiguration delay is roughly proportional to the
number of bits needed to transmit to PRH. Partial reconfiguration
bits contain both data and control information for altering logic
and interconnect of a particular block on the chip. The length of
the sequence of reconfiguration bits is proportional to the
reprogrammed area on the chip. In this paper, we assume the
reconfiguration delay is equal for all types of operations. This
assumption is exact for Multi-FPGA systems with identical
FGPAs and for architectures in which we have some fixed places
on the chip to plug in an operation [4, 13]. With this assumption,
the number of required partial reconfigurations (RPR) represents
the total reconfiguration delay. This delay mainly dominates the
total application runtime for some classes of applications where
the operation delay is negligible compared reconfiguration delay.
Therefore, a reasonable metric for estimating the total application
runtime is the number of RPRs for executing all operations.

Figure 2 demonstrates an example in which different execution
order of nodes, leads to different number of RPR. Tasks (nodes) 1
and 3 have the same type ‘a’ and Task 2 has another type ‘b’.
PRH is able to fit one operation at a time, in this example.
Executing such an application in <1 2 3> order, requires loading
of ‘a’, ‘b’, and ‘a’ into the PRH respectively. This will cost 3
units, whereas execution of the same application in <2 1 3> order
requires loading of ‘b’, and ‘a’ respectively, which costs 2 units.
Therefore, execution order of basic tasks can impact the number
of RPR and hence, total reconfiguration delay.
Let G (V, E) be a directed acyclic graph (DAG) representing a
given application, where V is a set of vertices that represent
operations and E is a set of directed edges that corresponds to the
dependencies between operations (Figure 1). Assume that vertices
of G have been already scheduled according to the time step at
which they are revealed. Moreover, suppose the target
reconfigurable hardware can accommodate at most K different
operations in it. This implies that an upcoming new operation has
to overwrite one of the K existing operations in PRH. Loading a
new operation requires the PRH to be partially reconfigured.
Therefore, it incurs a unit cost and increases the number of RPR
by one. The partial reconfiguration delay minimization problem
can be formally stated as:
Given such a scheduled G (V, E) and K as inputs, the objective is
to load and execute all nodes of G on PRH so that the number of
RPR is minimized. The constraints are that there are at most K
different operations existing on hardware at all times and all
nodes at cycle i have to be executed before nodes at cycle j if i <
j. This ensures that the resulting execution order of operations
leads to a valid evaluation of the computation and maintains the
data dependencies among the nodes of G. We denote the
minimum number of RPR to execute the scheduled G on a PRH
with capacity K by Cost(G, K). Note that this problem can
capture the case when a K-FPGA system is serving as the target
architecture and each of the FPGAs can realize a single operation.
In particular, the special case of K=1 represents the conventional
single FPGA platforms (Figure 2).
The problem, as formulated above, is somewhat similar to
standard paging problem that has been formulated and extensively
studied in the domain of Online Algorithms. Particularly,
reconfigurable hardware in present terminology corresponds to a
cache unit with capacity K and each partial reconfiguration
request is similar to a page fault (miss) that has a unit cost.
However, to the best of our knowledge, the problem presented in
this paper has not been studied and the current formulation is
novel for modeling partial reconfiguration cost. Throughout this

Task 3
ba

a

Figure 2. Different execution order of basic tasks leads to
different number of required reconfigurations.

Lemma 2: Let P=<P1P2 … Pi…Pn> be an optimal solution for a
given instance of the problem. Let Qi be a subsequence of Pi
which contains operations in Pi that are in PRH(i). Similarly, let
Ri be a subsequence of Pi that includes operations not in PRH(i).
Then, S=<P1P2 … Pi-1Qi Ri Pi+1…Pn> is also an optimal solution.

paper, we may use terms from our formulation and standard
paging formulation interchangeably.

3. Optimal Algorithm
In this section, we present an optimal algorithm for solving the
problem defined in Section 2. First, we consider a special case in
which the given DAG has only one operation in each cycle. Such
a DAG is a path and there is already an optimal method
developed for this special case. We extend this method for DAG.

Proof: The cost of T=<P1P2 … Pi-1Ri Pi+1…Pn> is equal to S

since operations in Qi are in PRH(i) when LIU starts to process
cycle i. Therefore, they will neither incur any RPR nor alter the
PRH configuration. On the other hand, T is a subsequence of P.
Therefore, its cost cannot be greater than Cost(P, K) according to
Lemma 1. Since P is an optimal solution, S also has the optimal
cost. �

Consider the case when G is a simple sequence of operations in
which an operation depends on the previous one. Hence, the
scheduled version of this sequence has only one operation in each
cycle. Therefore, the algorithm is forced to select the nodes
according to their original order for execution. However, it has to
select an operation to overwrite if there are K operations existing
in PRH at some cycle. This problem, which is known as the
offline paging problem has been optimally solved by Belady [1].
It has been proved that the Least Imminently Used (LIU)
operation existing in the cache is the best candidate to overwrite.
This algorithm (LIU) leads to the minimum number of page
faults.

Corollary 2: There exists an optimal algorithm, which executes
operations previously existing in PRH before other nodes at each
cycle.

Corollary 3: There exists an optimal ordering in which nodes of
the same type appear adjacent to each other in each cycle.
Therefore, an optimal algorithm can merge nodes with the same
type in each cycle and assume that nodes occurring in each cycle
are distinct.

 Lemma 3: Let P=< A1 A2 … Ai Ai+1 … Aj … Ak … Am > be a
solution for a given instance of the problem in which Ai is the i’th
operation of P. Let Aj and Ak be the next instances of Ai and Ai+1
respectively (Figure 3). If Ai and Ai+1 both belong to the same
cycle c and neither of them is in PRH(c), Then
Q=< A1 A2 … Ai+1 Ai … Aj … Ak… Am> is also a solution and
Cost(P, K) ≥ Cost(Q, K).

Theorem 1: Given a sequence of operations and a PRH to run
the operations on, LIU is an optimal method to execute the
operations in the given order and minimize the number of RPR.

Proof: There is a one to one correspondence between the present
problem and the offline-paging problem. The LIU is known to be
optimal for the latter; hence, it is also optimal for the current
problem [1]. �

We define Si and Pi as the set of operations in cycle i and a
permutation of operations in Si respectively. Note that the
operations in Si are allowed to be repeated, since there can exist
multiple operations of the same type in a cycle. Moreover, we
define PRH(i) as the set of operations existing in PRH when the
LIU starts to process cycle i . Therefore, PRH(0) = ∅.

Sequence Q Sequence P

n
m

n

m

Ai= mAny solution to the general problem proposed in section 2, will be
a permutation of operations reflecting their execution order. This
permutation has to be in the form of P = <P1P2 …Pn> to meet the
data dependency constraint of the problem formulation.
According to Theorem 1, executing P using LIU algorithm will
lead to the minimum number of RPR. Therefore, the generalized
optimal algorithm only needs to find the optimal sequence of
operations among all possible choices for P.

Ai+1= n

Aj= m
The following lemmas will aid in generating the optimal
sequence:
Lemma 1: Adding an operation to any place in a sequence of
operations P cannot decrease Cost(P, K).

Ak= nProof: Let Q be the new sequence created by adding an
operation to P. We can process P exactly the way LIU processes
Q, namely we can load/evict the same operations the optimal
algorithm loads/evicts for processing Q. This processes P with a
cost equal to Cost(Q, K), i.e., there is at least one way to process
P with cost equal to Cost(Q, K). Hence Cost(P, K) cannot be
greater than Cost(Q, K). � Figure 3. Converting sequence P to Q will not increase

the cost, provided that m and n are not in PRH(i).

Corollary 1: For any sequence of operations Q and any
subsequence P of Q: Cost(Q, K) ≥ Cost(P, K).

Algorithm min-RPR(G, K):

 PRH(0) = ∅;
 For each operation
 Find its next occurrence;
 For each cycle (traversing in reverse order)
 Sort nodes in this cycle according to their next occurrence;
 For each cycle
 If any of the operations is already in PRH:
 append it to the optimal sequence;
 Append the remaining operations to the optimal;
 sequence based on their previously known sorting;
 Update PRH configuration by processing the ordered list for
 this cycle using LIU;

Proof: We prove that Q is a valid solution and can be processed
with cost equal to Cost(P, K), i.e., the optimal cost of processing
Q is not greater than Cost(P, K).

Proof: We prove that Q is a valid solution and can be processed
with cost equal to Cost(P, K), i.e., the optimal cost of processing
Q is not greater than Cost(P, K).
Since Ai and Ai+1 both belong to the same cycle, swapping them
will produce a valid permutation. Note that relative positions of
Ai and Ai+1, compared to other operations in P and Q, do not
change. Therefore, optimal processing of P and Q up to position i,
will lead to the same cost and PRH configuration. Executing Ai
and Ai+1 for both P and Q will incur two RPRs, since neither of
them is in PRH(c). Loading the i’th node will overwrite the same
operation for both sequences since they both have the same PRH
configuration after processing the i’th node. Loading the i+1’th
operation, however, might replace different existing modules,
since i’th operations are different in P and Q.

Since Ai and Ai+1 both belong to the same cycle, swapping them
will produce a valid permutation. Note that relative positions of
Ai and Ai+1, compared to other operations in P and Q, do not
change. Therefore, optimal processing of P and Q up to position i,
will lead to the same cost and PRH configuration. Executing Ai
and Ai+1 for both P and Q will incur two RPRs, since neither of
them is in PRH(c). Loading the i’th node will overwrite the same
operation for both sequences since they both have the same PRH
configuration after processing the i’th node. Loading the i+1’th
operation, however, might replace different existing modules,
since i’th operations are different in P and Q.
Suppose loading Ai+1 overwrites operation x when we are
processing P optimally. If x≠Ai then we can overwrite x with the
(i+1)’th operation for Q and have the exact cost and PRH
configuration up to position i+2. Since the rest of Q is exactly
same as P, its total cost will be the same. However, If x=Ai we
replace the i’th operation with the (i+1)’th operation when
processing Q. This implies that except for one operation, PRH
configuration is identical for P and Q up to position i+2. In
particular, Q has an operation of type m instead of n (Figure 3).
We continue processing Q exactly as LIU would process P up to
position j. Note that RPRs for this span are the same, since type of
operations between i+1 and j cannot be either m or n.

Suppose loading Ai+1 overwrites operation x when we are
processing P optimally. If x≠Ai then we can overwrite x with the
(i+1)’th operation for Q and have the exact cost and PRH
configuration up to position i+2. Since the rest of Q is exactly
same as P, its total cost will be the same. However, If x=Ai we
replace the i’th operation with the (i+1)’th operation when
processing Q. This implies that except for one operation, PRH
configuration is identical for P and Q up to position i+2. In
particular, Q has an operation of type m instead of n (Figure 3).
We continue processing Q exactly as LIU would process P up to
position j. Note that RPRs for this span are the same, since type of
operations between i+1 and j cannot be either m or n.
If there is an operation overwriting n for P, we overwrite m with
the same operation for Q. This will make both cost and PRH
configuration up to that point equal and since the rest of P and Q
are the same, they will have the same cost. However, if such a
case does not happen up to position j, P has to increase the cost by

one to load m and execute Aj while Q has m on its PRH and does
not issue a RPR. If m overwrites n in PRH of P, both sequences
will have the same PRH configuration while Q has a lower cost
up to this point. However, if m does not overwrite n, we can
overwrite the same module with n after executing Aj for Q. Again,
we will have the same PRH configuration and cost up to this point
while the rest of two sequences are the same. This completes the
proof. �

If there is an operation overwriting n for P, we overwrite m with
the same operation for Q. This will make both cost and PRH
configuration up to that point equal and since the rest of P and Q
are the same, they will have the same cost. However, if such a
case does not happen up to position j, P has to increase the cost by

one to load m and execute Aj while Q has m on its PRH and does
not issue a RPR. If m overwrites n in PRH of P, both sequences
will have the same PRH configuration while Q has a lower cost
up to this point. However, if m does not overwrite n, we can
overwrite the same module with n after executing Aj for Q. Again,
we will have the same PRH configuration and cost up to this point
while the rest of two sequences are the same. This completes the
proof. �

n

n

 m

 y

 y

 x

 x

 n

 n

 m

 m

 m

Cycle i

Therefore, an optimal algorithm can order all nodes appearing in a
cycle, depending on their next occurrence. According to Corollary
2, at each cycle, the optimal algorithm can execute nodes existing
in PRH before others. The remaining nodes can be executed
according to such ordering without increasing the cost compared
to any other possible ordering, according to Lemma 3.

Therefore, an optimal algorithm can order all nodes appearing in a
cycle, depending on their next occurrence. According to Corollary
2, at each cycle, the optimal algorithm can execute nodes existing
in PRH before others. The remaining nodes can be executed
according to such ordering without increasing the cost compared
to any other possible ordering, according to Lemma 3.

Cycle j

Note that next instance of each operation happens in some Si and
all operations in Si will come before all operations in Sj provided
that i < j. Hence, comparing location of the next instance is trivial
when two operations don’t have their next occurrence in the same
cycle. If an operation does not have another repetition in the next
cycles, we can think of its next repetition at infinity and apply the
same approach. For example in Figure 4, either <y m n x> or
<y n m x> would be an optimal ordering for cycle i.

Note that next instance of each operation happens in some Si and
all operations in Si will come before all operations in Sj provided
that i < j. Hence, comparing location of the next instance is trivial
when two operations don’t have their next occurrence in the same
cycle. If an operation does not have another repetition in the next
cycles, we can think of its next repetition at infinity and apply the
same approach. For example in Figure 4, either <y m n x> or
<y n m x> would be an optimal ordering for cycle i.

Cycle k

If two operations in cycle i have their next instances in cycle j
(Figure 4), their relative order in cycle j determines their ordering
in cycle i. However, the same argument applies to cycle j and
operations relative order in cycle j depends on their next
occurrence. To tackle this problem, the ordering can be done in
reverse order. Starting the ordering process from the last cycle, all
nodes occurring in cycle j, have their future occurrences already
ordered. Therefore, they can be ordered deterministically using
their next occurrences.

If two operations in cycle i have their next instances in cycle j
(Figure 4), their relative order in cycle j determines their ordering
in cycle i. However, the same argument applies to cycle j and
operations relative order in cycle j depends on their next
occurrence. To tackle this problem, the ordering can be done in
reverse order. Starting the ordering process from the last cycle, all
nodes occurring in cycle j, have their future occurrences already
ordered. Therefore, they can be ordered deterministically using
their next occurrences.

Figure 4. Tie breaking at cycle i.

This procedure can be summarized as the min-RPR algorithm
depicted in Figure 5. After the initialization step in which the next
occurrence of a node is determined, nodes are ordered according
to their next instance. Cycles are examined in reverse order for
this step for efficient implementation. For determining the optimal
execution order of nodes, operations already in the PRH are
executed before other operations in each cycle. The remaining
operations are executed according to their calculated ordering.
PRH configuration is then updated for next cycle by processing
the partial sequence generated in current cycle. Lemma 2 and 3
guarantee the min-RPR algorithm (Figure 5) finds a valid

This procedure can be summarized as the min-RPR algorithm
depicted in Figure 5. After the initialization step in which the next
occurrence of a node is determined, nodes are ordered according
to their next instance. Cycles are examined in reverse order for
this step for efficient implementation. For determining the optimal
execution order of nodes, operations already in the PRH are
executed before other operations in each cycle. The remaining
operations are executed according to their calculated ordering.
PRH configuration is then updated for next cycle by processing
the partial sequence generated in current cycle. Lemma 2 and 3
guarantee the min-RPR algorithm (Figure 5) finds a valid
Figure 5. Algorithm min-RPR pseudo code

sequence of operations with the minimum cost.
The time complexity for algorithm min-RPR is O(n.p.log(p)),
where n is the number of operations and p is the number of
distinct operation types appearing in the scheduled DAG
respectively. Note that at each cycle, it takes O(p.log(p)) to sort
the nodes and there are O(n) cycles in the scheduled DAG. For
practical applications, p does not grow with n. In realistic
scenarios, the number of distinct operation types occurring in the
application DAG is fixed; hence, the algorithm runtime is
expected to scale linearly with respect to the application size.

4. Experimental Results
We have implemented our proposed algorithm along with three
other algorithms using the C language. These four algorithms
have been executed on 12 different scheduled DFGs extracted
from real applications. These DFGs are all extracted from the
signal processing toolbox of Matlab software. They are standard
functions used in many signal-processing applications such as
digital filter design. Each node of these DFGs is a complex matrix
manipulation operation such as matrix inversion, multiplication
and sine of matrix elements. Since matrix dimensions can be
large, these operations could be complex enough to be
implemented on the PRH.
Each DFG has been scheduled using a path-based scheduler [10]
with two different sets of resource constraints. In Table 1, the two
DFGs with the same name and different indices refer to the same
DFG but different resource constraints (and hence schedules).
Examples are Firls1 and Firls2. Table 1 demonstrates the basic
characteristics of these test benches including number of nodes
and number of cycles.
All scheduled DFGs are executed using four different algorithms.
These algorithms differ in the manner in which they order nodes
in a cycle. Once the order of the nodes at each cycle is
determined, the generated sequence of nodes will be passed to the
LIU algorithm [1] to measure the number of RPRs. For each
algorithm, the number of RPRs is recorded as the cost.
The first algorithm, LF (Left First), executes the left node before
other nodes occurring at its right in each cycle. LRU (Least
Recently Used), at each cycle, executes a node that has been least
recently used, while MRU selects the most recently used node to
execute. Finally, the last algorithm is min-RPR, which we proved
its optimality in section 3.
Results of four aforementioned algorithms on these DFGs are
shown in Table 2. This table contains the number of RPR for
PRHs with 1, 2 or 3 module capacity (K). The experimental
results show that the optimal algorithm outperforms the other
algorithms significantly. The overhead penalty that other
algorithms have to pay ranges from 2.5% to more than 40% for
these DFGs.
Intuitively, increasing the number of partitions on PRH reduces
the algorithms’ performance gap. In the extreme case, if K is
equal to the number of module types occurring in DFG, all
algorithms would behave the same. In this case, all algorithms
have to pay a unit cost for loading the first occurrence of each
operation type. From that point on, future occurrences of
operations of the same type will not incur any cost. DFGs listed in
Table 1 do not have many different types of operations.

Therefore, the small performance penalty happens at small values
of K. For instance for case K=3, the performance penalty of MRU
is 2.5%.
We have randomly generated a set of DFGs with 26 different
operation types and 500±10% nodes. These DFGs were used to
show that this small performance gap would occur at greater
values of K in case there are many types of operations in DFG.
The output of the aforementioned four algorithms on this set of
test benches is summarized in Table 3. The performance gap for
all algorithms is significant for K=4. This significant gap can be
observed for LF and LRU algorithms even for K=16.

Scheduled
DFG

Number of
nodes

Number of
cycles

Fircls1 63 24

Fircls2 63 22

Firls1 64 32

Firls2 64 20

Firrcos1 79 42

Firrcos2 79 42

Invfreq1 41 25

Invfreq2 41 23

Maxflat1 115 51

Maxflat2 115 42

Spectrum1 55 28

Spectrum2 55 21

Table 1. Scheduled DFGs used for experiments.

In summary, all experiments on real applications and randomly
generated DFGs, for different values of K, show that our
algorithm outperforms other candidates. This improvement ranges
from a few percents to tens of percents depending on DFG,
algorithm structure, and capacity of the PRH. An interesting point
is MRU uses a policy similar to min-RPR to order nodes at each
cycle. MRU exhibits close to optimal results and behaves more
efficiently than LF and LRU.

5. Conclusion
We presented an efficient optimal algorithm for minimizing the
number of required partial reconfigurations when a partially
reconfigurable or multi-FPGA system is used to run an
application. A special case of the algorithm also solves the
problem for single non-partially reconfigurable FPGA platforms.
Since total application runtime is mainly dominated by the partial
reconfiguration delay for many classes of applications, this
algorithm can be directly applied for minimizing total application
runtime.

Future research will focus on extensions with module area and
delay considerations. Currently, all modules are assumed to
occupy the same area on the chip and to have delays negligible
compared to reconfiguration delay. These assumptions, however,

might not be the case for all applications. We will work toward
extending our results to more complicated models incorporating
module delay and area.

6. REFERENCES
[1] L. Belady, “A Study of Replacement Algorithms for

Virtual-Storage Computer”, IBM Systems Journal, vol
5, no 2, pp. 78-101, 1966

[2] A. DeHon, J. Wawrzynek, “Reconfigurable
Computing: What, Why, Design Automation
Requirements” Design Automation Conference, 1999.

[3] A. DeHon. “DPGA-Coupled Microprocessors:
Commodity ICs for the Early 21st Century”. In
Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, April 1994.

[4] D. Taylor, J. Turner, J. Lockwood, E. Horta,
“Dynamic Hardware Plugins (DHP): Exploiting
Reconfigurable Hardware for High-Performance
Programmable Routers”, Computer Networks, vol. 38,
no. 3, pp. 295-310, Feb 2002.

[5] S. Sezer, J. Heron, R. Woods, R. Turner, A. Marshall,
“Fast Partial Reconfiguration for FCCMs”, IEEE
Symposium on for Custom Computing Machines,
1998.

[6] J. Burns, A. Donlin, J. Hogg, S. Singh, M. Wit. "A Dynamic
Reconfiguration Run-Time System", IEEE Symposium on
FPGAs for Custom Computing Machines, 1997.

[7] A. Adario, E. Roehe, S. Bampi, “Dynamically
Reconfigurable Architecture for Image Processor
Applications”, Design Automation Conference, 1999.

[8] J. Hauser, J. Wawrzynek, “Garp: A MIPS Processor
with a Reconfigurable Coprocessor”, IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM), 1997.

[9] Xilinx Inc. online documentaion, http://www.xilinx.com/ .

[10] S. Ogrenci Memik, E. Bozorgzadeh, R. Kastner, M.
Sarrafzadeh. “A Super-Scheduler for Embedded
Reconfigurable Systems”, International Conference on
Computer-Aided Design (ICCAD), November 2001.

[11] P. Schaumont, I. Verbauwhede, K. Keutzer, M.
Sarrafzadeh, “A Quick Safari through the
Reconfigurable Jungle”, Design Automation
Conference, 2001.

[12] Altera Inc. online documentaion, http://www.altera.com/
.

[13] E. Horta, J. Lockwood, D. Taylor, D. Parlour,
“Dynamic Hardware Plugins in an FPGA with Partial
Run-time Reconfiguration”, Design Automation
Conference, 2002

[14] Z. Li, S. Hauck, "Configuration Prefetching
Techniques for Partial Reconfigurable Coprocessor
with Relocation and Defragmentation", ACM/SIGDA
Symposium on Field-Programmable Gate Arrays, pp.
187-195, 2002

[15] Z. Li, S. Hauck, "Configuration Compression for
Virtex FPGAs", IEEE Symposium on FPGAs for
Custom Computing Machines, 2001.

[16] Z. Li, K. Compton, S. Hauck, "Configuration Cache
Management Techniques for FPGAs", IEEE
Symposium on FPGAs for Custom Computing
Machines, pp. 22-36, 2000

[17] K. Compton, S. Hauck, "Reconfigurable Computing:
A Survey of Systems and Software", ACM Computing
Surveys, Vol. 34, No. 2. pp. 171-210. June 2002.

[18] Z. Li, K. Compton, S. Hauck, “Configuration Caching
Management Techniques for Reconfigurable
Computing”, Symposium on Field-Programmable
Custom Computing Machines, 2000.

http://brass.cs.berkeley.edu/documents/GarpProcessor.html
http://brass.cs.berkeley.edu/documents/GarpProcessor.html
http://www.xilinx.com/
http://www.altera.com/

 K=1 K=2 K=3

 LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT

Fircls1 59 60 50 46 36 43 35 32 25 30 24 23

Fircls2 60 57 49 44 38 40 34 33 27 29 25 24

Firls1 53 58 45 39 23 28 26 23 13 14 14 13

Firls2 46 46 34 32 23 27 20 19 13 18 13 13

Firrcos1 56 61 50 45 29 32 28 27 15 15 14 14

Firrcos2 47 47 42 36 27 26 23 22 14 14 12 12

Invfreq1 35 39 30 27 22 23 21 20 14 15 14 14

Invfreq2 32 38 30 27 20 24 21 19 14 15 14 14

Maxflat1 102 109 88 80 53 63 52 46 34 36 32 30

Maxflat2 106 94 69 62 46 49 40 37 27 29 24 24

Spectrum1 42 48 35 34 22 26 19 19 14 16 12 12

Spectrum2 47 44 28 28 21 21 15 15 11 11 9 9

Total 685 701 550 500 360 402 334 312 221 242 207 202

Penalty(%) 37 40.2 10 NA 15.4 28.8 7.1 NA 9.4 19.8 2.5 NA

Table 2. Number of required partial reconfigurations for different algorithms on real DFGs.

 K=4 K=8 K=16

 LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT

DFG1 315 320 296 278 209 224 200 192 98 101 91 90

DFG2 305 313 282 273 203 216 192 188 93 100 91 89

DFG3 311 315 285 270 207 219 195 186 89 96 87 86

DFG4 314 319 284 272 207 219 195 189 96 97 89 88

DFG5 330 336 304 290 220 233 205 197 97 103 96 94

DFG6 324 329 295 284 218 232 200 195 95 99 87 86

DFG7 306 311 277 266 202 216 185 181 90 97 85 85

DFG8 306 310 279 267 200 211 184 180 93 96 88 86

DFG9 320 326 291 278 213 222 196 191 92 94 87 85

DGF10 308 316 278 266 208 222 189 184 94 98 90 89

DFG11 312 317 283 271 204 217 189 183 87 94 83 83

DFG12 313 327 285 275 205 227 187 186 87 93 83 83

Average 313.7 319.9 286.6 274.2 208 221.5 193.1 187.7 92.6 97.3 88.1 87

Penalty(%
)

14.4 16.7 4.5 NA 10.8 18.0 2.9 NA 6.4 11.9 1.2 NA

Table 3. Number of required partial reconfigurations for different algorithms on randomly generated DFGs.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

