
Efficient LUT-Based FPGA Technology Mapping for Power Minimization

Hao Li, Wai-Kei Mak, and Srinivas Katkoori
Department of Computer Science and Engineering

University of South Florida, Tampa, FL USA
(hli5,wkmak,katkoori@csee.usf.edu)

Abstract— We study the technology mapping problem for
LUT-based FPGAs targeting at power minimization. The prob-
lem has been proved to be NP-hard previously. Hence, we present
an efficient heuristic to compute low-power mapping solutions.
The major distinction of our work from previous ones is that
while generating a LUT, we look ahead at the impact of the map-
ping selection of this LUT on the power consumption of the re-
maining network. We choose the mapping that results in the least
estimated overall power consumption. The key idea is to com-
pute low-power

�
-feasible cuts by an efficient incremental net-

work flow computation method. Experimental results show that
our algorithm reduces both power consumption and area over the
previous algorithms reported in the literature.

I. INTRODUCTION

Field-programmable gate array (FPGA) is now widely used
for VLSI system design and rapid system prototyping due to
its short design cycle. An FPGA consists of an array of un-
committed programmable logic blocks, programmable inter-
connections, and I/O pads. The lookup-table (LUT) based
architecture is the most popular architecture. In LUT-based
FPGAs, a � -input lookup table ( � -LUT) is the basic pro-
grammable logic block which can be programmed to imple-
ment any Boolean function of up to � variables [3]. The
technology mapping problem in LUT-based FPGA designs is
to cover a general Boolean network with � -LUTs yielding a
functionally equivalent � -LUT network.

Previous LUT-based FPGA technology mapping algorithms
can be broadly classified according to their primary optimiza-
tion objectives: algorithms that minimize area (i.e., mini-
mizing the number of LUTs) [8, 9, 10, 11], algorithms that
minimize delay (i.e., minimizing the number of LUTs on a
longest path) [4, 5, 12, 14], algorithms that focus on routabil-
ity [15, 16], and algorithms that minimize both area and de-
lay [19, 20]. However, relatively little work has been done
on minimizing power consumption. In one of the works on
low-power technology mapping for LUT-based FPGAs, Far-
rahi and Sarrafzadeh introduced a low-power driven mapping
algorithm at the expense of increase in depth and area [7]. A
deficiency of their algorithm is that it fails to take the impact of
the fanout number of LUTs on the power consumption into ac-
count. Wang, Liu, Lai and Wang presented another algorithm
to reduce power by using a “cut enumeration” method to gen-
erate a predefined number of possible mapping solutions for

the sub-circuit rooted at each node [17]. However, it does not
guarantee that if more possible mapping solutions are tested,
the final mapping solution would consume less power. In this
paper, we propose an efficient low-power driven technology
mapping algorithm. The main idea is to compute low-power� -feasible cuts to generate LUTs to cover the given circuit.
Experimental results show that our algorithm reduces power
consumption as well as area over [7, 17] significantly.

The rest of the paper is organized as follows: In Section 2,
we give the problem formulation. In Section 3, we review the
power estimation model presented in [7, 17]. In Section 4,
we present our technology mapping algorithm. In Section 5,
we report the experimental results. In Section 6, we draw the
conclusions.

II. PROBLEM FORMULATION

A general Boolean network � can be represented as a di-
rected acyclic graph (DAG) �������
	�� , where � is the set of
nodes and 	 is the set of directed edges. Each node in the
DAG represents a logic gate, and a directed edge ��
������ exists
only when the output of node 
 is an input of node � . Let����� 
���������� denote the set of fanin nodes of node � . A Boolean
network � is K-bounded if � ����� 
���������� ��!"� for every node �
in � . Given a � -bounded Boolean network, let �$# denote the
subnetwork consisting of node � and all its predecessors. A
cut ��%&#�� %'#(� for node � is a partition of the nodes in �$# such
that � is in %&# . The node cut-size is the number of nodes in%&# that are adjacent to some nodes in %)# . If the cut size is no
larger than � , it is called a K-feasible cut. If ��% # � % # � is a � -
feasible cut, we can cover all nodes in % # by a single � -input
LUT.

In this paper, we focus on the technology mapping problem
for LUT-based FPGAs to minimize power dissipation. The in-
put is a � -bounded Boolean network, the output is a mapping
into � -input LUTs with low-power dissipation. The area of
the mapped circuit is measured by the number of LUTs used.
In the following section, we will review the general approach
to estimate the power dissipation for a circuit mapped into a
LUT-based FPGA.

III. POWER ESTIMATION MODEL

In this section, we review the power estimation model used
in [7, 17], which estimates the power consumption of a mapped



circuit consisting of LUTs only. The majority of power con-
sumption in CMOS circuits is due to the dynamic power dissi-
pation [18]. Dynamic power dissipation *,+ occurs because of
the switching activity of the circuit, which results in the charg-
ing/discharging of the load capacitance.

The equilibrium probability of a signal � , denoted as
� ����� ,

is defined as the probability that signal � has the value 1. And
the transition density of a signal � , denoted as -������ , is defined
as the number of times that signal � changes its value in unit
time.

Let .0/21$��354(��3�67�98 8 8 �:3�;<� be a Boolean function. The
Boolean difference of . with respect to 3>= , denoted as ?A@?ABAC , is
defined as: D .D 3�= /".E� B C�F5GIH .E� B C�F 4 (1)

Then the transition density at the output of a gate can be calcu-
lated as follows:

-J��.:��/
;K
= F 4

� �
D .D 3 = ��-L��3�=�� (2)

Using this theorem we can compute the transition density of
any node in the network when the transition densities at the
primary inputs are given. The proof of this theorem can be
found in [13].

Once the transition density of every gate has been computed,
the power consumption of a given circuit can be calculated as:

* + /NMO K
=

P
Q =5R � 6+S+ R -�� � ��T (3)

where
Q = is the load capacitance of gate

�
, �>+S+ is the power sup-

ply voltage, and -�� � � is the output transition density of gate
�
.

For LUT-based FPGAs, this formula still holds except that
the transitions happen only at the input/output of each LUT.
Given a mapping solution, for a LUT rooted at node � and
with input nodes 
E4(��
>6U� 8V8 8W��
>X , the power dissipation due to
the LUT, *&����� YV
E4(��
>6(� 8V8 8 ��
>X[Z(� , is given by:

*&�����WYA
 4 ��
 6 � 8V8 8V��
 X Z\��/]�$^ R Q`_�aAb R -������Ac
XK

= F 4
�$^ R Q = ; R -���
�=��

(4)
where �$^�/]d<8 e R � 6+S+ is a constant,

Q`_�aAb
is the output capaci-

tance of the LUT,
Q = ; is the input capacitance of the LUT.

Now if we are given a Boolean network, we estimate the
minimum power dissipation when it is mapped into � -input
LUTs as follows. Define a LUT-cover rooted at node � as
a LUT that covers all the nodes in a � -feasible cone rooted
at � . Let f # denote the set of all possible LUT-covers rooted
at node � and

����� 
�������gh� denote the set of nodes that provide
inputs to a LUT-cover g in fE# . We use the following recursive
formula to estimate the minimum power consumption 4 of a
LUT-subnetwork covering �$# :

	i*&�����j/Nk$lnmo>p[q(r YA*&�sgh�Ec K
a p = ; ^ aAb�t
u o<v 	i*&��
5�wZ (5)

x
Note that y�z|{n}V~ is actually an upper bound on the power consumption of

any LUT-subnetwork covering �j� when there are reconvergent fanouts within� � .

For any PI node 
 , we assume that 	i*&��
>� is equal to zero.
For example, for the mapping solution shown in Fig. 1,

	i*&�n���h/��$^ R Q`_�aAb R -������9c��$^ R Q = ; R P -��s����c�-��s�W��c�-���� ��Tc�	i*&�����9c�	i*&�s� �Ec�	�*&��� �
= � ^�R Q _�aAb R -��n����c�� ^�R Q = ; R P -������9c�-����W�9c�-��s� ��T

as 	i*&�s����/]	i*&���W��/�	i*&�s� �j/]d , and

	i*&�s�s��/]� ^LR Q _�aAb R -������9c�� ^LR Q = ; R P -��n����c�-��s�:��Tc�	i*&�����9c�	i*&���:�

LUT 

LUT 

LUT 

a b c d e

f g h i

j k

l

j

l

k

Fig. 1. A network rooted at � . Nodes a, b, c, d, and e are PI
nodes.

IV. POWER MINIMIZATION ALGORITHM

In this section, we present our power minimization algo-
rithm called PowerMinMap (PMM). The input to the algorithm
is a � -bounded gate-level network. If the netlist is not � -
bounded then we will first decompose the network to satisfy
this property. The equilibrium probabilities and transition den-
sities of the primary inputs are given. The PMM algorithm
consists of three phases:

1. Transition density propagation,
2. Computation of 	i*&����� for every node � ,
3. Mapping generation.
In the first phase, we compute the transition density for all

the internal nodes as well as PO nodes in a topological order.
Note that by doing so, we would have also propagated the equi-
librium probabilities.

A. Computation of 	i*&�����
The EP values of all nodes are computed in a topological

order starting from the PIs. For each node � , a sequence of
T-bounded K-feasible cuts is computed based on the EP val-
ues of � ’s ancestors. 	i*&����� is computed based on the cut
that yields the minimum power consumption. A T-bounded K-
feasible cut is a cut whose input size is no larger than � such
that the EP value on any input to the cut is no more than � .
This term is further explained in detail below.



A.1 T-Bounded K-Feasible Cut

While generating a LUT rooted at node � , we would like
to minimize the sum of the power consumption of the fanins
feeding into this LUT. However, it has been proved that the
problem of finding a technology mapping solution with mini-
mum power consumption is NP-hard [6]. Hence we propose
an efficient method to compute a low-power � -feasible cut by
generating a sequence of T-bounded K-feasible cuts using in-
cremental network flow computation.

Definition: A � -bounded � -feasible cut ( % # � % # ) for node �
is a � -feasible cut such that the maximum EP value of the
nodes in %&# that provide inputs to the nodes in %)# is no larger
than a threshold � .
Definition: A � -bounded � -feasible cut is a low-power K-
feasible cut for node � , if it results in the smallest power con-
sumption among the sequence of � -bounded � -feasible cuts
computed for � .

For a given non-PI node � , a low-power � -feasible cut is
computed as follows: We start with the largest EP value in � ’s
ancestors as a threshold � , and use a network flow based ap-
proach to check if there exists a � -bounded � -feasible cut.
We convert subnetwork � # into a node-capacitated flow net-
work by assigning infinite flow capacity to those nodes having
EP values larger than the threshold and unit flow capacity to
other nodes. Then, we compute a max-flow in the constructed
network. If the value of the max-flow computed is no larger
than � , we will repeat with the next largest EP value in � ’s
ancestors as the new threshold value, so on and so forth. Each
time we find a new � -feasible cut, we compute its total power
consumption using Equation (5). We retain the cut that yields
the smallest power consumption so far. When the value of the
max-flow exceeds � , we terminate and the estimated power
for node � , 	i*&����� , is set to the smallest power consumption
recorded. This is so because we will not be able to find a � -
feasible cut for any smaller threshold.

Illustrative Example:

Fig. 2(a) illustrates how a sequence of � -bounded � -
feasible cuts is determined for node � for � =3. Next to
each node (except � ), the transition density ( - ) and EP value
are shown in -��U	i* format. For simplicity, we assume that�$^ R Q`_�aAb

and ��^ R Q = ; are equal to 1. The threshold value
is first set to 5.2, which is the largest EP value (for node � ) of
the nodes in � #J� YV��Z . The corresponding min-cut computed
is Cut I. According to Equation (5), the estimated power con-
sumption for Cut I is:

	i*�� aAbV� �����j/ P -������9c�-�������c�-��s����T�c�	i*&�����Ec�	i*&�s���/]-�������c M[M 8 �
We store Cut I as the best cut at this point. Then threshold� is lowered to 4, the next highest EP value (for node 1 ) in� #�� YV��Z , and Cut II is the min-cut computed. The estimated
power for Cut II is:

	i*�� aAbV�w� �����j/ P -�������c�-��s�\��c�-��s15�9c�-����:��Tc�	i*&���(�Ec�	i*&�s15�9c�	i*&������/]-�������c M e

Since d( � )+15 is larger than d( � )+11.4, we move on to the
next smaller EP value as the threshold. The threshold is low-
ered to 3.5 (for node � ) and Cut III is the min-cut computed.
Since the cut size is larger than 3, we will terminate. Hence,
the mapping induced by Cut I is the most desirable choice for
node � . Fig. 2(b) shows the corresponding mapping solution
to cover ��# .

A.2 Incremental Network Flow Computation

In this section, we will describe how we may use incre-
mental network flow method to efficiently find the low-power� -feasible cut for a node � .

We first construct the flow network with the largest EP value
in � # as the threshold. Once we have found the first � -
bounded � -feasible cut, we have to repeat with the second
largest EP value as the threshold. However, there is no need
to build a new flow network to compute the new cut. We only
need to update the residual network for all node � such that	i*&����� is equal to the old threshold value.

We use the same example as in Section A.1. Suppose
we want to compute a low-power 3-feasible cut for node �
in Fig. 2(a). The EP values of the ancestors of node � in
decreasing order are 5.2, 4, 3.5, 3, and 0. First, the thresh-
old is set to 5.2, therefore %�# can have any node as its input
node. The required flow network is shown in Fig. 3(a). Here
we used a standard network transformation technique, known
as node-splitting, that transforms a node-capacitated network
into an edge-capacitated network such that any existing edge
cut computation algorithm can be applied. A minimum cut of
size 2 is computed by maximum flow computation, the residual
network is shown in Fig. 3(b). This cut corresponds to Cut I
in Fig. 2(a). Since Cut I is 3-feasible, so we lower the threshold
to 4 to compute a new cut ��% # � % # � such that no node with EP
value greater than 4 can be an input node to % # . To compute
such a new cut, we may simply update the residual network by
changing the flow capacity of node � whose EP value is 5.2
from unit to infinity. If there exists a new augmenting path in
the updated residual network, it can be found efficiently.

We associate each node � with two flags: �if������ equals to

( a )

Cut I

Cut III

a b c d

gfe

h

v

2.2 / 5.2

 

1 / 3

2 / 4

1/ 0 1/ 0 1/ 0 1/ 0

Cut II

1.5 / 3.5

LUT

( b )

LUT

LUT

a b c d

e f g

h

vh

v

g

Fig. 2. (a) Selecting a 3-feasible cut for node � ( � =3). (b) A
mapping solution.



s

a b c d

a’

e f g

h

t

e’ f’ g’

h’

b’ c’ d’
1 1 1 1

111

1

( a )

�

�

� �

�� � � �

�

� �

�

�

1 1

1
1

1

1

1 1 1 1

1 1

1

1

( b )

s

a b c d

a’ c’ d’

e f g

e’ f’ g’

h

h’

t

1

b’

� �

� �¡�

�

�

�

� �

� �

�

�
1

111

1
1

1

1

1

1

11

1

1

s

a’ c’

a b c d

d’

e’

e

f’ g’

f g

h

t

( c )

b’

h’

¢

¢

¢ ¢

¢ ¢

¢ ¢

¢
¢

¢¢$¢ ¢

¢

Fig. 3. (a) The flow network for � =5.2 (b) Residual network corresponding to a maximum flow. (c) The updated residual
network with a flow augmenting path shown in bold edges.

TRUE indicates that � is reachable from source � and �£�������
equals to TRUE indicates that there exists a path from � to
sink � in the residual network. Note that the initial values
of �if¤����� and �£������� can be derived simultaneously while
traversing the network to compute the min-cut of the original
network. When we update the flow capacity of a node � , we
also check if its flags have to be updated. For example, �if¤�����
is TRUE and �£���s��� is FALSE in Fig. 3(b). After node � ’s
flow capacity is updated, �£���s��� needs to be updated to TRUE
as in Fig. 3(c). If �if¤��� and �£������� are both equal to TRUE,
we know that there exists an augmenting path. In this case, we
will augment the flow, traverse the network again to compute
a new min-cut and the new FS and FT values for each node.
Since we will terminate once the max-flow value exceeds � ,
we will traverse the network at most � times.

B. Mapping Generation

This phase generates a � -LUT mapping solution of the
whole circuit. The mapping solution is generated in a bot-
tom up manner starting from the PO nodes. If a LUT needs
to be generated rooted at � , a � -feasible cut is recomputed for
node � based on the cost values of its ancestors.

Initially, �W¥U�V�W��
5� is set to 	i*&��
5� for all node 
 . When we
generate a LUT rooted at node � , the power dissipation of sub-
network � a

for all node 
 that provides input to g`¦�� # will be
counted. So in order to avoid counting the power dissipation of
subnetwork � a

again if another LUT is generated that also re-
ceives input from node 
 , we have to reset � ¥U� �W��
>� to zero after
the first time it is counted. When we compute the low-power� -feasible cut in this phase, we use the dynamically updated
cost values.

We also introduce a technique to further improve the quality
of the mapping. If a low-power � -feasible cut found by the
flow method has a cut size less than � , we will check if it is

Cut 1

Cut 2

l n o

kji

m

v

Fig. 4. Cut frontier refinement for �$# ( � =4).

possible to reduce the sum of the power consumption of the
fanins by replacing one node in the node cut set with its fanin
such that the cut size still does not exceed � . We call this cut
frontier refinement. For example, assume Cut 1 shown in Fig. 4
is a 4-feasible cut computed for node � . Since the cut size is
only 3, we can increase the cut size to 4. If �W¥U�V�W�����
c£� ¥U� �W��§¨�¤©�W¥U�V�W� � � , we know that a LUT generated according to Cut 2
consumes less power. Similarly, we also check if choosing the
node cut set Y � ��§ª� � �
�>Z or Y � ���[� � ��¥�Z can save more power
over Cut 2. We do this recursively until we cannot increase the
cut size any more. If there exist cuts that use less power than
the � -feasible cut computed, we will replace it with the one
that reduces the most power.

The complete algorithm of PowerMinMap is shown
in Fig. 5. Line 0 – 3 is the first phase that computes the transi-
tion density of each non-PI node in the DAG. Line 4 – 8 is the
second phase that computes 	i*&����� , the estimated minimum
power consumption of a LUT-subnetwork covering � # , for ev-
ery node � . Line 9 – 21 is the last phase where the mapping
solution is generated. Once a LUT is generated, we perform
cut frontier refinement and update the cost values of its fanins.



Algorithm PowerMinMap
Input: General Boolean network N
Output: A mapping of the network into K-LUTs

/* phase 1 */

0 «$¬ list of non-PI nodes in topological order from PIs to POs;

1 for each node }¤­£«
2 compute ®\{�}V~ ;
3 endfor

/* phase 2 */

4 for each node }¤­£«
5 compute a sequence of ¯ -bounded ° -feasible cuts for node } ;

6 y�z|{n}V~<¬ power consumption of the low-power ° -feasible cut;

7 ±³²S´�µ�{�}V~�¬¶y�z|{n}V~ ;
8 endfor

/* phase 3 */

9 ·'¬ a queue of all POs;

10 while ·�¸¹¨º
11 }|¬ dequeue ( · );

12 compute a low-power ° -feasible cut for node } ;

13 perform cut frontier refinement;

14 generate a LUT rooted at } ;

15 for each node »£­�¼¾½A¿(»7µ�´S{¾«>À9¯��V~
16 if node »�Á­£· and node »&Á­Lz,ÂV´
17 enqueue ( »�Ã�· );

18 ±³²S´³µ�{n»[~<¬¶Ä ;

19 endif

20 endfor

21 endwhile

End-algorithm

Fig. 5. Pseudocode of PowerMinMap Algorithm

C. Computational Complexity

Theorem: Given a general Boolean network N, PowerMin-
Map generates a low-power mapping solution in Å����Æ§ � c� 65ÇnÈ7É � � time, where

�
and § are the number of nodes and

edges in � , respectively.
Proof: In phase one of PMM, it takes Å�� � � time to compute
the output transition density for each non-PI node � . In phase
two, it takes Å�� �9Ê ÇnÈ7É �EÊ � time to sort the EP values of the
nodes in � #�� YA�<Z , where

�EÊ
is the number of nodes in � # .

When we compute a set of � -bounded � -feasible cuts to find
the low-power � -feasible cut in � # , we need to traverse � # at
most � times. Traversing the network once takes Å���§ Ê c �EÊ �
time, where § Ê

is the number of edges in �$# . So it takes a
total of Å�� � Ê Ç�È[É � Ê �[c¨Å����Æ§ Ê cË� � Ê �j/]Å����'§ Ê c � Ê ÇnÈ7É � Ê �
time to compute a low-power � -feasible cut in �$# . As § Ê

and�EÊ
are bounded by § and

�
, phase two takes Å�� � R �s�'§Nc� Ç�È[É � ����/ÌÅ����Æ§ � c � 65ÇnÈ7É � � time to compute 	i*&����� and�W¥U�V�W����� for all node � . Phase three differs from phase two

in that low-power � -feasible cut is recomputed for g nodes,
where g is the number of LUTs generated in the mapping so-
lution ��g]! � � . And cut frontier refinement is also performed
which takes Å��s�Í� time. So phase three also takes Å��s�'§ � c

� 6 ÇnÈ7É � � time. Thus, the overall runtime for PMM isÅ�� � ��c�Å�� � 6EÇnÈ7É � c��'§ � �Ec�Å�� � 6EÇnÈ7É � c��Æ§ � � , which
is Å�� � 6EÇnÈ7É � cÎ�Æ§ � � . If § and

�
are of the same order

and � is fixed, the total time is Å�� � 65Ç�È[É � � .
V. EXPERIMENTAL RESULTS

We have implemented the PMM algorithm using C language
and experimented with the same set of MCNC benchmark cir-
cuits as reported in [7, 17]. Given a general Boolean net-
work, we first optimize it with the optimization script “rugged”
within SIS. Then we decompose the circuit into 2-bounded net-
work using the “DMIG” command.

We assume that � +S+ /]e7� and all PI nodes have equilibrium
probability

�
= 0.5, and transition density - = 10,000. The ca-

pacitances
Q = ; and

Q _�aAb
are set to 10

� � each. And we map
the circuits into 5-input LUTs. When we estimate the power
consumption of a mapping solution, the external load capac-
itance of PO nodes (which is not known a priori) is ignored
since the power consumption due to a given external load is
independent of the mapping. Note that the above assumptions
have been used in [7, 17]. The results of PMM algorithm are
shown in Table I. For comparison, we quote the best result re-
ported for each circuit in [17]. We also include the results from
[7]. 6 On the average, our algorithm reduces the power con-
sumption by 18.5% and 12.2% compared with [7] and [17],
respectively. Besides, it uses 9.5% and 10.6% fewer LUTs
than [7] and [17], respectively. Note that in two cases (rd84
and vg2), PMM used more LUTs than [7], but it still achieved
power saving. This shows that reducing the number of LUTs
does not always reduce the power consumption as well.

Our algorithm is able to achieve greater power saving since
it can predict the impact of generating a single LUT on the
mapping of the LUTs generated afterwards. Hence, we can
choose the mapping that yields smaller power consumption.
Besides, we notice that LUTs already generated also affect the
mapping of the subnetwork which has not been covered yet.
By dynamically updating the cost value of each node, we have
up-to-date power estimation information and therefore, we can
implement the rest of the circuit with better LUT covering.

VI. CONCLUSIONS

We studied the technology mapping problem to minimize
power dissipation for LUT-based FPGAs. We presented an al-
gorithm that minimizes power as well as area. We used an ef-
ficient incremental network flow computation method to com-
pute low-power � -feasible cuts that optimizes the total power
consumption of the generated � -LUTs. Our algorithm esti-
mates the power consumption for a set of possible choices and
choose the one that yields the best solution. Experimental re-
sults show that our algorithm achieved both power and area
savings over two previous algorithms targeting at minimizing
power.Ï

We cannot compare the delays because delay information is not reported
in [7, 17].



TABLE I
COMPARISON OF POWERMINMAP WITH [17] AND [7] (PWR: mW)

Wang et al.[17] Farrahi et al.[7] PowerMinMap Percentage Savings (%)
Vs. [17] Vs. [7]

CKT LUTs PWR LUTs PWR LUTs PWR
LUTs PWR LUTs PWR

5xp1 26 188 25 182 23 168 11.5 10.6 7.7 7.8
9sym 87 553 62 365 60 340 31 38.5 3.2 6.8
9symml 62 446 58 376 56 349 9.7 21.7 3.4 7.2
c499 98 1061 91 1076 74 983 24.5 7.4 18.7 8.6
c880 116 746 111 1060 106 718 8.6 3.8 4.5 32.2
alu2 128 874 146 836 124 815 3.1 6.8 15.1 2.5
apex6 192 1110 237 1404 183 1012 4.7 8.8 22.8 27.9
apex7 68 379 69 450 65 349 4.4 7.9 5.8 24.0
count 31 159 31 227 31 159 0 0 0 29.9
duke2 152 538 190 478 145 443 4.6 17.6 23.7 7.3
misex1 13 97 16 106 12 92 2.3 5.2 25 13.2
rd84 33 261 27 344 32 243 3 6.9 -18.5 29.4
rot 234 1306 238 1749 224 1203 4.3 7.9 5.9 31.2
vg2 32 182 25 60 26 158 18.7 13.2 -4 1.3
z4ml 7 56 5 80 5 41 28.6 26.8 28.6 48.8
Average 10.6 12.2 9.5 18.5

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows - Theory,
Algorithms, And Applications, Prentice Hall, 1993.

[2] C. Bhat, and N. N. Chiplunkar, “Routability-driven technology mapping
for lookup table-based FPGAs”, in 12th International Conference on
VLSI Design, pp. 390-393, Jan. 1999.

[3] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field Pro-
grammable Gate Arrays, Kluwer Academic Publishers, 1995.

[4] K.-C. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar, “DAG-Map:
graph-based FPGA technology mapping for delay optimization”, IEEE
Design and Test of Computers, pp. 7-20, 1992.

[5] J. Cong, and Y. Ding, “An optimal technology mapping algorithm for de-
lay optimization in look-up table based FPGA designs”, in International
Conference on Computer Aided Design, pp. 213-218, Nov. 1992.

[6] A. H. Farrahi, and M. Sarrafzadeh, “Complexity of the lookup-table mini-
mization problem for FPGA technology mapping”, in IEEE Transactions
on Computer-Aided Design, vol. 13(11), pp. 1319-1332, Nov. 1994.

[7] A. H. Farrahi, and M. Sarrafzadeh, “FPGA technology mapping for
power minimization”, in 4th International Workshop on Field Pro-
grammable Logic and Applications, pp. 66-77, September 1994.

[8] R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping for
lookup table-based field programmable gate arrays”, in 27th ACM/IEEE
Design Automation Conference, pp. 613-619, June 1990.

[9] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: fast technology
mapping for lookup table-based FPGAs”, in 28th ACM/IEEE Design Au-
tomation Conference. pp. 227-233, June 1991.

[10] K. Karplus, “Xmap: A technology mapper table-lookup field-
Programmable gate arrays”, in 28th ACM/IEEE Design Automation Con-
ference, pp. 240-243, June 1991.

[11] Y.-T. Lai, M. Pedram, and S. Sastry, “BDD based decomposition of logic
functions with application to FPGA synthesis”, in 30th ACM/IEEE De-
sign Automation Conference, pp. 230-235, June 1993.

[12] R. Murgai, N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Improved logic synthesis algorithms for table look up architectures”, in
International Conference on Computer Aided Design, pp. 564-567, Nov.
1991.

[13] F. Najm, “Transition Density: A new measure of activity in digital cir-
cuits”, IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, pp. 310-323, Feb. 1993.

[14] P. Sawkar, and D. E. Thomas, “Technology for table-look-up based field
programmable gate arrays”, in ACM/SIGDA Workshop on Field Pro-
grammable Gate Arrays, pp. 83-88, Feb. 1992.

[15] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology
mapping for lookup table-based FPGAs”, in IEEE International Con-
ference on Computer Design, pp. 86-90, October 1992.

[16] N. Togawa, M. Sato, and T. Ohtsuki, “Maple: A simultaneous tech-
nology mapping, placement and global routing algorithm for field-
programmable gate arrays”, in International Conference on Computer
Aided Design, pp. 155-163, 1994.

[17] Z.-H. Wang, E.-C. Liu, J. Lai, and T.-C. Wang, “Power minimization
in LUT-based FPGA technology mapping”, in ASP-DAC, pp. 635-640,
2001.

[18] N. Weste, and K. Eshraghian, Principles of CMOS VLSI Design: A Sys-
tem Perspective, Addison-Wesley Reading, 1993.

[19] J. Cong, and Y. Ding, “On area/depth trade-off in LUT-based FPGA tech-
nology mapping”, IEEE Trans. on VLSI Systems, vol. 2, no. 2, pp. 137-
148, June 1994.

[20] J. Cong, and Y.Y. Hwang, “Simultaneous depth and area minimization in
LUT-based FPGA mapping”, in Proc. Int. Symp. on Field Programmable
Gate Arrays, pp. 68-74, 1995.


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




