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Abstract - We improve the accuracy and speed of

boundary element method (BEM) or multipole ac-

celerated BEM for interconnect parasitic extraction.

Three techniques are presented and applied to capac-

itance extraction: selective coefficient enhancement,

variable order multipole and multigrid. Experimental

results show that the techniques are effective for ex-

tracting parasitics between all pairs of conductors, or

between selected pairs of conductors.

I. Introduction

Many 3D parasitic extraction algorithms are based on
the Boundary Element Method (BEM), and accelerated
with the Fast Multipole Method (FMM) [8], such as
FastCap [12], FastHenry [9], hierarchical refinement [15],
multi-scale [16], and others [3, 17]. Algorithms based on
BEM but not FMM include the pre-corrected FFT al-
gorithm [13], and the singular value decomposition algo-
rithm [10].
The capacitance of an m-conductor geometry is sum-

marized by anm×m capacitance matrix C. To determine
the j-th column of the capacitance matrix, we compute
the surface charges on each conductor produced by raising
conductor j to unit potential while grounding the other
conductors. Then Cij is numerically equal to the charge
on conductor i. This procedure is repeated m times to
compute all columns of C.
In the BEM, each of the m potential problems can be

solved using an equivalent free-space formulation where
the conductor-dielectric interface is replaced by a charge
layer of density σ. The charge layer satisfies the integral
equation

ψ(x) =
∫

surfaces

σ(x′)
1

4πε0‖x− x′‖da
′, (1)

where ψ(x) is the known conductor surface potential, da′

is the incremental conductor surface area, x, x′ ∈ �3,
x′ ∈ da′, and ‖x− x′‖ is the Euclidean distance between
x and x′.
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Galerkin scheme is often used to numerically solve (1)
for σ. In this approach, the conductor surfaces are divided
into n small panels, and on each panel Ai, a charge qi is
assumed uniformly distributed. Then for each panel Ai,
an equation is written which relates the known potential
on Ai, denoted by vi, to the sum of the contribution of
potential from charges on all n panelsA1, A2, . . . , An. The
result is a dense linear system

Pq = v, (2)

where q ∈ �n is the vector of panel charges, v ∈ �n is the
vector of known panel potentials, and P ∈ �n×n is the
potential coefficient matrix. Each entry of P is defined as

pkl =
1

area(Ak)

∫
Ak

1
area(Al)

∫
Al

1
4πε0‖xk − xl‖ daldak,

(3)
for panels Ak and Al. The integration in (3) is computed
by numerical methods. The linear system (2) has to be
solved to compute panel charges, and the capacitances
are derived by summing the panel charges. Because P is
dense and large, iterative methods, such as GMRES [14],
are used for solving the equation.
The BEM involves approximation errors from the fol-

lowing sources.

• Panel discretization, due to the assumption of uni-
form charge distribution on each panel.

• Approximation ofP, due to the numerical integration
of (3) and truncation of multipole expansion.

• Iterative solution for Pq = v.

Among the three errors, the first type is dominant. Al-
though fine discretization reduces error, it also results in
large linear systems and unacceptable computation time.
The adaptive refinement scheme [15, 17] and high order
basis functions [5] are popular ways used to reduce the
first type of error. In [1], the adaptive meshing idea of
constructing an optimal mesh based on a coarse initial
discretization was studied. However, no implementation
and running time were reported. In this paper, we pro-
pose a multigrid scheme [4] that reduces the number of
iterations for solving a large dimension linear system by



using a good initial solution based on coarse discretiza-
tion. This helps to preserve high accuracy while reduce
the computation cost greatly.
The error of the second type is the main focus of this pa-

per, and two techniques are proposed: the variable order
multipole scheme and the selective enhancement scheme.
In [7], the hierarchical algorithm of Barnes and Hut [2]
was modified to allow high order expansion for nodes high
in the tree, and low order expansion for nodes low in the
tree. Their variable order expansion method [7] is static
and does not change with the charge distribution as the
GMRES algorithm progresses. The adaptive multipole
order method using an error indicator is studied in [1].
However, no simulation results were given to compare the
overhead and overall efficiency.
For crosstalk and signal integrity analysis, it is desirable

to compute the parasitic between some conductors with
high accuracy. In this paper, we study how to do this
without significantly increasing the overall computation
time.
To reduce the third type of error, the number of itera-

tions is usually increased. We apply the multigrid method
[4] to reduce the number of iterations. The multigrid
method is also helpful to reduce the first type of error
as discussed above.
The methods proposed in this paper can be applied to

inductance extraction as well. Using the mesh formula-
tion of [11], the conductor surfaces can be partitioned into
a hierarchy of meshes. The unknowns are mesh currents,
similar to charge for the capacitance extraction problem.
The linear system to be solved is M(R + jωL)MT = V,
see [11]. Therefore, the same ideas can be applied.
In this paper, the implementations of all our new

schemes are based on the hierarchical algorithm [15]. This
is because the hierarchical algorithm is shown to be much
faster than FastCap [12]. This is also because the tradi-
tional FMM algorithms [8, 12] are too expensive to modify
for different coefficients, different expansion orders, and
are kernel dependent.
In Section II, we first present the technique of sensitiv-

ity analysis for linear systems to study the accuracy of en-
tries of C with respect to the accuracy of P. Then, based
on this technique, we propose the selective enhancement
scheme and experiments are included as well. In Sec-
tion III, we propose a new error analysis for FMM that
illustrates the relationship between error and charge dis-
tribution. Following the analysis, we present the variable
order multipole scheme and give experimental results. In
Section IV, we apply multigrid method to capacitance ex-
traction. Finally in Section V, we conclude our findings.

II. Selective Enhancement

A. Coefficient Matrix Approximation

Now we present a theory on the accuracy of selected
entries of C. Due to the second type of error, instead of

Pq = v, the linear system we actually solve is

P̄q̄ = v, (4)

where P̄ is an approximation of P and q̄ is the corre-
sponding solution. As a result, the capacitance matrix
obtained is an approximation C̄ instead of C.
Assume there are ki panels on the i-th conductor, and

the panels are numbered in ascending order from the first
conductor to the m-th conductor. To calculate the j-th
column of C̄, we first solve (4) with v = v(j) = [0, . . . , 0,
1, . . . , 1, 0, . . . , 0]T , where the first k1 + · · ·+ kj−1 entries
of v(j) are 0, followed by kj 1’s and n− (k1+ · · ·+kj) 0’s.
Then for i = 1, 2, . . . ,m,

C̄ij =
k1+···+ki∑

l=k1+···+ki−1+1

q̄(j)
l
, (5)

where q̄(j) is the solution of (4) corresponding to the right-
hand side v = v(j). Similarly, if q(j) denotes the solution
of (2) corresponding to the right-hand side v = v(j), then
entry Cij of the capacitance matrix is given by

Cij =
k1+···+ki∑

l=k1+···+ki−1+1

q(j)
l . (6)

Let r(l) denote the l-th column of P−1, then we have the
following result.

Lemma 1 For every j = 1, 2, . . . ,m, vector q(j) and the
columns of P−1 satisfy the equation

q(j) =
k1+···+kj∑

l=k1+···+kj−1+1

r(l).

Proof. It follows from the definition of r(l) that Pr(l) =
e(l) where e(l) denotes the l-th column of the identity
matrix. Therefore

P · (
k1+···+kj∑

l=k1+···+kj−1+1

r(l)) =
k1+···+kj∑

l=k1+···+kj−1+1

Pr(l)

=
k1+···+kj∑

l=k1+···+kj−1+1

e(l)

= v(j).

On the other hand, Pq(j) = v(j), therefore

q(j) =
k1+···+kj∑

l=k1+···+kj−1+1

r(l).

Let E = P̄ − P be the error matrix. Then the following
Lemma tells the relationship between the error of C̄ij and
E.



Lemma 2 Let C̄ij and Cij be given by (5) and (6) re-
spectively, then Cij − C̄ij = (q(i))T Eq̄(j).

Proof. From P̄q̄(j) = v(j) and Pq(j) = v(j), we have
P−1P̄q̄(j) = P−1v(j) = q(j). In other words, P−1(P +
E)q̄(j) = q(j). Hence q(j) − q̄(j) = P−1Eq̄(j), which im-
plies q(j)

l
− q̄(j)

l
= (P−1Eq(j))l = (r(l))TEq(j), for any

j = 1, 2, . . . ,m and l = 1, 2, . . . , n. The last equality holds
because the matrix P is symmetric. Now using Lemma 1,
formulas (5), (6), we have

Cij − C̄ij =
k1+···+ki∑

l=k1+···+ki−1+1

(q(j)l − q̄(j)l )

=
k1+···+ki∑

l=k1+···+ki−1+1

(r(l))TEq(j)

= (q(i))T Eq̄(j).

Lemma 3 Let d = q̄− q, Cond(P) be the condition
number of P, and assume ‖E‖/‖P‖ ≤ 1/Cond(P). Then

d = −(I+ P−1E)−1P−1Eq.

Proof. Since v = Pq and v = P̄q̄ = (P + E)(q + d), we
have (P + E)d = −Eq. Therefore

d = −(P+ E)−1Eq = −(I+ P−1E)−1P−1Eq,

where (I+P−1E)−1 exists because of the assumption.

The condition ‖E‖/‖P‖ ≤ 1/Cond(P) is usually satisfied
in practice. It simply says that the relative error of P̄ is
small in comparison with 1/Cond(P).

Theorem 1 Under the notations and assumptions of
previous Lemmas, we have the following error representa-
tion

Cij − C̄ij = (q(i))TEq(j) −O(‖E‖2).
Proof. From Lemma 2 and Lemma 3,

Cij − C̄ij

= (q(i))T Eq̄(j)

= (q(i))T Eq(j) − (q(i))T E (I+ P−1E)−1P−1Eq(j)

= (q(i))T Eq(j) −O(‖E‖2).

Corollary 1 Let ekl be any entry of E, then

|Cij − C̄ij |
≤ |(q(i))T| · |E| · |q(j)|+ O(‖E‖2)

=
n∑

k=1

n∑
l=1

|q(i)k | · |ekl| · |q(j)l |+O(‖E‖2)

=
n∑

k=1

n∑
l=1

(|q(i)k | · |pkl| · |q(j)l |) ·
∣∣∣∣ ekl

pkl

∣∣∣∣ +O(‖E‖2).

Proof. Follows immediately from Theorem 1.

The relative errors
∣∣∣ ekl

pkl

∣∣∣ for all pairs of k, l are usually
of the same magnitude, depending on how the coefficients
are computed. Corollary 1 says that the relative error
is magnified by a factor |q(i)k | · |pkl| · |q(j)l |. Therefore for
those p̄kl with large corresponding factor |q(i)k | · |pkl| · |q(j)l |,
we should compute p̄kl with high accuracy. This helps to
reduce the error for |Cij − C̄ij |.

B. Application

In circuit simulation, the aggressor net and the victim
net are often known in advance. Therefore we need to
compute the coupling capacitance between the aggressor
and the victim with high accuracy. For this situation,
we have the following 2-phase scheme based on the above
theory. In the first phase, the capacitance matrix is com-
puted with the coefficient matrix of ordinary accuracy.
In the second phase, potential coefficients are selectively
refined according to charges computed in the first phase.
The selected coupling capacitance is then recalculated.

Selective Enhancement Scheme
Input: Conductors, integers i, j and threshold θ.
Output: Capacitance matrix C, where Cij is computed

at high accuracy.

Phase I: Initial computation.
1: Calculate P with ordinary accuracy.
2: For each conductor l, solve Pq(l) = v(l).
3: Compute matrix C.

Phase II: Selective enhancement.
4: For each entry pkl of P, if |q(i)k · pkl · q(j)l | ≥ θ,

recalculate pkl using a more accurate method,
and let the new coefficient matrix be P′.

5: Solve equation P′q(i) = v(i) using the solution
obtained in step 2 as the initial value.

6: Compute Cij using q(i).

In the algorithm, i and j denote the capacitance entry
Cij that needs to be computed to high accuracy. Input
variable threshold θ is a user supplied value that affects
the final accuracy for Cij .
The implemented algorithm is executed on a SUN Ul-

traSPARC Enterprise 4000, and tested for the 8 conduc-
tor example shown in Figure 1. Note that in step 4, the
naive way to check all entries pkl of P takes O(n2) time.
However, since our algorithm stores matrix P in a data
structure of size O(n) [15], step 4 takes only O(n) time.
Table I gives the experimental results, where the tradi-

tional method is either “no enhancement”, meaning that
all coefficients are computed at ordinary accuracy, or “full
enhancement”, meaning that all coefficients are computed



TABLE I
Experimental result for selective capacitance enhancement.

Capacitance C00 C01 C10 C11 C12 C21 C22 C23 C32 C33

No Error (%) 2.62 3.94 3.99 3.61 4.56 4.41 3.53 4.21 4.15 3.57
Enhancement Time (sec) 59.18

Selective Error (%) 0.88 0.79 0.77 0.61 0.95 0.89 0.92 0.54 0.62 0.94
Enhancement Time (sec) 64.8 64.6 66.2 67.6 65.7 65.8 66.8 65.9 65.5 66.9

Time Increase (%) 9.5 9.2 11.9 14.3 11.0 11.2 12.9 11.4 10.7 13.1
Full Error (%) 0

Enhancement Time (sec) 83.25
Time Increase (%) 41.1

Fig. 1. The 8 conductor example.

at high accuracy. The high accuracy method uses 3 × 3
Gaussian quadrature, while the ordinary accuracy method
uses the single point. The conductors are labeled from 0
at one side to 7 at the other side. Only self capacitance
Cii or coupling capacitance Cij between adjacent conduc-
tors are significant enough to be considered. The error
of a capacitance entry C̄ij is defined as |C̄ij − Cij |/|Cij |,
where Cij is the capacitance computed by full enhance-
ment method. That is why the full enhancement method
has no error in the table. The “time increase” field is
compared with the “no enhancement” method. Our GM-
RES reduces the two-norm residual to 1% from the initial
residual.

The “no enhancement” method gives a less accurate ca-
pacitance matrix, while the “full enhancement” method
consumes longer running time, compared with our selec-
tive enhancement scheme. Our method is suitable for
applications where only a few entries of C need to be
computed accurately. If we want to compute all entries
of C accurately, then the full enhancement method is still
faster.

III. Variable Order Multipole

A. Multipole Approximation

In the FMM method, the potential due to a set of
charges located within a sphere can be approximated by
a multipole series. However, the traditional error estima-
tion of FMM [8] is expressed as a function of the radius
of the sphere and the distance to the observation point.
The error estimation is not expressed as a function of the
location and amount of charge. In the following, we give
an error estimation that takes into account the locations
and values of charges.
For simplicity, let us consider the hierarchical refine-

ment algorithm of [15]. The hierarchical refinement algo-
rithm can be viewed as the 0-th order FMM, and is much
easier to describe than the general FMM [8].

Theorem 2 Assume we partition a panel Ak into two
small panels A1 and A2 of equal shape and size. Let the
radius of the smallest sphere that contains Ak be rs. Con-
sider panel Al of distance r from the center of the sphere,
for some r > rs. Then the error of potential at Al due to
using Ak with charge (q1 + q2) to approximate A1 and A2

with charges q1 and q2 respectively, is about

|q2 − q1|
2

· rs
r
· pkl.

where pkl is define in (3).

Proof. The potential at x ∈ Al due to the charge on
panels A1 and A2, with uniform charge densities σ1 =
q1/area(A1) and σ2 = q2/area(A2) is
∫

x′∈A1

σ1

4πε0‖x′ − x‖da
′ +

∫
x′∈A2

σ2

4πε0‖x′ − x‖da
′. (7)

If we treat A1 and A2 as a single panel A with uniform
charge density (σ1+σ2)/2, then the potential at x will be

∫
x′∈A

σ1 + σ2

2
1

4πε0‖x′ − x‖da
′. (8)



✡
✡✡

❏
❏❏

Ak

A2A1

✚
✚✚




✡
✡✡

❏
❏❏

Al

✛ ✘
❄

(a)

✡
✡✡

❏
❏❏

Ak

A2A1

✚
✚✚




✡
✡✡

❏
❏❏

Al

✛ ✘
❄

(b)

� ✏
❄

Fig. 2. In (a), assume |q2 − q1| · pkl is less than a user supplied
error bound. Therefore Ak interacts with Al. In (b) assume
otherwise. Ak passes the interaction down to A1 and A2.

Assume without loss of generality σ2 ≥ σ1, then the
difference between (7) and (8) is

σ2 − σ1

2
1

4πε0

(∫
A1

1
‖x′ − x‖da

′ −
∫

A2

1
‖x′ − x‖da

′
)

≤ σ2 − σ1

2
1

4πε0

∫
A1

(
1

‖x′ − x‖ −
1

‖x′ − x‖ + rs

)
da′

≤ σ2 − σ1

2
rs
r

∫
A1

1
4πε0‖x′ − x‖da

′

≈ q2 − q1
2

· rs
r
· pkl.

The ratio rs/r decreases as r increases, which is fully ex-
ploited in the FMM. Now, we exploit the other factor
q2 − q1, which has not been exploited before.
Previous study has illustrated the correlation between

the error of potential and the error of charge distribu-
tion, see [1]. From this correlation, we expect to see a
reduction of error in charge distribution if we reduce the
error in potential. Our variable order multipole idea is
thus derived from Theorem 2 and illustrated in Figure 2.
On the left side of Figure 2, there is a hierarchy of panel
discretization, where panel Ak is discretized as A1 and
A2. For more information on the hierarchy algorithm, see
[15]. In Figure 2(a), assume |q2 − q1| · pkl ≤ θ, where θ
is a user supplied threshold. Therefore the error given in
Theorem 2 is small, and A1 and A2 are treated as one
panel Ak when interacting with Al. In Figure 2(b), as-

sume |q2− q1| ·pkl > θ. Therefore A1 and A2 will interact
with Al directly. The interaction in Figure 2(a) corre-
sponds to 0-th order multipole, and the interactions in
Figure 2(b) can be viewed as (1/2)-th order multipole.
(It is equivalent to (1/2)-th order multipole because of
the amount of information computed. If we go down two
levels, then it will be comparable to 1st order multipole.)
The concept can be applied recursively for A1 and A2 re-
spectively. As a result, panels high in the hierarchy tend
to pass the interaction down more often than panels low
in the hierarchy, and panels contain non-uniform charge
tend to pass the interaction down more often than panels
contain uniform charge distribution.

B. Application

Compared with the traditional FMM algorithms [12,
15] that improves the accuracy by increasing the expan-
sion order for all nodes, our new scheme selects some
nodes for high order expansion and leaves other nodes
with ordinary expansion order. For nodes with large un-
balanced charge distribution and large potential coeffi-
cient, i.e., large

∣∣∣(qt
lleft
− qt

lright

)
· pt

kl

∣∣∣, we use high order
expansion.

Variable Order Multipole Scheme
Input: Conductors and threshold θ.
Output: Capacitance matrix C.

1: Build low order multipole structure P1.
2: For each conductor i
3: t← 1.
4: Repeat
5: Run GMRES to solve Pt · q = v for one

iteration, and let the result be qt.
6: For each multipole coefficient pt

kl,
if

(∣∣∣(qt
lleft
− qt

lright

)
· pt

kl

∣∣∣ > θ
)

then use high order expansion for pt+1
kl ,

else use pt
kl for p

t+1
kl .

7: t← t+ 1.
8: Until GMRES converges.
9: Compute the i-th row of C from qt.

Threshold θ is a user defined value that decides which
coefficients are selected for high order expansion. In our
implementation, high order expansion means going down
the hierarchy as shown in Figure 2. Note that in step
6, we also rely on the fact that our algorithm stores the
potential coefficients matrix in a data structure of size
O(n) [15]. Therefore step 6 takes only O(n) time.
Experimental result is shown in Figure 4. The imple-

mented algorithm is executed on a SUN UltraSPARC for
the 4 × 4 conductor example used in [12] and [15]. The
error of capacitance matrix C̄ is defined as ‖C̄−C‖/‖C‖,
where norm ‖·‖ is the Frobenius norm, and C is the accu-



Fig. 3. The 4x4 conductor example.

Fig. 4. Experimental result for variable order multipole scheme.

rate capacitance matrix computed by using direct method
without FMM. Our GMRES reduces the two-norm resid-
ual to 1% from the initial residual.
In Figure 4, point A is for the case where all nodes have

ordinary expansion order and point B is for the case where
all nodes have high expansion order. Both A and B are
based on the traditional hierarchical method. Points be-
tween A and B are from variable order multipole method
with various θ.
From the curve in Figure 4, we find point C has com-

parable accuracy as B while uses much less time. This
shows the advantage of the proposed scheme over tradi-
tional methods.

IV. Multigrid Scheme

It is obvious that if we use fine discretization, then the
solution accuracy will be high, but the dimension of the
linear system will be large. Therefore the time cost for
solving fine discretization systems is also high. One way
to reduce the time cost is to find a good initial solution
to reduce the number of iterations.
The multigrid method is a fast linear iterative solver

based on the multilevel or multi-scale paradigm [4]. The

multigrid method uses several levels of refinement. The
solution of each level is mapped to the next (finer) level
and used as the initial value for solving the next (finer)
level. Compared with the traditional method, the multi-
grid method may use the same number of iterations.
However most systems solved by the multigrid method
are small, thereby saving the total time. The multigrid
method can be applied in combination with any of the
common discretization techniques. In this section, we ap-
ply multigrid method to capacitance extraction.

Multigrid Scheme
Input: Conductors, convergence criteria

εcoarse and εfine.
Output: Capacitance matrix C.

1: Discretize conductor surfaces coarsely and build
corresponding coarse level linear system
Pcoarse · qcoarse = vcoarse.

2: Further discretize conductor surfaces and build
corresponding fine level linear system
Pfine · qfine = vfine.

3: For each conductor i,
4: Solve coarse level linear system for qcoarse

(i)

with convergence criteria εcoarse.
5: Map qcoarse

(i) to fine discretization q0
fine

(i).
6: Solve fine level linear system for qfine

(i)

using q0
fine

(i) as the initial value,
with convergence criteria εfine.

7: Compute i-th row of matrix C using qfine
(i).

In this algorithm, charges on each coarse panel are
evenly mapped to its fine panels. Different convergence
criteria εcoarse and εfine are used for coarse level and fine
level respectively. Usually, small εfine is chosen to guaran-
tee the accuracy of the final solution. On the other hand,
large εcoarse is chosen because it provides sufficiently good
initial solution at low computation cost.
Figure 5 is a comparison of multigrid method and tra-

ditional method for the 4 × 4 conductor example. For
the traditional method, the conductors are divided into
17408 panels and the large system is solved directly with
the convergence criteria ε = 0.01. It takes 16 iterations
to reduce the residual to less than 0.01. The computation
time is 34.84 sec. For the multigrid method, the conduc-
tors are divided into 576 panels at the coarse level and
further divided into 17408 panels at the fine level. With
convergence criteria εcoarse = 0.1 and εfine = 0.01, the
number of iterations for coarse level and fine level are
5 and 11, respectively. Compared with the traditional
method, multigrid method saves 5 iterations of solving a
large system at the expense of 5 iterations of solving a
small system. The total computation time is 26.72 sec,
which is 23.2% less than that of the traditional method.
Our experience tells us that using more than two levels



Fig. 5. Experimental result for multigrid scheme.

of refinement does not provide additional benefit. This is
because for capacitance extraction, the total number of
iterations is small. Therefore if there are three or more
linear systems, then the number of iterations for the finest
level will not decrease, while the overhead for setting up
linear systems will increase.

V. Conclusion

We study three types of errors involved in the BEM
for parasitic extraction. Using the sensitivity analysis for
linear systems, we present a theory that clarifies the rela-
tionship between the error of each entry of the capacitance
matrix and the error of the potential coefficients. Exper-
iments based on this theory show that the accuracy for
selected entries of the capacitance matrix can be improved
greatly with a small increase in the overall computation
time. We also propose a variable order multipole method
that selects nodes with large unbalanced charge distribu-
tion for high order expansion, while keeps the expansion
order of other nodes unchanged. The experiments show
that the variable order multipole method is effective and
practical in improving the overall accuracy of the capaci-
tance matrix. Finally, we apply multigrid method for the
first time to parasitic extraction. The experiments show
the potential of the multigrid method. For inductance ex-
traction where the number of iterations is usually large,
the multigrid method may be more effective.
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