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Abstract -  In this paper, we suggest an adaptive approach for
the Clock Distribution Network (CDN) to cope with a modifi-
cation in the VLSI system design. The CDN’s wires are
adjusted iteratively to reduce the skew that is resulting from
a minor modification in the clock pins of a complex VLSI sys-
tem. Such skew can be remedied by selecting a Balancing
Node (BN) and adjust its edges so that the skew gets smaller.
The required edge adjustments are determined using the
Elmore delay model. The performance of the algorithm is
investigated using different random sets of clock pins. Also,
the algorithm is tested by altering some clock pins in a zero
skew CDN. For small modifications in a large number of
nodes in the CDN, our algorithm can achieve zero skew with
less iterations than linear order algorithms. 

I. Introduction

The growth in System on Chip (SoC) complexity pre-
sents a new challenge to the design of Clock Distribution
Network (CDN). The challenge stems from the decrease
in the gate delay compared to the increase of the intercon-
nection delay [2]. Sylvester et al. showed that the delays
on interconnects that span the chip will extend longer than
the clock period [3], and hence, controlling the skew will
be difficult. In addition to that, final locations of clock pins
cannot be known till later in the design process. Thus, the
time closure problem of SoC will be more difficult due to
the unavoidable need for the CDN modification to satisfy
the system skew requirements. Last decade witnessed
many approaches that tackle the skew problem by devising
CDN to deliver the clock signal with zero skew (ZSCDN)
or bounded skew (BSCDN) [1]. However, an Engineering
Change (EC) in the locations or the load capacitance of
the clock pins would require a recalculation of the whole
CDN solution as in Deferred Merging Embedded algo-
rithm (DME) [1]. In fact, it is often that IPs are inserted or
removed, and that would change clock pins placement,
capacitance and CDN’s topology. Moreover, the IP cores
have different clock delays, and each IP should be treated
as a black box. The multiple redesigning would become
very painful with pressing of shortest time to market. Pres-

ence of minor modifications in SoC design process moun-
tains the need for an incremental algorithm to tune the
CDN in order to eliminate repetitive redesign of the CDN.
We propose a novel algorithm, called Adaptive Wire
Adjustment (AWA), with a main goal to enable a quick EC
into a CDN that capable of integrating IP cores into SoC.
A secondary goal is to reduce the CDN wire length to help
with routing and power consumption. The reminder of the
paper is organized as follows. Section 2 reviews some pre-
liminaries and Elmore delay. Section 3 presents the pro-
posed algorithm. Section 4 proves the convergence of the
algorithm. Section 5 presents experimental results sup-
porting the effectiveness of the proposed algorithm for
small modifications. 

II. Preliminary
A. Definitions

Consider a CDN that connects a set of clock pins R={1,
2,., N}, for example, see Figure-1(a). Each clock pin i∈ R,
is associated with a capacitance load ci and a location l(ri)

in the Manhattan plane. If there is a unique path between
any two nodes in the CDN, then the CDN can be repre-
sented by a tree, T, as shown in Figure-1(b). Any node
v∈ T is connected to its parent by an edge ev and the cost of
ev is its rectilinear length in the Manhattan plane. The rec-

tilinear distance between two points in the Manhattan
plane, say u and v, is denoted Rect(u,v). For any two nodes
w,v∈ T where w is the ancestor of v, let Path(w,v) be the
unique path from w to v in T.

 B. Delay Model

The clock signal delay along a path in T can be deter-
mined under Elmore model by modeling each edge of
length e as a π-type circuit with a resistor er0 and two
capacitors ec0/2, where r0 and c0 are the resistance and

capacitance per unit length of the interconnect respec-
tively. Using this model, the tree T can be modeled as an
RC tree as shown in Figure-1(c), and, the signal delay
 Fig 1 An example of a CDN (a) the embedding in the Manhattan plane (b) the connection topology tree (c) the  RC-
Tree model
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from node w to node v (w is the ancestor of v) is given by
[4]:

(1)

where, Cα is the total capacitance of the sub-tree rooted at

node α

The skew between two leaves in T, say i and k, can be
calculated as following:

(2)

where, s0 is the root of the tree T.

C. Problem Definition

The skew constraint on any pair of clock pins, i, k∈ R, is
given as the minimum, smin(i,k), and maximum, smax(i,k).

If the skew between a pair of leaves is out of the permissi-
ble skew range, then T must be modified, otherwise, there
will be a failure in the system. The problem can be formu-
lated as follows: for any pair of leaves i,k∈ T, adjust edges
of T so that smin(i,k)< s(i,k)< smax(i,k). A common

approach to control the skew is to design a BSCDN with
the assumption that a certain bounded skew, B, between all
clock pins would satisfy the skew requirements. In this
paper, we present a novel approach that can minimize the
skew to any required bound B for an initial CDN by
adjusting wires of the CDN iteratively. The proposed algo-
rithm is called adaptive wire adjustment. 

III. Adaptive Wire Adjustment Algorithm 

The Adaptive Wire Adjustment (AWA) algorithm takes
as an input a CDN in a form of a linked tree data structure
and checks for the maximum skew in the tree then mini-
mizes it by adjusting wires of the tree. Whenever a skew
exists between two leaves, the paths to these two leaves
must be adjusted so that the skew becomes smaller. To
adjust these two paths, the algorithm finds the node that
can be shifted, by adjusting its child edges, so that the
skew is minimized. Such a node, called the Balancing
Node, BN, is the first ancestor of the same two leaves. For
example consider the CDN shown in Figure-1, to mini-
mize the skew between leaves i and k, their BN, w, is
shifted by adjusting its child edges eu and ev. If the leaf i

suffers higher delay than leaf k, then w must be shifted by
∆ towards node u and away from node v. Thus, the edge eu

decreases and edge ev increases as following:

(3)
where, e’u and e’v are the new value of eu and ev.

In order to determine the edge adjustment, ∆, the delay
from node w to its leaves have to be considered. In fact,

the leaf delays of the subtrees rooted at u and v span
ranges in the time domain as shown in Figure-2 (leaf
delays are calculated from the root of the tree). Thus, to
minimize the skew between the two sub-trees, the ranges
of u and v must be shifted in opposite directions. Let us
define the range of a sub-tree rooted at a node, say α, by
the maximum and the minimum delays in that range calcu-
lated from the nodeα  as following:

    Maxα = Maximum{Delay(α,β)}  for all leaf β∈  subtree α

Minα =  Minimum{Delay(α,β)}   for all leaf β∈  subtree α (4)

Also, let us define the center of the range of a sub-tree
rooted at α, Centreαααα, to be the average of maximum and
minimum delays of that range:

(5)

Using the range centre as a time reference, the skew
between a pair of internal nodes, u and v, can be defined
as:

(6)

Equation-6 can be used to determine a BN’s edge
adjustment, ∆, so that the skew between the BN’s children,
u and v, becomes zero by substituting eu and ev by e’u and

e’v respectively in Equation-6 and equating it to zero as
following:

(7)

Fig 2 The leaf delays ranges of the sub-trees rooted at
nodes u, v and w in Fig. 1 (leaf delays are calculated from
the root of the tree).

Adjusting eu and ev by  ∆ would shift the BN, where the

possible locations of the BN form a segment that will be
called the Balancing Segment, BS. The BS of u and v,
BSuv, can be determined from the intersection of two tilted
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rectangles, TRu and TRv, whose centers are nodes u and v
and whose radii are e’u and e’v respectively as shown in

Figure-3(a). Note that this is true only when e’u + e’v=

Rectuv. If e’u + e’v> Rectuv, then the intersection of TRu
and TRv is a TR as shown in Figure-3(b). In such a case, it

is possible to shorten both e’u and e’v while minimizing

the skew between u and v. The final location of the BN, w,
is determined by the intersection of BSuv  and TRs whose
centre is s and its radius is the BN edge ew as shown in

Figure-3(a). The BN’s edge, ew, has not been considered
yet, and its length would affect the total wire length. In
fact, the total wire length can be minimized by determin-
ing the BN’s edge as the minimum length between the BS
and the BN’s parent. 

Fig 3 (a) Determination of B S uv  and the new loca-
tion of the BN w. (b) The intersection of T R u  and

T R v  is a TR also when eu + ev>Rectuv 

Adjusting the BN’s child edges, as described before,
would minimize the maximum skew between the BN’s
leaves. In fact, the BN’s range gets smaller as the child
ranges are shifted in opposite directions so that their cen-
tres coincide on each other as shown in Figure-2. How-
ever, if the centres of the child ranges are already coincide,
then it is impossible to shorten the BN’s range by adjust-
ing its child edges. Also, if the BN’s range is equal to one
of its child ranges, then shifting the child ranges would not
help to minimize the BN’s range. In such a case, the BN’s
child that have greater range have to be selected as a BN.
In general, the BN can be defined as the node that have the
maximum skew and belongs to the lowest level in the tree.
From previous discussion, we can draw the AWA algo-
rithm to achieve a bounded skew for a given tree by mini-
mizing the maximum skew in the tree iteratively. At each
iteration, a BN is selected and its child edges are adjusted
as in Equations-3-7. The formal description of AWA algo-
rithm is as following:

Input:  Initial CDN for a set of clock pins R
Output:  Bounded Skew CDN by B

Generate T

Procedure AWA
while maximum skew >B:

Find the BN that has the maximum skew in T, and it 
belongs to the lowest level in T 

Calculate the required adjustment, ∆, to balance the 
child nodes of the BN, u and v.

Construct TRu and TRv as following:

core(TRu) = location of u, radius(TR )=e’u
core(TRv) = location of v, radius(TRv)=e’v

Calculate the BSuv as TRu ∩ TRv 

Calculate e’w as the minimum distance between BSuv 

and parent of BN, s.
Construct TRs as following:

core(TRs) = location of s, radius(TRs)=e’w
Locate BN at the intersection of TRs with BSuv 

Find the maximum skew in T

The AWA algorithm can narrow the skew in a given tree
iteratively, and hence the whole solution needs not to be
recalculated when the skew needs to be smaller. In fact,
the iterative nature of the AWA differentiates it from other
algorithms, such as Tsay approach or DME algorithm.
This feature of AWA is important when there is a minor
modification in the clock pins during the design process,
especially if the number of the clock pins is huge. Further-
more, the AWA can save the calculation time required for
CDN determination while managing a small modification
during the back and forth between different steps of digital
system design process. 

Unfortunately, minimizing the BN’s range not necessar-
ily leads immediately to a smaller skew in the tree due to
the alteration in the skew between the leaves that belong to
the BN and other leaves in the whole tree. However,
selecting an ancestor node as a BN in later iterations will
ensure to minimize the skew further, and AWA can
achieve the desired bound of skew ultimately as will
described in the next section. 

IV. Convergence of AWA Algorithm

As described before, shifting the child ranges would not
help to minimize the BN’s range if the centres of the child
ranges are already coincide, or if the BN’s range is equal
to one of its child ranges. This can be stated as following: 

Lemma 1: Let Rangu, Rangv and Rangw be the ranges of u,

v and w respectively such that Rangw >Rangu, and Rangw

> Rangv, where u and v are the children of w. If Centreu

and Centrev are not coincided on each other, then shifting

Rangu and Rangv in opposite direction so that Centreu and

Centrev get closer would result in Rang’w< Rangw, where

Rang’w is the range of w after the shifting.
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Proof: Let D and D’ be the difference between Centreu

and Centrev before and after shifting the ranges respec-

tively. Shifting Rangu and Rangv so that Centreu and

Centrev get closer implicitly gives D’<D. Thus, the case
that Rang’w>Rangw is impossible as it implies that D’>D.

Furthermore, the case that D’<D but Rang’w= Rangw

would happen only if Rangw is equal to either Rangu or
Rangv, which is contradictory to the statement of the

Lemma. Hence Rang’w< Rangw must be true.

Indeed, the minimum range of a BN can be achieved
only by shifting the two BN’s child ranges in opposite
directions till their centres coincide as stated below:

Lemma 2: Let Rangu, Rangv and Rangw be the ranges of

u, v and w respectively, such that u and v are the children
of w. If Centreu and Centrev coincide on each other, then

Rangw=Maximum(Rangu,Rangv). 

Proof: Let Rangu> Rangv. The case that Rangw> Rangu

implies that either Rangu< Rangv or Centreu and Centrev

have not coincided on each other, which contradicts the
given statement. Also, it is impossible that Rangw<Rangu

since u is the child of w. Hence Rangw=Rangu must be
true. A similar argument can be deduced when Rangv>

Rangu.

Previous discussion is centered on getting the BN’s
range smaller, which implies the minimization of the max-
imum skew between the BN’s leaves. Unfortunately, get-
ting the BN’s range smaller may result in a greater skew
between the BN’s leaves and other leaves in the tree as
described before. However, minimizing the range of a BN
in a tree will lead to minimize the range of the BN’s parent
in a later adjustment as stated in the followings two lem-
mas:

Lemma 3: Let Rangw be the range of w when its child

ranges are Rangu and Rangv, and they are coincided on

each other. Also, let Rang’w be the range of w when its

child ranges are Rang’u and Rang’v, and they are coin-

cided on each other. If Rang’u<Rangu and Rang’v<Rangv

then Rang’w<Rangw.

Proof: Since the child ranges are coincided on each other,
then, from Lemma 2, Rangw=Maximum(Rangu,Rangv)

and Rang’w=Maximum(Rang’u,Rang’v). Thus, Rang’w

<Rangw, since Rang’u<Rangu and Rang’v<Rangv.

Lemma 4: Let u and v be the children of w, and the child
edges of u and v are adjusted separately such that

Rang’u<Rangu and Rang’v<Rangv, where Rang’u and

Rang’v are the ranges of u and v after the adjustments

respectively. If the new range of w, Rang’w, increases due

to the previous adjustments, then the node w can be
selected as the BN to adjust its child edges so that
Rang”w<Rangw, where Rang”w is the range of w after

adjusting child edges of w.

Proof: In this statement, there are three individual adjust-
ments such that the adjustments for nodes u and v lead the
adjustment for node w. Before any adjustment, and accord-
ing to Lemma 2, the minimum possible value of Rangw is

Maximum(Rangu,Rangv) which would happen when

Rangu and Rangv are coincided on each other. If the last
adjustment, for node w, shifts the child ranges of w,
Rang’u and Rang’v, till they coincide on each other, then

Rang”w=Maximum(Rang’u,Rang’v) according to lemma

2. Hence, according to Lemma 3, Rang”w will be less than
the minimum possible value of Rangw since

Rang’u<Rangu and Rang’v<Rangv. 

Note that the condition that the BN belongs to the low-
est level is intended to satisfy Lemma 1 as the BN’s range
would not equal to any of its child ranges. Further, the fact
that BN’s range is greater than its child ranges implies that
the child centres are not coincide on each other. Also, note
that Lemma 4 implies that the maximum skew in the tree
would bounce, and hence it would slow down the conver-
gence of the algorithm. However, the algorithm would
converge ultimately to the required bounded skew as
stated in the following theorem

Theorem: applying the AWA algorithm to any given tree of
a CDN would ultimately minimize the maximum skew to
any bound.

Proof: The algorithm, at each iteration, selects a BN that
have the maximum skew in the tree. According to Lemma
1 and Lemma 2, adjusting the BN’s child edges would
minimize the maximum skew in the subtree rooted at the
BN. If the adjustment results in a greater skew in the
whole tree, then at a later iteration, an ancestor of that BN
will be selected as the BN and the new maximum skew
will get smaller according to Lemma 4. Getting a greater
skew would stop when the BN is the root of the tree
according to Lemma 1. This can be visualize as the BN
bouncing between different levels of the CDN’s tree. 

Such bouncing results in spikes in the convergence of
AWA due to the bouncing in the maximum skew of the
whole tree T. The maximum skew in T can be a result of
any combination of two leaves, where N leaves have N(N-



1)/2 combinations. As a tree of N leaves has log2N levels,
the BN may bounce log2N times for each maximum skew

in T. Thus, the order of AWA is N2log2N which is not lin-

ear as the order of DME.

V. Results

A package has been built using C++ in Windows envi-
ronment to study the performance of the proposed algo-
rithm. Various benchmarks were tested for various
scenarios to provide assessment of the proposed algorithm
such as the number of iterations.

Each set is generated by distributing N clock pins ran-
domly on a Manhattan plane using a uniform random
function. The capacitance of each clock pin is set between
2fF and 3fF by the same uniform random function. The
resistance and the capacitance of the interconnect are

assumed to be 300 Ω.cm-1 and 2.6 pF.cm-1 respectively.
The connection topology of each set is generated by the
Method of Means and Median (MMM), where the leaves
stand for the clock pins [1]. Each node in the tree is repre-
sented by a tuple of the following 8 parameters: x,y coordi-
nate of the node in the Manhattan plane, edge and detour
length that connect the node to its parent, the capacitance
of the subtree connected to the node, two pointers to the
left and right children and the clock signal delay from the
root to the node.

Initial CDNs were generated by MMM for three ran-
dom sets of 1024, 4096 and 8192 clock pins, and each set
was used as an input for the AWA to generate ZSCDN by
setting B=0. Figure-3 shows the skew convergence for
1024 clock pins (or leaves). It is obvious that the number
of required iterations decreases as the required skew
bound, B, increases. The spikes shown in Figure-3 are
resulting from the bouncing of the BN between levels of T
for each maximum skew. Figure-4 shows the relationship
between the number of leaves for different random sets
and the number of required iteration to reach ZS. Though
the order of AWA is not linear as the order of DME, the
main advantage of AWA is its iterative approach of mini-
mizing the skew whereas a small modification in the input
data would not require the recalculation of the whole solu-
tion as in DME. This feature is important when size of T is
very large. To show this advantage, different ZSCDNs of
size N=1024,4096 and 8192 where tested by altering leaf
locations then tested with AWA. The bounded skew was
set to zero, B=0, in order to compare number of the itera-
tions to the DME required iterations, where DME is a lin-
ear zero skew algorithm. As one would expect, the number
of iterations increases as the number of altered leaves
increases. Figure-5 shows the relationship between the
number of iterations and number of altered leaves for the

mentioned sets. The number of iterations for each number
of altered leaves is the average of numbers of the itera-
tions, where each number of iteration corresponds to alter-
ing different leaves but of the same number of leaves. The
alteration in the leaf locations was 6.25% of the whole
Manhattan plane. The benefit of AWA is elevated as the
size of the tree increases. For example, when the number
of leaves N=1024, and number of altered leaves is 9, the
AWA’s iteration is 1693 while using DME requires 1024
iterations only. However, when the number of leaves is
N=8192, and number of altered leaves is 9, the AWA’s iter-
ation is 2410 while using DME requires 8192 iterations.

Finally, the sensitivity of the AWA for the amount of
alteration in the leaf location was tested. Again, three sets
of ZSCDN of sizes N=1024, 4096 and 8192 were tested by
altering location of four leaves by different amounts. Also,
for more accurate results, different leaves were selected
for alteration for each set of ZSCDN. Figure-6 shows the
relationship between the amount of alteration in the leaves
location and the required iterations to achieve ZS. From
Figure-5 and Figure-6, it is obvious that the number of
iterations is less sensitive to the alteration value than to the
number of altered leaves.

VI. Conclusion

The topic of small modification of the CDN is an
important concept due to the increase in the complexity of
synchronous systems and the need for an algorithm to
cope with small modification in CDN. In this paper, we
showed that whenever there is a skew between any two
clock pins, the proposed algorithm can adjust wires of the
CDN and relocate the branching points so that the skew
becomes smaller. Zero skew sometimes is an over con-
straint; and the algorithm can achieve any skew bound and
it would take less iterations as the skew bound, B,
increases. Simulation performed on CDNs have shown
that using AWA algorithm can:

(vii)  reduce the bounded skew requirement further with-
out recalculating the whole solution.

(viii) achieve ZS for a given initial CDN.

(ix) achieve ZS for a modified ZSCDN at less computation   
compare to linear methods

The AWA algorithm can identify the node that requires
a long wire elongation to minimize the skew. This feature
can help to guide future works based on topology modifi-
cation. Another direction for the future work is to modify
the AWA with objective of minimizing the perturbation to
some existing edges in the CDN by adjusting other edges.
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