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Abstract -  In this paper, a technology mapping algorithm is 
proposed for heterogeneous FPGAs. The technology mapping 
problem is first formulated as a flow network problem. Then, 
an algorithm based on the min-cost max-flow algorithm is 
presented to select a proper set of feasible LUTs for various 
objectives.  The objective, the total area composed of LUTs 
and routing area, are discussed in the paper. This algorithm has 
been tested on the MCNC benchmark circuits. Compared with 
other existing LUT-based FPGA mapping algorithms, the 
algorithm produces better characteristics. 
 

I Introduction 
 

In a traditional lookup table (LUT)-based FPGA device, 
the configurable logic blocks (CLBs) are composed of 
k-input LUTs whose input number is constant. To maximize 
device utilization, heterogeneous FPGAs provide an array of 
homogeneous LUTs of different sizes or an array of 
physically heterogeneous LUTs. For example, the XC4000 
[1] and ORCA2C [2] series FPGAs can be configured to 
have heterogeneous LUTs. The technology mapping 
problem for LUT-based FPGAs involves producing an 
equivalent circuit for a given circuit using only gates that 
can be implemented with LUTs.  

This paper addresses the technology mapping problems 
for heterogeneous FPGA designs. There are several 
homogeneous FPGA technology-mapping algorithms for 
minimum layout size. However, most of these algorithms are 
unable to deal with heterogeneous FPGAs. A recent work [9] 
has shown that the area minimization-mapping problem for a 
tree network can be solved optimally in O(n3). However, this 
algorithm is significantly limited because the optimality 
holds only for the tree. The HeteroMap algorithm [10] was 
presented to reduce the number of LUTs for heterogeneous 
LUT-based FPGAs.  An algorithm is proposed in this paper. 
The proposed algorithm can be configured for various 
objectives, the minimum number of LUTs, the total area, or 
others. To minimize the total area of a FPGA, two parts: 1) 
The LUT area and 2) the routing area are considered 
simultaneously. 

The technology mapping problem is formulated first as a 
flow network problem. An algorithm based on the min-cost 
max-flow algorithm is then presented to select a proper set 
of LUTs from the set of feasible LUTs.  An enumerating 
algorithm to generate all feasible LUTs is also presented.  
We implemented this algorithm and compared the empirical 
results with other LUT-based FPGA mapping algorithms. 
The results demonstrate the efficiency of this algorithm. 

The remainder of this paper is organized as follows. The 
terminology and a graph-based formulation of the problem 
are described in Section 2. An algorithm for solving the 

problem is shown in Section 3. Section 4 gives an algorithm 
to generate the set of feasible cones. The objective, the total 
area, are discussed in Section 5. Experimental results are 
shown in Section 6.   Our concluding remarks are 
presented in Section 7. 
 

II. Formulation of the Mapping Problem 
 

An FPGA technology mapping problem can be 
formulated as a graph based problem. A combinational logic 
circuit can be represented by a directed acyclic graph (DAG), 
G = (Vg∪Vio, E). A vertex in Vg represents a logic gate, 
while a vertex in Vio represents a pseudo gate that is either a 
primary input or a primary output. A directed edge <i, j> 
exists in E if the output of gate i is the input of gate j. Notice 
that a primary input vertex has no in-coming edge and a 
primary output vertex has no out-going edge.  Let v and u 
be two vertices of Vg.  If v is connected to u by a single 
edge, v is said to be a fan-in vertex of u and u is a fan-out 
vertex of v. Let Vs be a subset of Vg and 

sV = V – Vs. A fan-in 
signal of Vs is a signal associated with an edge directed from 
a 

sV  vertex to a Vs vertex. A fan-out signal of Vs is a signal 
associated with an edge directed from a Vs vertex to a 

sV  
vertex.  Input(Vs) is defined as representing the set of fan-in 
signals of Vs. Similarly, the Output(Vs) represents the set of 
fan-out signals. A network is said to be k-bounded if the 
in-degree of every vertex is less than or equal to k in the 
network. 

Assume that Cv is the subgraph induced by Vs.  The 
subgraph Cv = (Vv, Ev) is said to be a cone if vertex v ∈ Vv 
exists such that for every vertex u∈ Vv there is a directed 
path from u to v in Cv. The vertex v is called the tip of the 
cone. A cone, Cv, is said to be k-feasible if Output(Vv)=1 
and Input(Vv)≦k.  A vertex u is said to be covered with 
Cv if u ∈ Vv.  Because Cv is the induced subgraph of Vv, the 
set of fan-in signals of Cv is exactly equal to the Input(Vv). 
For convenience, Input(Vv) and Input(Cv) are 
interchangeable in the remainder of this paper. 

We assumed that a general LUT-based heterogeneous 
FPGA consists of LUTs of n types. Each LUT of one type 
has k inputs, k∈{k1, k2, …, kn}. Homogeneous FPGAs can 
be viewed as a special kind of heterogeneous FPGA with 
one and only one type of LUT. The technology mapping 
problem can be described as: Given a 2-bounded Boolean 
network, according to the objectives, find a set of feasible 
cones such that the union of all feasible cones includes all 
vertices. 

Finding the maximum flow with minimum cost in a flow 
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network can solve this problem.  Given a directed acyclic 
graph, G = (Vg∪Vio, E), let Vc be the set of feasible cones in 
G. According to G, a flow network 

 is constructed in 
which:  

)},,{( stbpgasn EEtsVG ∪∪= cV ∪
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6) 
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Vg is the set of vertices representing gates, 
a vertex in Vc represents a feasible cone, 
s and t represent the source and the sink respectively, 
there is an edge eij ∈ Ebp directed from a vertex i ∈ Vg to 
a vertex j ∈Vc if i is a vertex in the k-feasible cone 
associated with j and the capacity cap(eij)=1,  
there is an edge esi ∈ Est directed from s to every vertex 
i∈Vg , and the capacity cap(esi)=1, and 
there is an edge ejt ∈ Est directed from each vertex j∈Vc to 
t , and its capacity, cap(ejt), is equal to the number of 
vertices in the cone Cj = (Vj, Ej) associated with j.  

Figure 1.b illustrates a flow network constructed from 
the DAG shown in Figure 1.a.  It is assumed that a LUT in 
the heterogeneous FPGA has k-inputs, 2≤ k ≤ 4. In Gasn, an 
edge is said to be saturated if the flow through it is equal to 
its capacity. Since a Vc vertex has only one out-edge, for 
convenience, a Vc vertex is also said to be saturated if its out 
edge is saturated. On the other hand, if the flow through a Vc 
vertex is zero, the Vc vertex is said to be empty. 

Fig. 1. a) A given DAG; b) The flow network constructed 
from (a). 

Theorem 1: A maximum flow in Gasn is equivalent to the 
solution of a technology mapping problem if the total flow is 
equal to |Vg| and every Vc vertex is either saturated or empty. 

Proof: Since there is one and only one edge directed from s 
to each Vg vertex and its capacity is one, the upper bound of 
the total flow is the total number of vertices in Vg.  If the 
maximum flow is equal to the total number of vertices in Vg, 
the mapping includes all of the vertices in Vg. If we select 
the set of feasible cones corresponding to the vertices, Vc is 
saturated. By the construction rules, every gate is included in 
one and only one selected cone.  

Consider the flow shown in Figure 1.b. The bold lines 
from a Vc vertex to t are saturated edges; the others are zero. 
Since the total flow is equal to |Vg|, by Theorem 1, the set of 
cones induced by {u, v, w} and {x, y, z, m} can be selected 
to be an optimal mapping solution. There are several ways to 
generate a set of feasible cones [4].  If the set of feasible 
cones is not rich enough, it may not be possible to obtain a 

feasible solution.  An algorithm to generate the set of 
feasible cones is presented in section 4. 

 
III. An Algorithm for Finding the Min-cost Max-flow 

as Mapping Solution  
The mapping solution is not unique. Given an objective, 

we can define a cost function to assign a weight on each 
edge in Gasn and find the min-cost max-flow as the solution. 
There are several optimization objectives in the technology 
mapping process.  Two objectives, the minimum number of 
LUTs and the total area, are discussed in Section 5.A and B. 
In this section, it is assumed the weight of cost on every 
edge is given. 

There is an algorithm [13-14] that can find the maximum 
flow with minimum cost. However, a solution found by this 
algorithm does not ensure the flow through the sink edges is 
either saturated or zero.  The bold lines in Figure 2 
illustrate the min-cost max-flow network. It is seen that the 
flow through the vertex a is neither saturated nor zero. 

nj: the number of vertices in 
the cone associated with the 
Vc vertex 

cap(eij) = 1 
cost(eij) = 1/nj 

Fig. 2. A min-cost max-flow. 

The flow path in Gasn found by the min-cost max-flow 
algorithm must be changed such that the Vc vertex is either 
saturated or zero. When the flow path is changed, an 
algorithm which increases the minimum cost bound is 
needed. It has been proven that this problem is a 
NP-complete problem [13].  We will construct a max flow 
solution by a greedy algorithm. The strategy of this 
algorithm is as follows:  

Find the minimum-cost maximum-flow in the Gasn. 
The cones associated with the saturated Vc vertices are 
selected to be in the mapping solution.  
A Vc vertex, j, is called a candidate vertex if j is 
non-saturated and the cone corresponding to j includes no 
Vg vertices covered by selected cones. The total cost 
increases if we change the path of flow through other 
non-saturated Vc vertices such that j becomes saturated. 
The increase of total cost to force j saturated is denoted 
∆C(j).  For every candidate vertex, j, calculate ∆C(j). 
According to the calculation in step 3, find the candidate 
vertex, j, whose ∆C(j) is minimum and change the path of 
flow to make j be saturated.  
Select the cone corresponding to j to be in the mapping 
solution. If there exist candidate vertices, go to step 3.  

x 

v w 

z 

primary input vertices 
(a) 

y 

m 

u 

(b) 

vertices Vg feasible cones Vc

s t

cap(esi) = 1 cap(ejt) = |Vj|

cap(eij) =1 
u 

v 

w 

z 

x 

y 

b 

a 

m 

c 

d 

cap(esi) = 1 
cost(esi) = 0 

u a cap(ejt) = |Vj| 
cost(ejt) = 0v

b 
s tw

c 
x

y d 

z

m

 2



If every Vg vertex is covered, a mapping solution is 
obtained. Otherwise, no mapping solutions exist. 

6) 

The min-cost max-flow algorithm [13-14] first finds a 
maximum flow in Gasn. Then it constructs an auxiliary graph 
and iteratively reduces the total cost by finding directed 
cycles with negative costs in the auxiliary graph. 

We need an approach to calculating ∆C(j) of a candidate 
vertex j. Let Cj=(Vj, Ej) be the cone corresponding to j and Vs 
be a subset of Vj such that in Gasn the flow coming from a Vs 
vertex goes into j.  Let sjs VV −=V  and x∈ sV .  Assume 
in Gasn exj is the edge directed from x to j and the flow from x 
to a vertex y passes along the edge exy. If the flow passing 
along exy is changed to pass along exj, the increase of total 
cost is equal to cost(exj)−cost(exy).  Accordingly, 

( ) (cos t( ) cos t( ))
s

xj xy
x V

C j e e
∈

∆ = −∑  

where exj is the edge directed from x to j and  
exy is the edge passed by the flow from x to y. 

Consider the example in Figure 2.  It is seen that the 
vertex c is saturated. Hence we select the cone induced by {x, 
y, z, m} which is associated with c.  The vertex b is a 
candidate vertex. On the other hand, d is not a candidate 
vertex because the cone associated with d includes {x, y, z} 
which are covered Vg vertices. To make b saturated, the flow 
along the three edges, <u, a>, <v, a>, and <w, a>, must be 
redirected to pass through b. To change the flow in each of 
these three edges, the cost increases 1/3−1/4=1/12. Hence, 
∆C(b) =1/4. Since b becomes saturated, the cone induced by 
{u, v, w} is selected to cover the other vertices in the 
mapping solution. 

IV An Algorithm to Enumerate All Feasible Cones  

This section describes an algorithm to enumerate all 
feasible cones. Given a DAG, G = (Vg∪Vio, E), we generate 
the feasible cones tipped at each vertex in Vg.  Let v ∈ Vg 
be a vertex and CN(v) denote the set of cones Cv tipped at v 
and |Input (Cv)|≤ k. Let Fin (v) be the set of fan-in vertices of 
v and Pcn(v) = .  Since a cone must be 

connected, a cone in CN (v) must be the union of {v} and a 
subset of Pcn(v).  Therefore, we only need to inspect the 
cones in every CN ( v ), ∈Fin (v).  

U
)(

'

'

)(
vFinv

vCN
∈

' 'v
Accordingly, starting from every primary output vertex, 

all feasible cones can be found in an order of post-order 
traversal of G.  Let Vv be the union of {v} and a subset of 
Pcn(v). The subgraph induced by Vv is a k-feasible cone if 
and only if )( vVInput ≤ k and )( vVOutput = 1.  To find CN 
(v), we must check the union of {v} and every subset of 
Pcn(v).    

The union of a subset of Pcn(v) can be equivalent to the 
union of another subset of Pcn(v). Assume Cx and Cy are two 
cones in CN ( ) and C'v

'v
z is the union Cx and Cy.  Every 

cone in CN ( ) includes . If C'v z is a feasible cone, Cz 

must include  and C'v z ∈ CN ( v ). Otherwise, C'
z is not a 

feasible cone and Input (Cz)> k. In this case, Input({v}
∪Cz)> k and {v}∪Cz must not be a feasible cone. In other 
words, the union operation in CN ( ' ) is closure.  Let a 
separation selection of Pcn(v) be a subset of Pcn(v) in which 
every member is selected separately from a CN ( )∈ 
Pcn(v), ∈Fin (v).   Therefore to find CN( v ), we can 
just check whether |Input(V

v

'v
'v '

ss)|≤ k and Output(Vss)= 1, 
where Vss is the union of {v} and every separation selection 
of Pcn(v). 

FA+

× BA

V The Optimization Objective  

The total area is the most important objective in the 
technology mapping process. 

A large LUT must use a large area. A mapping with the 
minimum number of cones may not lead to the minimum 
total area because the size of the LUT grows exponentially 
proportional to the number of cone inputs. It is better to 
optimize the total area. 

Assume that Cj is a cone associated with a Vc vertex and 
Aj is the total area needed for using a logic block to 
implement Cj.. Similar to the cost function defined to 
minimize the total number of LUTs, if the cost of the edges 
between a Vg vertex and the Vc vertex is set to cost(eij) = 
Aj/nj and the cost of the other edges are zero, the total area 
can be minimized by finding the min-cost max-flow in Gasn 
where nj is the number vertices included in Cj.  

Recall that the FPGA area includes the area for the LUTs 
and the area for routing. Let Ab be the area for a logic block, 
and Ac be the area needed for interconnection if a cone Cj is 
selected. Then Aj = Ab +Ac.  An approach for calculating Ab, 
and a method for estimating Ac are needed. 

To calculate Ab the area for a LUT-based logic block, we 
used the logic block model shown in the literature 3 [1]. Let 
BA be the bit area required to store a static RAM bit and FA 
be the fixed area required to implement the D flip-flop and 
all of the other associated circuitry. The area for a logic 
block, Ab, is then:  

Ab = BA×2k +FA.       (1) 
To estimate the routing area, we used the model 

proposed in the literature [3]. We can consider the 
needed routing area to be the space taken by the 
routing tracks on two of the four sides of the logic 
block, as shown in Figure 3.  

Let Np be the number of pins. Assume that the pitch of a 
routing track is approximated as the square root of the area 
required by a bit. The dimension of a channel is then 
Np× BA . The area for interconnection is: 

Ac = (Np)2×BA+2 BA k×2 × Np× BA .  (2) 
According to (1) and (2), the total area of a logic block is: 
Aj = {BA×2k +FA} +{(Np)2×BA+2 FABA k +2 × Np× }.

      (3) 
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According to the experimental results shown in [3], Np 
must be at least k+1 and proportional to the total number 
pins of CLBs.  

Fig. 3. A model for estimating the routing area. 

IV Experimental Results  

We used C language to implement the proposed 
algorithm on a SUN ULTRA SPARC workstation and tested 
several circuits from the MCNC logic synthesis benchmark 
set.  To produce a more accurate area analysis for 
heterogeneous FPGA, testing was accomplished using 
FlowMap [5], HeteroMap [10], and the proposed algorithm 
on XC4000 series FPGAs that can implement circuits with 
4-LUTs and 5-LUTs. Using 1.25µm CMOS technology, BA 
was estimated about 400µm2 and FA was 5100µm2. 
Therefore, the total area of a 4-LUT was estimated as  
{400×24+5100}+{(5)2×400+2 51002400 4 +× ×5× 400 } = 
42948µm. The results are shown in Table 1. It confirms 
effectiveness of the proposed algorithm in terms of the area. 

Proposed algorithm FlowMap HeteroMap 
Circuits 

# CLB Total 
Area (mm) CPU (s) # CLB Total 

Area (mm) CPU (s) # CLB Total 
Area (mm) CPU (s)

5xp1 12 3095 5.6 20 5159 0.2 16 4127 0.2 

9sym 44 11349 11.0 45 11607 0.3 48 12381 0.6 

9symml 42 10833 15.4 47 12123 0.3 44 11349 0.6 

C880 90 23214 55.3 183 47202 2.3 151 38948 13.3

alu2 77 19861 86.6 128 33016 1.5 114 29404 13.8

count 31 7996 2.7 59 15218 0.4 51 13155 0.6 

duke2 96 24762 27.5 140 36111 1.2 127 32758 2.3 

rd84 25 6448 20.3 34 8770 0.4 31 7996 0.9 

vg2 14 3611 1.0 31 7996 0.2 27 6964 0.3 

Total 431 111170 225.4 687 177201 6.8 609 157082 32.6

Comparison 1 1 +59% -97% +41% -86%

Table I. Comparison of Area and CPU Time on XC4000 
series FPGAs  

Proposed algorithm FlowMap HeteroMap 

Circuits Total 
Area 
(mm) 

Block 
Area 
(mm) 

Routing 
Area 
(mm) 

Total 
Area 
(mm) 

Block 
Area 
(mm)

Routing 
Area 
(mm) 

Total 
Area 
(mm) 

Block 
Area 
(mm)

Routing 
Area 
(mm) 

9sym 2416 702 1714 3093 932 2161 3216 924 2292 

9symml 2628 772 1856 2967 888 2079 3171 926 2245 

apex4 33720 9308 24413 51712 15380 36332 48881 13367 35514

alu2 7814 2195 5619 9722 2859 6862 9446 2632 6814 

des 37338 11157 26181 45448 13676 31772 46916 13722 33194

rd84 1487 416 1071 2596 752 1844 2341 635 1705 

Total 85404 24550 60855 115537 34487 81050 113970 32206 81764

Comparison 1 1 1 +35% +40% +33% +33% +31% +34%

Table II. Comparison of Area on a Give Heterogeneous 
FPGA  

A heterogeneous FPGA can consist of three or more 
types of LUTs. We select a heterogeneous FPGA 
architecture that consisted of three types of LUTs with input 
sizes of four, five, and six respectively. Table 2 shows the 
comparison results. Compared with FlowMap and 
HeteroMap, the proposed algorithm reduces 35% and 33% 
of the mapping area. 

FABA k +×2 BAN p ×

FABA k +×2

BAN p ×
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