
A Technology Mapping Algorithm for Heterogeneous FPGAs
Chi-Chou Kao and Yen-Tai Lai
Department of Electrical Engineering

National Cheng Kung University
Tainan, Taiwan

Abstract - In this paper, a technology mapping algorithm is
proposed for heterogeneous FPGAs. The technology mapping
problem is first formulated as a flow network problem. Then,
an algorithm based on the min-cost max-flow algorithm is
presented to select a proper set of feasible LUTs for various
objectives. The objective, the total area composed of LUTs
and routing area, are discussed in the paper. This algorithm has
been tested on the MCNC benchmark circuits. Compared with
other existing LUT-based FPGA mapping algorithms, the
algorithm produces better characteristics.

I Introduction

In a traditional lookup table (LUT)-based FPGA device,
the configurable logic blocks (CLBs) are composed of
k-input LUTs whose input number is constant. To maximize
device utilization, heterogeneous FPGAs provide an array of
homogeneous LUTs of different sizes or an array of
physically heterogeneous LUTs. For example, the XC4000
[1] and ORCA2C [2] series FPGAs can be configured to
have heterogeneous LUTs. The technology mapping
problem for LUT-based FPGAs involves producing an
equivalent circuit for a given circuit using only gates that
can be implemented with LUTs.

This paper addresses the technology mapping problems
for heterogeneous FPGA designs. There are several
homogeneous FPGA technology-mapping algorithms for
minimum layout size. However, most of these algorithms are
unable to deal with heterogeneous FPGAs. A recent work [9]
has shown that the area minimization-mapping problem for a
tree network can be solved optimally in O(n3). However, this
algorithm is significantly limited because the optimality
holds only for the tree. The HeteroMap algorithm [10] was
presented to reduce the number of LUTs for heterogeneous
LUT-based FPGAs. An algorithm is proposed in this paper.
The proposed algorithm can be configured for various
objectives, the minimum number of LUTs, the total area, or
others. To minimize the total area of a FPGA, two parts: 1)
The LUT area and 2) the routing area are considered
simultaneously.

The technology mapping problem is formulated first as a
flow network problem. An algorithm based on the min-cost
max-flow algorithm is then presented to select a proper set
of LUTs from the set of feasible LUTs. An enumerating
algorithm to generate all feasible LUTs is also presented.
We implemented this algorithm and compared the empirical
results with other LUT-based FPGA mapping algorithms.
The results demonstrate the efficiency of this algorithm.

The remainder of this paper is organized as follows. The
terminology and a graph-based formulation of the problem
are described in Section 2. An algorithm for solving the

problem is shown in Section 3. Section 4 gives an algorithm
to generate the set of feasible cones. The objective, the total
area, are discussed in Section 5. Experimental results are
shown in Section 6. Our concluding remarks are
presented in Section 7.

II. Formulation of the Mapping Problem

An FPGA technology mapping problem can be
formulated as a graph based problem. A combinational logic
circuit can be represented by a directed acyclic graph (DAG),
G = (Vg∪Vio, E). A vertex in Vg represents a logic gate,
while a vertex in Vio represents a pseudo gate that is either a
primary input or a primary output. A directed edge <i, j>
exists in E if the output of gate i is the input of gate j. Notice
that a primary input vertex has no in-coming edge and a
primary output vertex has no out-going edge. Let v and u
be two vertices of Vg. If v is connected to u by a single
edge, v is said to be a fan-in vertex of u and u is a fan-out
vertex of v. Let Vs be a subset of Vg and

sV = V – Vs. A fan-in
signal of Vs is a signal associated with an edge directed from
a

sV vertex to a Vs vertex. A fan-out signal of Vs is a signal
associated with an edge directed from a Vs vertex to a

sV
vertex. Input(Vs) is defined as representing the set of fan-in
signals of Vs. Similarly, the Output(Vs) represents the set of
fan-out signals. A network is said to be k-bounded if the
in-degree of every vertex is less than or equal to k in the
network.

Assume that Cv is the subgraph induced by Vs. The
subgraph Cv = (Vv, Ev) is said to be a cone if vertex v ∈ Vv
exists such that for every vertex u∈ Vv there is a directed
path from u to v in Cv. The vertex v is called the tip of the
cone. A cone, Cv, is said to be k-feasible if Output(Vv)=1
and Input(Vv)≦k. A vertex u is said to be covered with
Cv if u ∈ Vv. Because Cv is the induced subgraph of Vv, the
set of fan-in signals of Cv is exactly equal to the Input(Vv).
For convenience, Input(Vv) and Input(Cv) are
interchangeable in the remainder of this paper.

We assumed that a general LUT-based heterogeneous
FPGA consists of LUTs of n types. Each LUT of one type
has k inputs, k∈{k1, k2, …, kn}. Homogeneous FPGAs can
be viewed as a special kind of heterogeneous FPGA with
one and only one type of LUT. The technology mapping
problem can be described as: Given a 2-bounded Boolean
network, according to the objectives, find a set of feasible
cones such that the union of all feasible cones includes all
vertices.

Finding the maximum flow with minimum cost in a flow

 1

network can solve this problem. Given a directed acyclic
graph, G = (Vg∪Vio, E), let Vc be the set of feasible cones in
G. According to G, a flow network

 is constructed in
which:

)},,{(stbpgasn EEtsVG ∪∪= cV ∪

1)
2)
3)
4)

5)

6)

1)
2)

3)

4)

5)

Vg is the set of vertices representing gates,
a vertex in Vc represents a feasible cone,
s and t represent the source and the sink respectively,
there is an edge eij ∈ Ebp directed from a vertex i ∈ Vg to
a vertex j ∈Vc if i is a vertex in the k-feasible cone
associated with j and the capacity cap(eij)=1,
there is an edge esi ∈ Est directed from s to every vertex
i∈Vg , and the capacity cap(esi)=1, and
there is an edge ejt ∈ Est directed from each vertex j∈Vc to
t , and its capacity, cap(ejt), is equal to the number of
vertices in the cone Cj = (Vj, Ej) associated with j.

Figure 1.b illustrates a flow network constructed from
the DAG shown in Figure 1.a. It is assumed that a LUT in
the heterogeneous FPGA has k-inputs, 2≤ k ≤ 4. In Gasn, an
edge is said to be saturated if the flow through it is equal to
its capacity. Since a Vc vertex has only one out-edge, for
convenience, a Vc vertex is also said to be saturated if its out
edge is saturated. On the other hand, if the flow through a Vc
vertex is zero, the Vc vertex is said to be empty.

Fig. 1. a) A given DAG; b) The flow network constructed
from (a).

Theorem 1: A maximum flow in Gasn is equivalent to the
solution of a technology mapping problem if the total flow is
equal to |Vg| and every Vc vertex is either saturated or empty.

Proof: Since there is one and only one edge directed from s
to each Vg vertex and its capacity is one, the upper bound of
the total flow is the total number of vertices in Vg. If the
maximum flow is equal to the total number of vertices in Vg,
the mapping includes all of the vertices in Vg. If we select
the set of feasible cones corresponding to the vertices, Vc is
saturated. By the construction rules, every gate is included in
one and only one selected cone.

Consider the flow shown in Figure 1.b. The bold lines
from a Vc vertex to t are saturated edges; the others are zero.
Since the total flow is equal to |Vg|, by Theorem 1, the set of
cones induced by {u, v, w} and {x, y, z, m} can be selected
to be an optimal mapping solution. There are several ways to
generate a set of feasible cones [4]. If the set of feasible
cones is not rich enough, it may not be possible to obtain a

feasible solution. An algorithm to generate the set of
feasible cones is presented in section 4.

III. An Algorithm for Finding the Min-cost Max-flow

as Mapping Solution
The mapping solution is not unique. Given an objective,

we can define a cost function to assign a weight on each
edge in Gasn and find the min-cost max-flow as the solution.
There are several optimization objectives in the technology
mapping process. Two objectives, the minimum number of
LUTs and the total area, are discussed in Section 5.A and B.
In this section, it is assumed the weight of cost on every
edge is given.

There is an algorithm [13-14] that can find the maximum
flow with minimum cost. However, a solution found by this
algorithm does not ensure the flow through the sink edges is
either saturated or zero. The bold lines in Figure 2
illustrate the min-cost max-flow network. It is seen that the
flow through the vertex a is neither saturated nor zero.

nj: the number of vertices in
the cone associated with the
Vc vertex

cap(eij) = 1
cost(eij) = 1/nj

Fig. 2. A min-cost max-flow.

The flow path in Gasn found by the min-cost max-flow
algorithm must be changed such that the Vc vertex is either
saturated or zero. When the flow path is changed, an
algorithm which increases the minimum cost bound is
needed. It has been proven that this problem is a
NP-complete problem [13]. We will construct a max flow
solution by a greedy algorithm. The strategy of this
algorithm is as follows:

Find the minimum-cost maximum-flow in the Gasn.
The cones associated with the saturated Vc vertices are
selected to be in the mapping solution.
A Vc vertex, j, is called a candidate vertex if j is
non-saturated and the cone corresponding to j includes no
Vg vertices covered by selected cones. The total cost
increases if we change the path of flow through other
non-saturated Vc vertices such that j becomes saturated.
The increase of total cost to force j saturated is denoted
∆C(j). For every candidate vertex, j, calculate ∆C(j).
According to the calculation in step 3, find the candidate
vertex, j, whose ∆C(j) is minimum and change the path of
flow to make j be saturated.
Select the cone corresponding to j to be in the mapping
solution. If there exist candidate vertices, go to step 3.

x

v w

z

primary input vertices
(a)

y

m

u

(b)

vertices Vg feasible cones Vc

s t

cap(esi) = 1 cap(ejt) = |Vj|

cap(eij) =1
u

v

w

z

x

y

b

a

m

c

d

cap(esi) = 1
cost(esi) = 0

u a cap(ejt) = |Vj|
cost(ejt) = 0v

b
s tw

c
x

y d

z

m

 2

If every Vg vertex is covered, a mapping solution is
obtained. Otherwise, no mapping solutions exist.

6)

The min-cost max-flow algorithm [13-14] first finds a
maximum flow in Gasn. Then it constructs an auxiliary graph
and iteratively reduces the total cost by finding directed
cycles with negative costs in the auxiliary graph.

We need an approach to calculating ∆C(j) of a candidate
vertex j. Let Cj=(Vj, Ej) be the cone corresponding to j and Vs
be a subset of Vj such that in Gasn the flow coming from a Vs
vertex goes into j. Let sjs VV −=V and x∈ sV . Assume
in Gasn exj is the edge directed from x to j and the flow from x
to a vertex y passes along the edge exy. If the flow passing
along exy is changed to pass along exj, the increase of total
cost is equal to cost(exj)−cost(exy). Accordingly,

() (cos t() cos t())
s

xj xy
x V

C j e e
∈

∆ = −∑

where exj is the edge directed from x to j and
exy is the edge passed by the flow from x to y.

Consider the example in Figure 2. It is seen that the
vertex c is saturated. Hence we select the cone induced by {x,
y, z, m} which is associated with c. The vertex b is a
candidate vertex. On the other hand, d is not a candidate
vertex because the cone associated with d includes {x, y, z}
which are covered Vg vertices. To make b saturated, the flow
along the three edges, <u, a>, <v, a>, and <w, a>, must be
redirected to pass through b. To change the flow in each of
these three edges, the cost increases 1/3−1/4=1/12. Hence,
∆C(b) =1/4. Since b becomes saturated, the cone induced by
{u, v, w} is selected to cover the other vertices in the
mapping solution.

IV An Algorithm to Enumerate All Feasible Cones

This section describes an algorithm to enumerate all
feasible cones. Given a DAG, G = (Vg∪Vio, E), we generate
the feasible cones tipped at each vertex in Vg. Let v ∈ Vg
be a vertex and CN(v) denote the set of cones Cv tipped at v
and |Input (Cv)|≤ k. Let Fin (v) be the set of fan-in vertices of
v and Pcn(v) = . Since a cone must be

connected, a cone in CN (v) must be the union of {v} and a
subset of Pcn(v). Therefore, we only need to inspect the
cones in every CN (v), ∈Fin (v).

U
)(

'

'

)(
vFinv

vCN
∈

' 'v
Accordingly, starting from every primary output vertex,

all feasible cones can be found in an order of post-order
traversal of G. Let Vv be the union of {v} and a subset of
Pcn(v). The subgraph induced by Vv is a k-feasible cone if
and only if)(vVInput ≤ k and)(vVOutput = 1. To find CN
(v), we must check the union of {v} and every subset of
Pcn(v).

The union of a subset of Pcn(v) can be equivalent to the
union of another subset of Pcn(v). Assume Cx and Cy are two
cones in CN () and C'v

'v
z is the union Cx and Cy. Every

cone in CN () includes . If C'v z is a feasible cone, Cz

must include and C'v z ∈ CN (v). Otherwise, C'
z is not a

feasible cone and Input (Cz)> k. In this case, Input({v}
∪Cz)> k and {v}∪Cz must not be a feasible cone. In other
words, the union operation in CN (') is closure. Let a
separation selection of Pcn(v) be a subset of Pcn(v) in which
every member is selected separately from a CN ()∈
Pcn(v), ∈Fin (v). Therefore to find CN(v), we can
just check whether |Input(V

v

'v
'v '

ss)|≤ k and Output(Vss)= 1,
where Vss is the union of {v} and every separation selection
of Pcn(v).

FA+

× BA

V The Optimization Objective

The total area is the most important objective in the
technology mapping process.

A large LUT must use a large area. A mapping with the
minimum number of cones may not lead to the minimum
total area because the size of the LUT grows exponentially
proportional to the number of cone inputs. It is better to
optimize the total area.

Assume that Cj is a cone associated with a Vc vertex and
Aj is the total area needed for using a logic block to
implement Cj.. Similar to the cost function defined to
minimize the total number of LUTs, if the cost of the edges
between a Vg vertex and the Vc vertex is set to cost(eij) =
Aj/nj and the cost of the other edges are zero, the total area
can be minimized by finding the min-cost max-flow in Gasn
where nj is the number vertices included in Cj.

Recall that the FPGA area includes the area for the LUTs
and the area for routing. Let Ab be the area for a logic block,
and Ac be the area needed for interconnection if a cone Cj is
selected. Then Aj = Ab +Ac. An approach for calculating Ab,
and a method for estimating Ac are needed.

To calculate Ab the area for a LUT-based logic block, we
used the logic block model shown in the literature 3 [1]. Let
BA be the bit area required to store a static RAM bit and FA
be the fixed area required to implement the D flip-flop and
all of the other associated circuitry. The area for a logic
block, Ab, is then:

Ab = BA×2k +FA. (1)
To estimate the routing area, we used the model

proposed in the literature [3]. We can consider the
needed routing area to be the space taken by the
routing tracks on two of the four sides of the logic
block, as shown in Figure 3.

Let Np be the number of pins. Assume that the pitch of a
routing track is approximated as the square root of the area
required by a bit. The dimension of a channel is then
Np× BA . The area for interconnection is:

Ac = (Np)2×BA+2 BA k×2 × Np× BA . (2)
According to (1) and (2), the total area of a logic block is:
Aj = {BA×2k +FA} +{(Np)2×BA+2 FABA k +2 × Np× }.

 (3)

 3

According to the experimental results shown in [3], Np
must be at least k+1 and proportional to the total number
pins of CLBs.

Fig. 3. A model for estimating the routing area.

IV Experimental Results

We used C language to implement the proposed
algorithm on a SUN ULTRA SPARC workstation and tested
several circuits from the MCNC logic synthesis benchmark
set. To produce a more accurate area analysis for
heterogeneous FPGA, testing was accomplished using
FlowMap [5], HeteroMap [10], and the proposed algorithm
on XC4000 series FPGAs that can implement circuits with
4-LUTs and 5-LUTs. Using 1.25µm CMOS technology, BA
was estimated about 400µm2 and FA was 5100µm2.
Therefore, the total area of a 4-LUT was estimated as
{400×24+5100}+{(5)2×400+2 51002400 4 +× ×5× 400 } =
42948µm. The results are shown in Table 1. It confirms
effectiveness of the proposed algorithm in terms of the area.

Proposed algorithm FlowMap HeteroMap
Circuits

CLB Total
Area (mm) CPU (s) # CLB Total

Area (mm) CPU (s) # CLB Total
Area (mm) CPU (s)

5xp1 12 3095 5.6 20 5159 0.2 16 4127 0.2

9sym 44 11349 11.0 45 11607 0.3 48 12381 0.6

9symml 42 10833 15.4 47 12123 0.3 44 11349 0.6

C880 90 23214 55.3 183 47202 2.3 151 38948 13.3

alu2 77 19861 86.6 128 33016 1.5 114 29404 13.8

count 31 7996 2.7 59 15218 0.4 51 13155 0.6

duke2 96 24762 27.5 140 36111 1.2 127 32758 2.3

rd84 25 6448 20.3 34 8770 0.4 31 7996 0.9

vg2 14 3611 1.0 31 7996 0.2 27 6964 0.3

Total 431 111170 225.4 687 177201 6.8 609 157082 32.6

Comparison 1 1 +59% -97% +41% -86%

Table I. Comparison of Area and CPU Time on XC4000
series FPGAs

Proposed algorithm FlowMap HeteroMap

Circuits Total
Area
(mm)

Block
Area
(mm)

Routing
Area
(mm)

Total
Area
(mm)

Block
Area
(mm)

Routing
Area
(mm)

Total
Area
(mm)

Block
Area
(mm)

Routing
Area
(mm)

9sym 2416 702 1714 3093 932 2161 3216 924 2292

9symml 2628 772 1856 2967 888 2079 3171 926 2245

apex4 33720 9308 24413 51712 15380 36332 48881 13367 35514

alu2 7814 2195 5619 9722 2859 6862 9446 2632 6814

des 37338 11157 26181 45448 13676 31772 46916 13722 33194

rd84 1487 416 1071 2596 752 1844 2341 635 1705

Total 85404 24550 60855 115537 34487 81050 113970 32206 81764

Comparison 1 1 1 +35% +40% +33% +33% +31% +34%

Table II. Comparison of Area on a Give Heterogeneous
FPGA

A heterogeneous FPGA can consist of three or more
types of LUTs. We select a heterogeneous FPGA
architecture that consisted of three types of LUTs with input
sizes of four, five, and six respectively. Table 2 shows the
comparison results. Compared with FlowMap and
HeteroMap, the proposed algorithm reduces 35% and 33%
of the mapping area.

FABA k +×2 BAN p ×

FABA k +×2

BAN p ×

Logic
Block References

[1] Xilinx: “The programmable logic data book,” Xilinx
Inc., San Jose, CA, 1997.

[2] Lucent Technologies: “ORCA OR2C-A/OR2T-A
series FPGAs data sheet,” Lucent Technologies Inc.,
Allentown, PA, 1996.

[3] Rose, J. S., Francis, R. J., Lewis, D., and Chow, P.:
“Architecture of programmable gate array: The effect
of logic block functionality on area efficiency,” IEEE
Journal of Solid State Circuits, Vol. 25, No 5, Oct.
1990, pp. 1217-1225.

[4] Schlag, M., Kong, J., and Chan, P. K.:
“Routability-driven technology mapping for lookup
table-based FPGAs,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and System pp.13-26
Vol.13 No. 1, Jan. 1994.

[5] Cong, J., and Ding, Y.: “FlowMap: An optimal
technology mapping algorithm for delay optimization
in lookup-table based FPGA designs,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
System pp. 1-11 Vol.13 No. 1, Jan. 1994.

[6] Ahuja, R., Thomas, K., Magnanti, L., and Orlin, J. B.:
“Network flows theory, algorithms, and applications,”
Prentice-Hall International Editions, 1993.

[7] Evans, J. R., and Minieka, E.: “Optimization
algorithms for networks and graphs,” Marcel Dekker,
INC., 1992.

[8] He, J., and Rose, J.: “Technology mapping for
heterogeneous FPGAs,” presented at the ACM Int.
Workshop FPGA, Feb. 1994.

[9] Korupolu, M. R., Lee, K. K., and Wong, D. F.: “Exact
tree-based FPGA technology mapping for logic blocks
with independent LUT,” Proc, 35th ACM/IEEE Design
Automation Conference, pp. 708-711, June 1998.

[10] Cong, J., and Xu, S.: “Delay-optimal technology
mapping for FPGAs with heterogeneous LUT,” UCLA
Computer Science Dept. Tech. Report CSD-TR980015,
1998.

[11] J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast
Technology Mapping for Lookup Table-Based
FPGAs,” Proc, 28th ACM/IEEE Design Automation
Conference, pp. 248-251, June 1991.

[12] J. Cong. and Y. Ding, “On area/depth trade-off in
LUT-Based FPGA technology mapping,” IEEE
Transactions on VLSI Systems, pp. 137-148 Vol.2 No.
2, June 1994.

[13] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of
NP-Completeness,” New York, W. H. Freeman, 1979.

 4

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

