
Logic Optimization for Asynchronous Speed Independent Controllers using
Transduction Method

Hiroshi Saito Hiroshi Nakamura Masahiro Fujita Takashi Nanya
RCAST RCAST Dept. of EE RCAST

The University of Tokyo The University of Tokyo The University of Tokyo The University of Tokyo
Tokyo, JAPAN 153-8904 Tokyo, JAPAN 153-8904 Tokyo, JAPAN 113-8654 Tokyo, JAPAN 153-8904

Tel: +81-3-5452-5160 Tel: +81-3-5452-5162 Tel: +81-3-5841-6764 Tel: +81-3-5452-5160
Fax: +81-3-5452-5161 Fax: +81-3-5452-5163 Fax: +81-3-5841-6724 Fax: +81-3-5452-5161

hiroshi@hal.rcast.u-tokyo.ac.jp nakamura@hal.rcast.u-tokyo.ac.jp fujita@ee.t.u-tokyo.ac.jp nanya@hal.rcast.u-tokyo.ac.jp

Abstract— Asynchronous speed independent (SI) circuits
based on an unbounded gate delay model often suffer from high
area penalty. It happens due to the lack of efficient global op-
timization. This paper presents a boolean optimization method
based on tranduction method to optimize asynchronous SI cir-
cuits while preserving hazard-freeness.

I. INTRODUCTION

Signal Transition Graphs (STGs), interpreted Petri Nets, are
commonly used to specify behaviors of asynchronous circuits.
Starting from STGs, an asynchronous logic synthesis tool
petrify [2] can synthesize the corresponding asynchronous
speed-independent (SI) circuit, where the circuit behaves cor-
rectly under any gate delay.

Even though petrify is well established for the synthe-
sis of asynchronous SI circuits, global optimizations using the
relationships among logic functions of gates are not realized
because each output function is derived separately from the
encoded state graph of an STG. This sometimes causes redun-
dant circuits such that the same function appears on the differ-
ent logic networks.

To solve this problem, in this paper, we show an approach to
optimize asynchronous SI circuits globally using don’t cares
derived from given circuit structure. The don’t cares are ex-
ploited at the whole circuit structure by calculating permissible
functions.

Permissible functions [4] are functions guaranteeing that a
change within them does not affect the circuit outputs. They
are frequently used at multi-level logic optimizations. One
of the representative approaches using permissible functions
is transduction method [4, 5]. The transduction method opti-
mizes given circuits by sharing common gates and substituting
gates so that the total number of gates and/or connections are
minimized.

In this paper, we extend the transduction method to apply
it for asynchronous SI controllers considering how to calcu-
late permissible functions and which transformations guaran-
tee hazard-freeness. In particular, we focus on gate substitu-
tion algorithm in [4]. Fig.1 shows the proposed optimization

STG Binary encoded
state graph

Petrify

Generated
targets

Optimized
logic circuits

Calculation of
permissible
functions

Optimization
based on
transduction

Developed
parts

Logic functions
 or
Technology mapped
circuits

Fig. 1. Framework of this work

flow based on the transduction method. As initial inputs, it ac-
cepts logic functions for a circuit (or technology mapped cir-
cuit) produced by petrify and the corresponding binary en-
coded state graph. Then, it optimizes the circuit in terms of
gate substitution if hazard-freeness is guaranteed.

According to [3], in petrify, global optimization in terms
of gate substitution is carried out when a function is decom-
posed during technology mapping. However, it is restricted to
whether some gate is substituted by the decomposed gate or
not. In addition, the computation complexity is increased be-
cause recalculation of state space is required when each func-
tion is decomposed. Our approach does not restrict to some
specific gate and impose recalculation of state space because it
optimizes circuits globally without requiring any logic decom-
position.

The rest of the paper is organized as follows. In section
II, the basic notions of STG-based synthesis is presented. In
section III, the calculation of permissible functions for asyn-
chronous SI controllers is discussed. In section IV, we show
how to substitute the gates in asynchronous SI circuits preserv-
ing hazard-freeness. Finally, we show the experimental results
in section V and conclude this work in section VI.

ER(data−)

add_ack+ data_ack+

data+

add+

add− data−

add_ack− data_ack−

p3

p1 p2

p4p6

p8

p5
p7

p9

(b)

add+

data+

add_ack−

add−

add_ack+ data_ack+

data−

data_ack+ add_ack+

CSC conflict
states in

add add_ack data data_ack

data_ack−

add−data−

data_ack− add_ack−

(c)

0^0 0 0

1 0 0^0

1 0^1 0^

1^1 1 0^ 1 0^1^1

0 1^1 0^ 1^1 1^1 1 0^0 1^

0 0 1 0^ 0 1^1^1 1^1 0 1^ 1 0^0 0

0 0 1^1 0 1^0 1^ 1^1 0 0

0 0 0 1^ 0 1^0 0

add

data

SLAVE
add_ack

add

data

data_ack

(a)

data_ack

DATA

add_ack

ADDR

Fig. 2. Simple asynchronous interface: (a) timing diagrams, (b) STG, (c) SG

II. BACKGROUND

A. Signal Transition Graph

Fig.2.a shows a simple interface between two modules in
an asynchronous system, a master (e.g., a processor) and a
slave (e.g., memory). The interface involves two signal hand-
shakes, one for controlling the transmission of address (add
and addack) and the other for data (data and dataack). The
timing diagram shown in Fig.2.a defines the synchronization
protocol between the handshakes.

Fig.2.b shows the Signal Transition Graph (STG) [1] cor-
responding to the timing diagram of the controller. All nodes
in the STG are interpreted as signal transitions: a rising tran-
sition of signal a is labeled with “a+” and a falling transition
with “a−”. We also use the notation a∗ if we are not specific
about the sign of the transition.

An STG transition is enabled if all its input places (arcs)
contain a token. In the initial marking {p1, p2} of the STG
in Fig.2.b, transition add+ is enabled. Every enabled transi-
tion can fire, removing one token from every input place of the
transition and adding one token to every output place. After
the firing of transition add+ the token moves to a new mark-
ing, {p3}, where data+ is enabled.

The set of all signals in an STG is partitioned into a set of
inputs, which come from the environment, and a set of outputs
and state signals that must be implemented.

B. State Graph

Playing the token game for the reachability analysis on a
given STG, one can generate a State Graph (SG) in which
each node (a marking) is labeled with a vector of signal val-
ues (in Fig.2.c, signals that can change in the state are marked
with “∧”) and arcs between pairs of states are labeled with the
corresponding fired transitions.

Excitation region and quiescent region. A maximally con-
nected set of states in which a∗ is enabled is called an ex-
citation region (ER) for transition a∗ (denoted by ER(a∗),
e.g., the shadowed set of states in Fig.2.c corresponds to
ER(data−)). The quiescent region (QR) for transition a∗ (de-

R

S

a

C-element

C(a-)

C(a-/2)

C(a+)

C(a+/2)

Fig. 3. gC-implementation

noted by QR(a∗)) is a maximal set of states such that a is stable
and not reachable from any other ER(a∗.

Signal consistency. An SG is consistent if in every tran-
sition sequence from the initial state, rising and falling transi-
tions alternate for each signal. Fig.2.c shows the SG for the
STG in Fig.2.b, which is consistent.

Implementability conditions. In addition to consistency,
the following two properties are required for an SG to be im-
plementable as a hazard-free asynchronous circuit. The first
property is output persistency. A transition a∗ is persistent in
a state s if it is enabled in s and remains enabled in any other
state reachable from s by executing another transition b∗. An
SG is output persistent if all output signal transitions are per-
sistent in all states and input signals cannot be disabled by out-
puts.

The second implementability property, Complete State Cod-
ing (CSC), is necessary and sufficient for the existence of a
logic circuit implementation. A consistent SG satisfies the
CSC property if for every pair of states with the same binary
codes the set of output transitions enabled in both states is the
same. Pairs of states s, s′ that violate the CSC condition are
said to be in CSC conflict (binary codes 100*0 and 10*00 in
Fig.2.c).

The following sufficient condition was proved in [1]: an
STG can be implemented by a speed-independent circuit if it
is consistent, output-persistent, and CSC.

C. Generalized C-element implementations

If previously discussed conditions are satisfied, one can pro-
duce an SI circuit out of an STG where each signal a will
be implemented as a = S + R · a form, where R and S are
set and reset functions respectively. This way of implemen-
tation is known as generalized C-element implementation (or
gC-implementation). In this work, we focus on the circuits
derived by this implementation style as optimization targets.

Fig.3 shows an example of gC-implementation for a signal
a. Each gate in the first level (i.e.,C(a+), C(a + /2)) corre-
sponds to a signal transition and is derived to satisfy the fol-
lowing monotonous cover conditions. Note a ∗ /i means the
i-th transition of signal transition a∗.

1. Cover condition: C(a ∗ /i) covers all states of ER(a ∗ /i)
(i.e., C(a ∗ /i) evaluates to 1 in all states of ER(a ∗ /i))

a

c

b

1111

0101

0011

out

w1

(a)

out

w1a

c

b

1111

0101

0011

0101

0111

(b)

out

a

c

b

*1*1

01*1

0*1*

01*1

0111

(c)

w1

Calculation
of logic value

Calculation of
permissible functions

Fig. 4. Calculation of permissible functions

2. One-hot condition: C(a ∗ /i) does not cover any state
outside ER(a ∗ /i) ∪ QR(a ∗ /i)

3. Monotonicity condition: C(a ∗ /i) changes at most once
along any state sequence within QR(a ∗ /i)

The same signal transitions with different instance i are
gathered in the second level with an OR gate. It represents
either set or reset function.

III. CALCULATION OF PERMISSIBLE FUNCTIONS

A. Permissible Functions

Permissible functions, defined for each net and gate output,
represent a set of logic functions in which a change within
the functions does not affect circuit outputs (due to don’t care
space derived from circuit structures).

According to [4], the calculation of permissible functions
consists of the following two steps.

1. Calculation of logic values for each gate and net by as-
signing truth values for the primary inputs (Fig.4.b)

2. Calculation of permissible functions for each logic and
net starting from the circuit outputs to the primary inputs
(Fig.4.c)

After all of the logic values are calculated (Fig.4.b), the per-
missible functions are derived by assigning possible don’t care
for each input. For example in an OR gate, all of the inputs
must be 0 if the output is equal to 0. However, if the output
is equal to 1, one of its inputs must be 1 while the others can
be either 0 or 1 (i.e., don’t care, denoted by ∗). In Fig.4.b, the
permissible functions of the inputs of the OR gate, w1 and b,
can be 01*1 and 0*1*. Following to the same consideration
for the AND gate, we can obtain the permissible functions of
the circuit in Fig.4.a as in Fig.4.c.

In some cases, a gate (or a net) may have several candidates
of the permissible functions. For example in Fig.4.c, there is
another possibility of the permissible functions for w1 and b,
01** and 0*11 (the last element is different from the previous
case). The difference comes from the choices of the don’t care
assignments for w1 and b where the output of the OR gate is 1.
In fact, since calculations of all candidates require lots of com-
putation time, we concentrate on only a partial set of permis-
sible functions called Compatible Set of Permissible Functions
(CSPF).

a
c

b
out

w1

(a)

 out

 a
 c
 b

w1

[out]

ER(out+)

out

a

c

b
(c)

out

a

c

b

0011

1010

0000

1111

w1

[out]
0000

1111

A vector corresponds to
a state in SG

A value represents
the next state value
for the current state

 out a c b

 0101

0001 1101

 1001

(b)

out

a

c

b

0011

1010

0000

1111

w1

[out]0000

1111

We should not assign don’t cares
for these vectors because these values
represent the states in ER

 a- out+

00**

10**

00**

1111

w1

[out]
00**

1111

SG:

Truth value
assignments
from SG

All feedback
loops are
removed

Fig. 5. Calculation of permissible functions for asynchronous SI circuits

B. Calculation of Permissible Functions for Asynchronous SI
Circuits

In addition to the previous procedures, the following consid-
erations are required for the calculation of permissible func-
tions in asynchronous SI controllers.

1. Removal of all feedback loops

2. Assignments of truth values from corresponding SG

3. Assignments of don’t care except the states in ERs

Looking through asynchronous SI circuits, they contain
feedback loops because they describe sequential machines. To
prevent the iterative calculations caused by these loops, we
must cut all loops as in Fig.5.a before the calculation of logic
values.

In addition, since the behaviors of asynchronous SI con-
trollers are represented by the states in the corresponding SGs,
the truth values of signals directly come from the correspond-
ing SGs (see Fig.5.b).

The last requirement is don’t care assignment. In asyn-
chronous SI circuits, since the timing of the signal changes
of non-input signals (i.e, output or state signals) is represented
as an ER on SG, assignments of don’t care to the states in ERs
may lead to some hazardous behavior during transformations.
Therefore, we do not assign don’t care for any state in ER. It
must be considered on all of the gates and the nets in a given
circuit. Fig.5.c shows the calculation result of the permissible
functions for Fig.5.a.

IV. TRANSDUCTION METHOD FOR ASYNCHRONOUS SI
CIRCUITS

A. Validations of gate substitutions

In order to preserve hazard-freeness after optimizations, our
approach allows substitution if gate g2 which substitutes gate
g1 satisfies the monotonous cover conditions of the gate g1.
This is checked by observing the relationships of the logic
values and the corresponding ERs and QRs for both g1 and
g2. Before describing formal substitution conditions in gC-
implementations, we define several terminologies.

• Gs(g) - the value of CSPF of gate g in state s

• preds - set of immediate predecessor states for state s

Proposition IV.1 The substitution of gate g1 by gate g2 is
hazard-free if the following conditions are satisfied.

1. ∀ state s : Gs(g1) = 1 ⇒ s ∈ g2 (i.e., g2 evaluates to 1
in state s)

2. ∀ state s : s /∈ ER(a ∗ /i) ∪ QR(a ∗ /i) ⇒ s /∈ g2

3. ∀ state s : s ∈ QR(a ∗ /i) ∩ g2 ⇒ preds ∈ g2

Note g1 is a gate for the i-th transition of signal transition
a∗.

Proof of proposition IV.1. The first condition in Prop.IV.1
guarantees the cover condition in the monotonous cover con-
ditions. Since we have never assigned don’t care for all of the
states in ER, Gs(g1) is equal to 1 if s is a state in ER(a ∗ /i).
Under such a situation, if g2 does not cover the state s (i.e.,
g2 = 0 in state s), it looses the timing to produce signal tran-
sition a ∗ /i which implies a hazardous behavior.

The second condition is for the one-hot condition in the
monotonous cover conditions. According to the one-hot con-
dition, gate g1 does not cover the states out of ER(a ∗ /i) ∪
QR(a ∗ /i). If gate g2 covers such states and substitutes g1, it
means that there exist hazardous behaviors for gate g2 in those
states, which may be propagated to the circuit outputs.

The third condition is for the monotonicity condition in the
monotonous cover conditions. s ∈ QR(a ∗ /i)∩ g2 means the
state which is in QR(a ∗ /i) and g2 evaluates to 1. In such
a state, if one of the immediate predecessor state s′ (i.e., s′ is
a state in preds) is not covered by g2, there is an additional
transition of g2 between s′ and s (g2 is 0 in s′ but 1 in s),
which violates the monotonicity condition of signal transition
a ∗ /i. 2

Before the transformations, Prop.IV.1 is checked to validate
hazard-freeness. If one of them is not satisfied, the substitution
is prevented because it may lead to any hazardous behavior.

B. Gate Substitution Algorithm

As a transduction method, we focus on gate substitution al-
gorithm in [4], while extending it to satisfy Prop.IV.1. The gate
substitution algorithm allows substitution of gate g1 by gate g2

g1

g2

01**

011*

G(g2) G(g1)
011* 01**

g2

g1

g1 can be substituted by g2

Fig. 6. An illustration of gate substitution

if in their CSPFs, G(g1) and G(g2), G(g1) includes G(g2)
(G(g1) ⊃ G(g2)). For example in Fig.6, g1 is substituted by
g2 because G(g1) = 01 ∗ ∗ ⊃ G(g2) = 011∗.

In our extended gate substitution algorithm, the transforma-
tions are classified by the statements of calculated CSPFs and
logic values.

Case1: The logic values of both gates are equivalent. If in
all states the logic values of two gates g1 and g2 are equivalent,
g1 is substituted by g2 without caring anything because in all
states they have the same value. Substitution of g2 by g1 is
also possible.

Case2: G(g2) ⊆ G(g1) (or G(g1) ⊂ G(g2)). Since
G(g2) ⊆ G(g1) means that in all states where Gs(g1) is con-
stant 0 or 1 Gs(g2) has the same value, the first condition
of Prop.IV.1 is satisfied. This is because in all states of an
ER(a ∗ /i) where Gs(g1) is 1, g2 also evaluates to 1. How-
ever, all the other conditions of Prop.IV.1 must be checked be-
fore transformations. We call the check of Prop.IV.1 in Case 2
as Case2 check.

Case3: Other cases. In all other cases, we calculate the
conjunction of G(g1) and G(g2) (NewG in Fig.7). If the con-
junction is not empty, we check whether g1 or g2 is included in
that conjunction or not (NewG ⊇ g1 or NewG ⊇ g2). When
g1 is included in that conjunction, g2 is substituted by g1 if
for g1 all of the conditions in Prop.IV.1 with respect to g2 are
satisfied. We call this check as Case3 check.

If the conjunction of CSPFs exists but g1 or g2 is not in-
cluded, we create a set of new gates (New in Fig.7) such that
each new gate g is included in the conjunction (NewG ⊇ g).
In this case, we must check all of the conditions of Prop. IV.1
for the newly created gate with respect to g1 and g2.

Fig.7 shows a pseudo code of the extended gate substitution
algorithm.

Example. In order to demonstrate how the extended gate
substitution algorithm works, we apply it for an example cir-
cuit. Fig.8.a shows the SG of this example and Fig.8.b shows
a part of the corresponding SI circuit with respect to gC-
implementation. The CSPFs are assigned for C-element, set,
and reset functions (i.e., C-elements for aout and csc, gate
g1, and gate g2). Since CSPFs of g2 and g3 are neither
G(g2) ⊆ G(g3) nor G(g2) ⊃ G(g3) and the conjunction of
them is not empty (G(g2) ∩ G(g3) = 11*100000000000000),
this is Case3.

Suppose we substitute gate g3 by gate g2. For the first
condition of Prop.IV.1, Case3 check checks the states where

Input: An initial SI circuit and the corresponding SG
Output: An optimized SI circuit

begin
calculate CSPF G(gi) for all i using SG
while network is changed do

foreach pair of gates, gi and gj (i 6= j) do
/* Case1 */
if ∀ state s: g1 = g2
disconnect all connection to gj

connect gi to all fanout gates of gj

recalculate CSPF G(gi) for all i

break
endif
/* Case2 */
if G(gi) ⊇ G(gj) and Case2 check of gi wrt gj

disconnect all connection to gi

connect gj to all fanout gates of gi

recalculate CSPF G(gi) for all i

break
endif
if G(gj) ⊃ G(gi) and Case2 check of gj wrt gi

disconnect all connection to gj

connect gi to all fanout gates of gj

recalculate CSPF G(gi) for all i

break
endif
/* Case 3 */
NewG = G(gi) ∩ G(gj) /* conjunction of G(gi) and G(gj) */
if NewG 6= ∅

if NewG ⊇ gi and Case3 check of gi wrt gj

disconnect all connection to gj

connect gi to all fanout gates of gj

recalculate CSPF G(gi) for all i

break
endif
if NewG ⊇ gj and Case3 check of gj wrt gi

disconnect all connection to gi

connect gj to all fanout gates of gi

recalculate CSPF G(gi) for all i

break
endif
New = {g|g ∈ {gi}, g is connectable to NewG}
if NewG ⊃ g in New and Case3 check of g wrt gi and gj

disconnect all connection to gi, gj

connect g to all fanout gates of gi, gj

recalculate CSPF G(gi) for all i

break
endif

endif
endforeach

endwhile
end

Fig. 7. Extended gate substitution algorithm

Gs(g3) is 1. States s1 and s2 correspond to such states. Since
the logic values of g2 in those states are 1, the first condition of
Prop.IV.1 is satisfied (s1 and s2 are states in ER(csc−) cov-
ered by g3, hence satisfying this condition means satisfying
the cover condition in the monotonous cover conditions). For
the second condition, states out of ER(csc−)∪QR(csc−) are
enumerated. Through the SG, states s6 - s10 and s15 - s18
correspond to such states. In all of those states, since g2 does
not cover those states (evaluates to 0), the second condition of
Prop.IV.1 is also satisfied. For the last condition of Prop.IV.1,
states in QR(csc−) and covered by g2 are enumerated. States
s3 and s4 correspond to such states. In such states, the last con-
dition checks whether all of the immediate predecessor states
of s3 and s4 are covered by g2 or not. In states s1, s2, and
s4 (s1 and s4 are immediate predecessor states of s3 and s2 is

The first condition in Prop 4.1 checks...

The second condition in Prop 4.1 checks...

The third condition in Prop 4.1 checks...

aout

csc

aout
rin
rout
ain

csc

g2

aout

csc

(b)

aout
rin
rout
ain

csc

g2

g3

(d)

C-elements

 s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18
G(g2)={ * 1 * 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0}
 g2 ={ 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

G(g3)={ 1 1 * * * 0 0 0 0 0 * * * * 0 0 0 0}
 g3 ={ 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0}

 s1s2
 g2 ={ 1 1

 g3 ={ 1 1

 s6s7s8s9s10 s15s16s17s18
 g2 ={ 0 0 0 0 0 0 0 0 0}

 g3 ={ 0 0 0 0 0 0 0 0 0}

 s3s4
 g2 ={ ... 1 1

 g3 ={ ... 1 1

(c)

rin ain rout aout csc

 01100

 rout- csc+ rin+

 01000 01101 11100
 rin+ rout- rin+ rout-
 csc+ csc+

 01001 11000 11101
 rin+
 ain- csc+ rout-

 00001 11001
 ain-
rin+
 csc-
 10001 10000

aout+ aout+
 csc-
 10011 10010

 rin-
 rout+
 00010 00110

 aout- aout-
 rout+
 00000 00100

 rin+

 10100

ER(csc-)

QR(csc-)

Covered by gate g2

(a)

Fig. 8. An example of gate substitutions

of s4), since g2 covers those states, the last condition is also
satisfied. As a result, the substitution of g3 by g2 is carried out
without leading any hazardous behavior (Fig.8.d).

On the other hand, suppose we substitute g2 by g3. In
this case, we can see a violation of the second condition of
Prop IV.1 in state s5 (11101). In state s5 which is outside of
ER(aout+) ∪ QR(aout+), g3 covers s5. This means that g3
has a 0 → 1 → 0 hazard for aout+ around state s5 if g2
is substituted by g3. Therefore our extended gate substitution
algorithm prevents the substitution.

V. EXPERIMENTAL RESULTS

In this section, we show the experimental results of logic
optimizations applying our gate substitution algorithm to gC-
implementations and technology mapped circuits. For this, we
implemented the extended gate substitution algorithm using
JAVA. The experimental environment is Windows 98 with a
Pentium II processor (300MHz) and a 64 M byte memory.

Note, in technology mapped circuits, the monotonous cover
conditions for each gate are little bit different from gC-
implementations (see [3]) due to the introduction of decom-
posed gates. Although the formal conditions for substitutions
must be considered, we will investigate the applicability of
our gate substitution algorithm for technology mapped circuits.
Hence, in this work, the functionalities and hazard-freeness of
optimized circuits were verified by using SI verification tool
versify. The formal conditions for substitutions will be con-
sidered in our future work.

TABLE I
RESULTS OF OPTIMIZATIONS IN GC-IMPLEMENTATIONS

name states Original SI Optimized SI time
nodes lits. nodes lits. (sec.)

nak-pa 58 15 37 10 26 10.11
fifo 18 6 17 5 15 1.10

mp-for 22 11 29 9 25 2.30
ram-read 39 13 35 12 32 4.06

TABLE II
RESULTS OF OPTIMIZATIONS IN TECHNOLOGY MAPPED CIRCUITS

name states Original SI Optimized SI time
nodes lits. nodes lits. (sec.)

nak-pa 58 13 26 12 24 3.51
fifo 18 8 22 7 21 1.04

converta 24 15 36 13 34 5.39
mul 47 9 22 7 20 6.04
sbuf 81 13 31 12 30 6.54

A. Experiments on gC-Implementations

In this experiment, CSPFs are assigned for C-element, set,
and reset functions. Table I shows the optimization results for
gC-implementations of benchmark circuits. The second col-
umn shows the number of states in SGs. The third and forth
ones show the number of nodes and literals in the original SI
circuits. The fifth and sixth ones show the results after the opti-
mizations respectively. The final column shows the calculation
time.

The result shows that we can reduce 20% of the area with
respect to the number of nodes (17% wrt the number of liter-
als) on average. In gC-implementations, our approach works
well while substituting identical gates or the gates which have
similar logics.

B. Experiments on Technology Mapped Circuits

Similar to the previous experiments, we apply our gate sub-
stitution algorithm to technology mapped benchmark circuits.
In this experiment, we assume that our library has C-element
(c = a ·b+(a+b) ·c), AND, OR, NAND, NOR and INV gates
under three fanin. CSPFs are assigned for each gate.

Table II shows the result of this experiment. From the result,
the area reduction is about 10% wrt the number of nodes (6%
wrt the num. of lits.) on average. In this experiment the ef-
fect is not so much compared to gC-implementations because
petrify tries gate substitution when a function is decom-
posed. However, our approach can optimize the circuits even
after the gate substitution is carried out.

VI. CONCLUSION

Because of the lack of efficient global optimizations in asyn-
chronous SI circuit synthesis, the resulting circuits sometimes

have redundant circuitry. To solve this problem, we proposed
an optimization method for asynchronous SI controllers glob-
ally using transduction method while extending it to preserve
hazard-freeness. The experimental results were encouraging
in that on average the area reductions by our approach were
about 20% (for gC-implementations) and 10% (for technology
mapped circuits) in terms of the number of nodes. The algo-
rithm discussed in this paper was implemented using JAVA.

For future works, another optimization method based on
maximal set of permissible functions is considered because it
may give better results. In addition, the formal substitution
conditions for technology mapped circuits will be considered.

ACKNOWLEDGEMENTS

We would like to thank Dr. Alex Kondratyev (Cadence
Barkley Lab.) and Prof. Jordi Cortadella (Universitat Politec-
nica de Catalunya) for their useful comments in this paper.
This work is supported by International-Technology Promo-
tion Agency (IPA) in Japan.

REFERENCES

[1] T. A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT Laboratory for Computer Science, June
1987.

[2] J. Cortadella, M. Kishinevsky, A.Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. IEICE Transactions on In-
formation and Systems, E80-D(3):315–325, March 1997.

[3] A. Kondratyev, M. Kishinevsky, J. Cortadella, L. Lavagno, and
A. Yakovlev. Technology mapping for speed-independent circuits: de-
composition and resynthesis. In Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems, pages 240–
253. IEEE Computer Society Press, April 1997.

[4] S. Muroga, Y. Kambayashi, H.C. Lai, and J.N. Culliney. The transduc-
tion method - design of logic networks based on permissible functions.
IEEE Transactions on Computers, 1989.

[5] M. Futita. A logic synthesis system with multi-level logic circuit mini-
mization mechanism based on transduction methods. IPSJ transaction,
May 1989.

[6] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and
A. Yakovlev. Basic Gate Implementation of Speed-Independent Cir-
cuits. In Proc. Design Automation Conference, pages 56–62, June 1994.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

