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Abstract - This paper presents a method for modeling EM 
devices, where sample data obtained by numerical EM solver is 
approximated into a rational matrix of complex s. The model is 
described in verilog-AMS, thus, the EM devices can be 
simulated with the digital/circuit mixed circuits described at 
various abstraction levels. To generate the model, the selective 
orthogonal matrix least-squares method is presented. The 
computational efficiency of the proposed approach is confirmed 
on a commercial simulator, compared with the numerical EM 
method. 
 
 

I. Introduction 
 
Due to increasingly necessity of shortening time-to-market 
of the products for an electronic company to make sure a 
large market share, the designers of the electronic system 
and the developers of the computer-aided design system 
have paid attention to the top-down design and the 
bottom-up verification methodology to analog/digital mixed 
circuits [1], [2]. On the other hand, the situation around their 
analog/digital circuits has become more complicated. 
Electromagnetic (EM) devices such as microstrip antenna or 
Micro Electro Mechanical Systems (MEMS) [3] are to be 
implemented as System-on-Chip (SoC). Therefore, a new 
challenge to the top-down design and the bottom-up 
verification methodology is expected. 
 In this paper, we have focused on behavioral modeling of 
EM device executable on commercial tool that is compatible 
to VHDL-AMS [4] and verilog-AMS [5]. EM device is 
analyzed using numerical EM solver or measured by high 
performance instrument, where a set of discrete data in the 
time/frequency domain is obtained as its characteristics. 
However, the simulation model in standard languages such 
as VHDL-AMS and verilog-AMS is preferred to be a 
continuous function or circuit components at every level of 
abstractions. The sampled data given by the EM analysis or 
the measurement, therefore, must be converted into a 
continuous function. Here, the general technique that 
converts the sampled data of multi-port network to the EM 
device into a rational matrix of complex s is presented. The 
model obtained by the proposed method has the following 
advantages. The approximation fidelity ranges from the 
physical effect to the minimum expression, and the 

computational speed is two magnitudes faster than the 
numerical EM analysis. The model is generated by the 
selective orthogonal matrix least-squares method, which is 
an extension of the Chen’s method [6]. 
 This paper is organized as follows. In the next section, an   
introduction of behavioral modeling of EM devices is briefly 
given. Section III presents the selective orthogonal matrix 
least-squares method. We show the illustrative examples in 
Section IV, where the model of EM device is described in 
verilog-AMS and the simulation is carried out on Cadence 
Spectre. The computational efficiency of the proposed 
approach is shown comparing with the numerical EM 
algorithm. Final section gives conclusions. 
 
 

II. Behavioral Modeling 
 
 The goal of this section is to show "What is modeling of 
EM devices?". It is given by the definition of abstraction 
levels in top-down design/bottom-up verification 
methodologies [2]. In the methodology, the analog and 
digital parts interact each other at the multi-levels shown in 
Fig. 1. Since EM devices are defined as the circuits which 
have the electromagnetic effects, they are classified into 
analog domain as shown in Fig. 1(b). In the analog domain, 
at the functional level, the signal flow is described by 
mathematical functions. At the behavioral level, these 
mathematical functions are replaced by a number of 
high-level blocks, i.e., linear transfer function, op-amp, A/D 
converter, and so on. At the macro level, macromodels are 
constructed by elementary components such as resistor, 
capacitor, and nonlinear/linear control source, and 
second-order effects (slew rate, finite gain, and so on). 
Finally, at the circuit level, the circuit is decomposed into its 
elementary components. 

EM devices are governed by the Maxwell’s equations. On 
an assumption, they are formulated by lumped components, 
then, dealing with the EM devices is the same with the 
analog case shown in Fig. 1(b). However, the present issue 
what we see says that such a formulation is not sufficient 
due to the physical effect of the EM device. Alternatively, 
the macro and behavioral models should be constructed from 
a differential algebraic equations obtained by discretizing the 
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Fig. 2. Multi-port network for EM device. 

Maxwell’s equations. When the reduced-order modeling 
method as [7] is adapted to these equations, the 
macromodels of EM devices are obtained. As the EM 
solvers, some methods such as method of moments (MoM), 
finite element (FEM) method, and finite difference time 
domain (FDTD) method are known. These methods are 
properly used according to the purpose. However, the 
reduced-order modeling is not applicable to every method. 
On the other hand, using these EM algorithms, multi-port 
networks for the EM devices as shown in Fig. 2 are 
characterized by sampled data using one of the admittance, 
impedance, and scattering matrices. Then, if the sample data 
is expressed by a continuous function, it can be used as the 
macromodel. This paper presents a method for converting 
the sample data into a rational matrix of s. Depending on the 
order of the rational function, the approximation fidelity 
ranges from the physical effect to the minimum expression, 
and the macromodel is obtained by a linear transfer function. 
Therefore, the macromodel can be also used for the 
behavioral model, although circuit information as voltage 
and current is not considered in general at behavioral level.  
Nowadays, gaps between design abstractions and detail in 
physical effect are posing a problem with progress of the 

top-down design/bottom-up verification methodologies [1]. 
Since the proposed model covers the physical effect of EM 
devices, it relaxes the gaps between design abstractions and 
detail so that it is a merit. Further, if a user wishes, the low 
order model is also available according the approximation 
fidelity. 

 
 
III. Selective Orthogonal Matrix Least-Squares Method 

 
The selective orthogonal matrix least-squares method is 
provided in this section. Using a numerical method for 
analyzing an EM device, the parameter matrix to the 
multi-port network shown in Fig. 2 is yielded by sampled 
data in the frequency-domain. After the sampled data were 
obtained in the time-domain, it is transformed to the ones in 
the frequency domain by using FFT. The least-squares 
method converts the parameter matrix into a rational matrix 
of complex s, where degree of the rational matrix can be 
determined taking account into the approximation fidelity. 
 
A. First Level Data Fitting 
 
Before constructing the rational matrix, each element of the 
parameter matrix is separately approximated by a rational 
function. The poles obtained from all rational functions are 
used for forming the basis of the rational matrix in the 
second level data fitting.  

At a frequency point sq, each element is enforced as 
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The approximation is carried out using the weighted 
least-squares method. However, when the approximation 
covers a wide range, the method sometimes becomes ill 
conditioned. Therefore, the frequency range must be 
partitioned into some regions, and the sampled data is 
approximated in each region. 
 
B. Second Level Data Fitting 
 
From nature of a parameter matrix, close poles within a 
distance are found in the first level data fitting. Also unstable 
poles can be sometimes found. Their poles must be 
eliminated. All poles except for the duplicated and unstable 
ones are used to approximate the sample data. Then, the 
following relation is enforced 
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where K, pl, and Y(sq) are the residue matrix, pole, and 
parameter matrix obtained from the electromagnetic analysis, 

Fig. 1. Abstraction levels. (a) Digital case. (b) Analog
case. 
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respectively. The rational matrix in (2) is generally 
redundant, and one probably desires a more compact model. 
To achieve it, we need to take account into the 
approximation fidelity. The next subsection gives the metric 
of the least squares-method to enforce (2). 
 
C. Metric of Orthogonal Matrix Least-Squares Method 
 
To enforce (2), the following overdetermined matrix 
equation is solved. 
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and P is the coefficient matrix adequately constructed from 
(2). (3) is solved using the QR decomposition: 
 

WAP =                               (5) 
 

where W and A are orthogonal and upper triangle matrices. 
Then, the solution K can be written by 
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The process (6) is called the orthogonal least-squares 
method [6]. The rest part of this subsection gives the metric 
of the method in order to take account into the 
approximation fidelity. 
 The matrices P and W are rewritten using the column 
vectors as 
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For nM ≤ , we define the residual matrix to (3) as 
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Then, the product M
T
M ZZ  is satisfied with the following 

relation 
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The 2-norm of the residual matrix holds the following 
theorem. 

 

 
Theorem1: the sequence 

22221 ,,, MZZZ K  is 
monotonously decreasing. 
 
Prof) From (9), the following equation is satisfied. 
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For 0x ≠ , the quadratic form of (11) is written by 
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Dividing (12) with xxT , the maximum value is written by 
 

xx
xggxww

xx
xZZx

xx
xZZx

x ~~
~~

~~
~~

max 11

0 T

T
ss

T

s
T
sT

s
T
s

T

T
s

T
s

T

−= −−

≠
. 

                                   (13) 
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the following inequality is satisfied. 
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As a result, the inequality 
 

xx
xZZx

xx
xZZx

xx T
s

T
s

T

T
s

T
s

T

0

11

0
maxmax

≠

−−

≠
>          (16) 

 
is given, which means 

221 ss ZZ >−
. Therefore, Theorem 1 

is complete. 
                                            □ 

Fig. 3. 2-norm of residue matrix in matrix least
squares-method, where “Selective” is the proposed
method and “Normal” is non-selective case. 
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Fig. 4. Selective orthogonalization. 

Note that the 2-norm is evaluated by the maximum 
eigenvalue of M

T
M ZZ , which is used in the implementation 

of the selective orthogonal matrix least-squares method. 
 
D. Implementation 
 
In the orthogonalization of the matrix P, the column vectors 
do not have to be orthogonalized in order as nppp ,,, 21 K . 
Theorem 1 is guaranteed even if the column vectors are 
orthogonalized in different order. Therefore, the column 
orthogonalized at each step should be selected taking 
account into the 2-norm of residual matrix. For example, at 
k-th step, we can select one of n-k columns. Then, the 
2-norm of residual matrix is calculated for all the n-k 
columns, and the column with the largest 2-norm is selected 
and orthogonalized. Fig. 4 shows change of 2-norm in the 
orthogonalization process (the example will be given in the 
next section). When the column is selected taking account 

into the 2-norm of residual matrix and is orthogonalized at 
each step, which is corresponding to “Selective’’, the 2-norm 
is reduced more quickly than the non-selective case 
(Normal). Therefore, we can avoid the redundancy of (2) by 
setting a criterion for the 2-norm, which is a fundamental 
idea of the selective orthogonal matrix least-squares method. 
The method generalizes the Chen’s method [6] that is a 
method for identifying a single input single output system.  
 The selective orthogonal matrix least-squares method is 
applied only to the problem with real coefficient matrix, 
whereas the constraints (2) are complex. Thus, the matrix 
equation (5) must be rewritten so that it may have real 
coefficient matrix. Here, the matrix K of (3) is rewritten by 
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where 0K , s

iK , rc
i

,K , and ic
i

,K  are the matrix for direct 
coupling, residue matrix related with real pole, real and 
imaginary parts of residue matrix related with complex pole, 
respectively. The selective orthogonalization is summarized 
as Fig. 4, where d, S, R, and I are the column vectors in the 
matrix P and are related with 0K , s

iK , rc
i

,K , and ic
i

,K , 
respectively. At a step, if the residual matrix with respect to 
S2 has the largest 2-norm, the column is orthogonalized and 
shift operation is carried out in the coefficient matrix as 
shown in the second of Fig. 4. Next, the column R1 is done 
similarly. However, taking account into 2-norm in the next 
step is not carried out. The column I1 must be 
orthogonalized and shifted, because RI and I1 are related 
with a residue matrix and must not be separated. The process 
finishes, if the condition 
 

δ<
2sZ                               (18) 

 
is satisfied, where δ  is a user defined criterion. 
 
 

IV. Simulations 
 

Example 1: To estimate the performance of the proposed 
method, the Y-matrix of a transmission line was expressed 
by the rational matrix, where the parameters of the 
transmission lines are R = 0.5 [Ohm/cm], L = 10 [nH/cm], C 
= 4 [pF/cm], G = 0.0005 [S/cm], and the length is 5cm. The 
change of 2-norm is shown in Fig. 3. “Selective” is the result 
obtained by the selective orthogonal least-squares method, 
and “Normal” is the non-selective case. The reduction ratio 
of the proposed method is obviously superior to the 
non-selective case. 
 
Example 2: The strip lines shown in Fig. 5 were analyzed, 
where the strip lines give a PCB model. First, the strip lines 
were analyzed by using the FDTD method, where the cell 
grid of the method were taken as ∆x = ∆y = 0.8mm and ∆z = 
0.1mm. The sampled data of the Y matrix in the 
time-domain was converted into the frequency-domain using 
FTT. Next, in the first level data fitting, 306 poles were 

Fig. 5. Behavioral modeling of EM device. (a) A PCB
model. (b) Simulation circuit. 
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obtained. Using the selective orthogonal matrix least squares 
method, 8 poles were selected from the 306 poles. The 
frequency response of the (1,1) element is shown in Fig. 6. 
 The rational matrix obtained by the selective orthogonal 
matrix least squares method was written in verilog-AMS, 
where the residues/poles expression of (2) is converted into 
rational function with denominator and numerator 
polynomials with real coefficients. The transient analysis of 
the circuit shown in Fig. 5(b) is calculated using Cadence 
Spectre. The response of the voltage V2 is shown in Fig. 7. 
For a comparison, the Maxwell’s equations were directly 
represented into the equivalent circuit using the FDTD 
method [8] on the same condition for the modeling. The 
result is shown in Fig. 7 as “FDTD”. The waveform given 
by the proposed model is almost coincided to the result of 
the FDTD method. The CPU times by the proposed model 
was 4.09 seconds, whereas “FDTD” was 416.96 seconds. As 
we see, a speed up of 101.9 is achieved using the proposed 
model. At abstraction levels shown in Fig. 1, “FDTD” is 
corresponding to the circuit level. Therefore, the proposed 
model is sufficient as the behavioral model, from both 
accuracy and computational efficiency. 
 
 

V. Conclusions 
 

The behavioral modeling of EM devices has been presented 
in this paper, where a rational matrix approximates the 
sampled data obtained by using numerical EM solver. To 
approximate the sampled data, the selective orthogonal 
least-squares method has been also presented. This method 
allows us to choose the approximation fidelity from the 
physical effect to the minimum expression in terms of the 
model. This is a merit in meaning to compensate the gaps 
between abstracts and detail in top-down design/bottom-up 
verification methodologies to analog/digital mixed circuits 
design. The model was written in verilog-AMS [5]. We will 
attempt to write the model in VHDL-AMS [4]. 
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Fig. 7. Transient waveforms. 
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