Event-Driven Observability Enhanced Coverage Analysis

of C Programs for Functional Validation

Farzan FallahJ[

T Fujitsu Laboratories of America
Sunnyvale, CA 94086
USA

<farzan,ighosh>@fla.fujitsu.com

Abstract

Software programs written in some programming lan-
guages like C, C+4++, Java, efc, are mostly verified
by functional simulation. Since exhaustive functional
simulation is impossible for even a small C program,
it is important to quantitatively measure the extent of
design verification during simulation by a set of test
vectors. Various coverage metrics have been proposed
for measuring the degree of design verification. Most
of them compute the extent of design excitation (con-
trollability) but are unable to say whether the excita-
tion responses have propagated to observable points
in the program (observability). In this paper we pro-
pose a metric for code coverage analysis of C programs
that addresses not only controllability but tackles ob-
servability as well. Thus, this metric is able to tell
what percentage of the simulation responses have been
propagated to observable points in the program like
primary outputs or printed variables. We improve
upon a recently proposed observability enhanced soft-
ware coverage metric by increasing the accuracy of the
analysis as well as decreasing the simulation runtime
overhead by using an event-driven coverage analysis
method. We report some experimental results of us-
ing our coverage analysis tool for several C programs.

1 Introduction

With the advent of better compilers and automated synthesis
tools, C programs are being widely used for describing hard-
ware, writing software, or specifying mixed hardware/software
systems. C programs may be used to create software used in
embedded or portable systems, to write initial descriptions or
specifications of hardware or even to describe complete sys-
tems in case of hardware/software codesign. Traditionally C
has been used mostly for writing large software applications
but as mentioned above many design methodologies now use
C for both describing hardware and writing software. The fact
that hardware and software design methods are trying to move
towards a unified C based description language can be observed

Indradeep Ghosh'

Masahiro Fujitai

I Dept. of Electronic Engineering
University of Tokyo
Tokyo 113-8654, Japan

fujitaQee.t.u-tokyo.ac.jp

in the recent activities with languages like SystemC and SpecC
(1], [2].

In any software or hardware design flow one of the fun-
damental problems is verification. Since software programs
are error prone, it is necessary to check or validate the code
for correctness and detect errors. Also, the hardware synthe-
sized from C or assembly code generated from C programs can
be quite sensitive to the quality of the initial C description.
Therefore, there are bound to be changes made to the initial
C program. At each step of these design iterations, it is abso-
lutely necessary to verify or validate the correctness of the C
description.

Simulation is still the most popular technique used to ver-
ify the correctness of hardware and software designs. In sim-
ulation based verification or validation the unit under test is
exercised with a set of input stimuli and the output responses
are examined for correctness. One of the major problems in
this technique is to determine how good the test vectors are
in terms of exercising the complete behavior of the design. If
large portions of the C program remain untouched by the sim-
ulation vectors, the chances of the presence of bugs in those
portions of the C description increases drastically.

In order to alleviate the above problem a large number of
software coverage metrics have been proposed so far that give
a percentage of the amount of the description that has been
exercised by the simulation test vectors. Most of these metrics
That is
they tell us how much of the description has been exercised by
the test vectors (controllability) but fail to say whether the ef-
fects of the excitation has been propagated to observable points
like outputs or printed variables (observability). Observability
is as important as controllability since if the error response of a
bug is unobservable during simulation of the test vectors, then
the bug remains undetected.

consider excitation but fail to address observation.

In this paper, we address the above issue by proposing an
observability enhanced coverage metric that not only gives a
measurement of controllability of the test set but also tack-
les observability. Our work is motivated by previous work on
coverage of hardware description language (HDL) designs [3].
In this paper we have enhanced and modified the above cov-
erage metric to take care of software constructs like pointers,

recursions, and floating-point operations that are not present
in hardware languages. We have increased the accuracy of
the coverage metric over previous work presented in [9] by de-
tailed analysis of floating-point operations, expressions, types
and type casts. We also reduce the coverage analysis overhead
by using an event-driven simulation method. We present some
experimental results that show the overhead of simulating a
design with this coverage metric is tolerable.

2 Previous Work

Previously a lot of work has been done on software testing
techniques [5],[6]. Since it is impossible to ensure that a soft-
ware program is completely free from bugs, most of these tech-
niques have concentrated on coverage metrics. The most im-
portant ones are statement, branch and path coverage. There
is also multi-condition coverage and loop coverage. All the
above metrics just target excitation or controllability. They do
not target observability which is equally important for catch-
ing bugs. The path coverage metric will satisfy observability
requirements if all paths from program inputs to program out-
puts are exercised and the values of variables are such that the
erroneous values are not masked. However, this metric also
does not explicitly evaluate whether the effect of an error is
observable at a primary output. Moreover, due to the expo-
nential number of paths in a program 100% path coverage is
impractical. Further, the presence of false paths makes full
path coverage very tricky to achieve.

Impact and sensitivity analyses proposed for software test-
ing take into account observability requirements. Voas [7] in-
troduced sensitivity analysis that estimates probabilities that
an error on a location will result in an output error under a
specific input distribution. The program is executed for a large
number of random inputs consistent with the input distribu-
tion to estimate the error propagation probability for a single
location. Impact analysis [8] estimates impact strengths of all
entity instances in an execution in a time proportional to the
execution time. The impact strength of a statement or vari-
able y serves as a quantitative measure of the error-sensitivity
of the paths from y to the output. The above two metrics
both deal with injection of some error at some part of the pro-
gram and compute the probability of that error effect reaching
an output. They do not compute a complete coverage of the
program based on observability requirements. Though weak
mutation analysis [6] comes close to the error model used in
this work, the errors modeled here are a strict superset of all
errors that can be modeled by weak mutation analysis and
again unlike this work observability is not explicitly tackled in
weak mutation analysis.

In [9], an observability enhanced coverage metric has been
proposed. In that work the authors modify the software pro-
gram by adding a function call for each assign statement in
the program. In case of an assignment, a control function is
added after the assignment. When there is a call to an output
function an observe function is added. A list of dependen-
cies is maintained for each statement and augmented with the
program flow. When an observe statement is reached, all the
statements in its dependency list are marked as observable.
Since the method does not take into account the type of errors

in a particular statement, the method can be inaccurate. Fur-
thermore, error masking due to cancelation of errors is ignored.
Also, for statements like if (a<15) else ..., a more accurate er-
ror representation needs to be made to determine whether the
if block or the else block has been taken due to the error. From
the description of the paper it seems that the dependency list
is built up through a forward traversal of the program. This re-
sults in an expensive algorithm of O(n?) where n is the number
of lines in the program. The high simulation run time over-
heads reported in the paper corroborates this. It is possible to
have a linear time algorithm by building the dependency list
through a backward traversal. However, this was not done in
the paper. In this paper we have improved the accuracy of the
coverage by implementing a more accurate error model. Also,
our simulation run time overheads are much better than the
ones reported in [9].

Some work has already been done on observability enhanced
coverage analysis of RTL HDL descriptions. A rather inef-
ficient and restrictive observability enhanced HDL coverage
metric was proposed in [4]. The above work in [9] as well as
the work presented in this paper is inspired by previous work
on HDL coverage presented in [3].

3 Proposed Method

In this section, we describe our method for performing coverage
analysis for a C program. First we explain what tags are. After
that we will explain how we handle software specific constructs
like pointers, arrays, recursive functions, and data structures.
We will also present some enhancements to the method used
in [3] to better handle C programs. After explaining our event-
driven coverage analysis method, we will conclude the section
by briefly describing the complexity of our coverage analysis
algorithm.

3.1 Tags

A tag at a location represents the possibility that an incorrect
value was computed at that location. The tags on variables
are not tied to particular errors; they serve as a mechanism for
extending standard coverage metrics to include observability
requirements [3]. Each location corresponds to an assigned
variable in some statement in the C program. Our goal, given
a set of functional vectors and a C program, is to determine
if a tag injected in any particular location is propagated to
the program output. That is, we want to see if incorrectly
computed values are propagated to program outputs, or not.
This is dependent on the data values at other variables of the
program. Other data values may block the tag from reaching
any program output. The quality of a vector set is determined
by how many injected tags are propagated to the output. The
percentage of propagated tags is what we call tag coverage
under the metric.

Note that while there is full observability of internal loca-
tions in the C program during simulation, the particular data
values at internal locations may be incomprehensible to the
designer. For example, the designer may be able to verify that
the output of a Wallace tree multiplier is an incorrect 6, for

inputs of 4 and 4, but will not be able to determine if an arbi-
trary internal wire is at a faulty 1 or 0.

We will use the single tag model, where the effects of ex-
actly one injected tag are computed, for many different injected
tags. Fach injected tag can be thought of creating a distinct
“faulty” C program. Two tags are injected for every variable
and expression.

A tag is represented by the symbol A which signifies a pos-
sible change in the value of the variable due to an error. Both
positive and negative tags are considered, +A written simply
as A, and —A. If the presence of the tag is not known, an
unknown tag is used. An unknown tag is shown by “?”. In
case that there is an error, but we don’t know its sign we use
A'. Approach presented in [3] used “?” to model this type
of errors. As we will see in the next subsection, introducing
A’ helps us to better handle pointers and get some meaningful
coverage results.

As an example consider the following piece of C program:

a=1;
b=2- aj;
fprintf (outFile, ‘‘%d’’, b);

If the intended assignment in the first line was ¢ = 0, the
value of variable a will be greater than its intended value. We
can represent the possibility of this by putting a A on variable
a. The tag on variable a is propagated to variable b when the
second line is executed. As a result, variable b will have —A.
Finally, when the fprintf instruction is executed, the value
which is printed in outFile will be erroneous. This will signal
the presence of an error in the program.

3.2 Pointers

One major difference between C language and Verilog HDL
is the use of pointers in C. In this subsection we explain how
we handle pointers. A pointer is a variable that holds the
address of another variable in a memory. If there is an error
in the value of the pointer, the pointer points to a location
different than the desired one. Hence, any memory operation
performed using the pointer may result in an error. If the
pointer is used to read the memory location, a wrong location
may be read resulting in an erroneous value. Consider the
following example:

a = *p;

If there is a tag on variable p, we read a location in the
memory which is different than the one intended. Hence, there
will be an error on variable a. Due to the fact that the exact
magnitude of the tag on p is unknown, we don’t know the
sign of the tag that may appear on variable a. We use A’ to
represent the presence of an error on variable a.!

Now let’s assume that the pointer is used to write a mem-
ory location. In this case a wrong location may be written
which might result in errors in both the erroneous and the in-
tended locations. This means that we need to inject two tags

TA’ is the only type of tag used in [9]. While this may seem
adequate for analyzing errors on pointers, it may not be powerful
enough for measuring the coverage of every part of a C program.

in two different locations to model the error. In the following
assignment:

*¥p = a;

if p is tag free, the tag present on a is propagated to xp. If
p 1s not tag free, there will be two effects,

1. An erroneous memory location will be modified.
2. The intended memory location will not be modified.

As aresult the tag on p may propagate to two different memory
locations. To capture the first effect, it is necessary to put a
tag on the memory location pointed by p in presence of the
tag. The second effect can be modeled by putting a tag on the
memory location pointed by p in absence of the tag. Because
the magnitude of the tag is not known, it is not clear which
memory location should have been altered in the correct case.
It 1s possible to assume a tag on every location whose address
is more (less) than p when there is a negative (positive) tag
but this approach leads to too many tags on memory locations.
This problem may be solved by ignoring the propagation of the
tag by this effect and concentrating only on the tag generated
by the first effect. As an example, consider the statement xp =
20 with the memory contents given in Figure 1 (a). Figure 1
(b) shows how the memory contents will change if there is no
tag on p (i.e., the correct behavior of the program). Note that
only the content of one location has changed. Figure 1 (c)
shows the memory contents after executing the statement in
presence of a tag with magnitude one on p. As one can see,
the statement changes the content of a wrong location which
results in a negative tag on that location. Also, there will be a
positive tag on the intended location because it has not been
changed to 20. Figure 1 (d) shows how the memory contents
are changed in presence of a tag with magnitude two on p. In
this case, the error appears on the intended location and a new
location. Note that the tag on the erroneous location appears
independent of the magnitude of the tag on p. In practice the
magnitude of the tag is not known. Hence, only the negative
tag on the erroneous location will be considered and the tag
which may appear in the correct location will be ignored. This
simplification makes our coverage analysis pessimistic.

In some cases the above approximation may be improved
by a more accurate analysis of the program. As an example
consider the following code segment.

P=p+m
*¥p = a;

where m is a binary variable. If the tag on p is due to the tag
on m, it is possible to find the exact magnitude of the tag on
p. This makes it possible to find the memory location that will
be wrongly modified because of the tag.

Tag propagation in the presence of arrays can be done in a
similar fashion explained above.

3.3 Recursions

The method explained in [3] for handling functions can be used
directly to handle recursions. We give a brief description of the
method here. Upon calling a function, the tags on its actual

Statement: *P = 20
Original
memory
contents

A=0

P— »

A=+1

Figure 1: Effects of tags on pointers

variables are copied to their corresponding formal variables
and the tag propagation is performed as usual. If the line of
the program on which we want to inject a tag is inside the
function, a tag will be injected when executing that line. Once
returning from the function, the tags on the formal variables
are copied to their corresponding actual variables.

To handle recursive functions, tags have to be copied from
actual (formal) variables to formal (actual) variables on each
recursive call (return). To prevent the interaction of the tag on
a variable in one recursion depth with the ones in a different
depth, the tags on variables are saved and restored after each
recursive call and return, respectively. Also, if the line of the
program on which we want to inject a tag is inside the recursive
function, a new tag is injected on that line in every recursion.

The need to save and restore the status of all variables for
every recursive call will make the above approach inefficient
for handling very deep recursive functions. This problem can
be easily solved by performing the save and the restore only
for the tagged variables which are typically a small fraction of
the total variables.

3.4 Structures

Structures are handled in the same way that simple variables
are handled. The only difference is that, the tag on every field
of a structure is considered separately.

3.5 Expressions

In [3], the tags are injected on assignments only. To better
handle some cases like having an error in the control clause of
an if statement, we inject tags on expressions as well. This

also assists in detecting errors corresponding to calling func-
tions with wrong arguments. For example, if there is an error
in the following code segment:

if(C)

fprintf (outFile, ¢‘%d’’, a*b);

we can detect it only if we inject a tag on the expression a * b.
Otherwise, there will be no tag and no activation requirement
for the fprintf instruction.

3.6 Floating-Point Arithmetic

While working with floating-point variables, the tag may be
blocked depending on the relative values of the variables. Our
coverage analysis method can detect this tag-blockage and
achieve more accurate results for floating-point numbers. As
an example consider the following statement,

A =B+ C;

If the variables are integer, the value of A will depend on
the values of both variables B and C. As a result, if there is a
tag on one of the variables in the right hand side and the other
variable is tag free, the tag will propagate to the left hand side.
Now, assume the variables are floating-point. In this case, it is
possible that the value of variable A will depend on only one
of the variables in the right hand side. More precisely, if the
value of one of the variables is much larger than the other, the
result of the operation will depend only on the former one. For
example, if B = 10%° and C = 1072°, the value of variable A
will be 10%°. As a result if there is a tag on variable C and
the tag’s magnitude is in the same order as the value of the
variable, it will not propagate to the left hand side. Because it
is very time consuming to keep track of the magnitude of tags,
we make the conservative assumption that the magnitude of a
tag on a variable is always in the same order as the variable’s
value. The approach presented in [9] does not consider this
tag-blockage on floating-point numbers.

3.7 Types and Type Casts

Many complex types are used in software programs to define
variables. This may result in choosing an improper type for
a variable or loosing some information while casting one type
to another.? To target bugs related to casting errors, we can
inject a new tag once an overflow happens during performing
an operation and perform the tag propagation to see if the
effect of that error can be detected in one of the outputs.

3.8 Event-Driven Coverage Analysis

We use event-driven coverage analysis in order to increase the
speed of our method [11]. In this method, we process a state-
ment only if there is at least one tagged-variable in its right

2 Ariane 5, a rocket launched by the European Space Agency,
exploded 40 seconds after its lift-off due to an overflow error which
happened because of converting a 64-bit floating-point number to a
16-bit integer.

Coverage-Analysis(Graph G, List VARS) {
WHILE (VARS is not empty) {
Topologically sort VARS;
V = Remove the first element of VARS;
Perform the tag simulation for the
statement whose left-hand side variable
is V.

If (tag is propagated to V)
Insert all variables (i.e., nodes in G)
in the fanout of V into VARS;

Figure 2: The event-driven coverage analysis algorithm

hand side. This helps to reduce the CPU time wasted while
there is no tag on the right hand side of a statement. Figure
3.8 shows the even-driven algorithm in pseudo code.

The input of the algorithm is graph G and list VARS. G
is a graph constructed from the C program. Every node in G
represents a variable in the C program. There is an edge in G
corresponding to every statement in the C program. VARS is
a list of variables which may have tag during coverage analy-
sis. Before calling the coverage analysis routine, the values of
variables are computed by performing plain simulation. These
values are used later during tag simulation. Tag simulation
starts with selecting a variable and injecting a tag on it. The
variables on the fanout of the selected variable is inserted in
the VARS list and the function is called. The tag simulation
continues with topologically sorting variables and removing the
first variable from the list. In the next step, tag simulation is
performed for the corresponding statement with the help of
values computed through simulation. If a tag appears on vari-
able V, the variables in its fanout are inserted into VARS. This
process continues until there are no more variables in VARS.
Since in practice only a small portion of variables are tagged
during tag simulation, this method performs much better than
straight forward tag simulation.

3.9 Complexity

In our coverage analysis algorithm, we need to inject two tags
for every assignment or expression. After that, it is necessary
to perform the tag simulation for every tag. Assuming one
assignment or expression per line, the number of tags will be
O(l) where 1 is the number of lines of the C program. For every
tag, it is necessary to perform the tag simulation once. This
suggests the CPU time for the tag simulation will be O(I x n)
where n is the number of lines that are executed.”

If there is a recursive function, it will be necessary to save
and restore the status of variables in every recursion. The
amount of work will be on the same order of the work done
for creating the stack while executing the recursive function.
Taking into account this effect, the CPU time will be O(x t)
where t is the execution time of the program. In practice,

3Note that n can be greater than [if some lines are executed
more than once.

the time it takes to perform the tag simulation is less than
O(Ixt) because some tags may not be excited when simulating
the program. Also, it may not be necessary to process the
entire program for every injected tag due to early detection or
blockage. The tag simulation speed can be further improved
by implementing the speed-up techniques used in concurrent
fault simulation [10].

4 Experimental Results

We report experimental results on five example C programs.
The programs are first compiled into a graph-based ASCII in-
termediate format. The tag injection and propagation algo-
rithm works better on this simple format than on a complex
direct parse tree representation of the C program. Table 1 re-
ports the experimental results on the examples. In the Table,
Fibis a program to calculate Fibonacci numbers. String Match
is a program that reads a stream of characters and detects the
occurrence of a specific string. Fourier is the Fast Fourier
Transform program. PROG1 and PROG2 are two large in-
house programs with many if statements. In Column 2 of the
table the number of lines in each program is shown. In Column
3 the test set size is shown. We use three different test sets for
the first three programs. For Fib, the first test set consists of
the vectors (0, 1, and 3). The second set consists of the vectors
(0,1, 2, 3, and 4). The third set consists of 1000 random vec-
tors. For String Match, the first set consists of 15 vectors with
no match. The second set consists of 15 vectors with a match.
The third set consists of 1000 random vectors. For Fourier, we
used dirac, constant, and sinusoidal inputs. For PROG1 and
PROG2, we used long randomly generated vectors. Column 4
shows the traditional statement coverage numbers while Col-
umn 6 shows our tag coverage numbers. Column 5 shows the
total number of tags injected for each program. As it can be
seen from the results, the tag coverage numbers reflect the poor
coverage of a test set even when statement coverage is 100%.
This provides a more accurate measure of the effectiveness of
the test set in testing the program. Note that the second test
set for Fib has one vector more than the test set given in [9].
This is because our tag coverage scheme handles the error re-
sponses in a more detailed manner than the scheme in [9]. In
case of String Match the coverage numbers are also different
from [9] because of more accurate modeling of errors. The
tag coverage numbers in this example are low because there is
only one observable statement in the program. Similarly, the
tag coverage for PROG2 is very low due to small number of
observable statements.

In Columns 7 and 8 the CPU times of running the pro-
grams and simulating them using our tool without performing
the coverage analysis are reported. Columns 9 and 10 show
the coverage analysis times using the straight forward and the
event-driven tag simulation methods. The simulation times
are for a Sun Ultra 60 with 360MHz CPU and 786 MB mem-
ory. In the small examples, the CPU times are mostly domi-
nated by parsing and initializing times. Therefore, there is not
much difference between the CPU time of the straight forward
and the event-driven tag simulations. For large examples (i.e.,
PROG1 and PROG2), simulating the programs using our tool

Table 1: Experimental Results

Program Size # Vectors | Stmt. Cov. | # Tags | Tag Cov. Orig. CPU Tag. Cov. CPU
C lines (%) (%) (sec) (sec)
C Sim. Reg. Event
3 100 79.2 0.01 0.29 0.31 0.33
Fib 24 5 100 24 100 0.01 0.29 0.33 0.34
1000 100 100 0.02 0.63 1.13 1.02
15 87.5 2.8 0.01 0.06 0.06 0.06
String Match 45 15 100 36 41.7 0.01 0.06 0.06 0.06
1000 100 63.9 0.02 0.29 1.27 1.06
8 100 51.6 0.01 2.18 5.64 2.91
Fourier 129 8 100 118 100 0.01 2.19 5.66 2.90
8 100 100 0.01 2.18 5.66 2.91
PROG1 2288 1000 100 4000 69 5.83 13.5 8180.84 27.70
PROG2 4897 10000 100 9056 31 68.8 | 337.62 | 39295.12 | 766.57

is between 2x and 5x slower than running the actnal C codes.*
The straight forward tag simulation, on the other hand, is sev-
eral orders of magnitude slower than the plain simulation. For
these examples, the event-driven tag simulation is only 5x and
11x slower than running the actual C codes. This enables us
The good per-
formance of the event-driven tag simulation is due to the fact

to use our tag simulator on large programs.

that during the tag simulation many variables are not tagged.
As a result it is not necessary to perform coverage analysis for
many statements of the C program and they can be ignored.
In addition, the fact that many tags are observed after sim-
ulating a small number of vectors helps to decrease the CPU
time. Overall the overhead of the coverage analysis using our
method is at most 3x when compared with time it takes to
simulate the program using our tool.

Note that it is possible to implement the tag simulation
scheme by direct instrumentation of the C program. How-
ever, in case of a hardware/software co-simulation environment
which this method can target the C program needs to be simu-
lated in an intermediate format like ours. In this scenario, the
CPU time overheads are about 2 times the original simulation
times. Thus, the tag simulation is not very expensive in terms
of the computational resources.”

5 Conclusions

In this paper we have presented a coverage metric that can
be used for observability enhanced functional simulation of C
programs. This metric tells us not only which statements are
executed by a test set but also if the statements have any effect
on the output responses. This metric is more accurate than the
previously proposed observability based metric as it can model
various types of errors and can handle cancelation of errors.
Our method is capable of handling floating-point arithmetic
and can perform an accurate analysis for them. It can also
perform coverage analysis targeting type casting errors. The
CPU time overhead while simulating with this metric in event-

This

driven mode is superior than the previous work in [9].

4The numbers in column 8 do not include the time it takes to out-
put data. They only present the time it takes to compute variables’
values, as this is what we need to perform the tag simulation.

5The simulation overhead in case of [9] was 300 to 900 times.

metric can be used in embedded software testing or during
hardware/software co-simulation. We are currently working on
new heuristics to make the coverage analysis more efficient for
large examples. Some possibilities are using fault simulation
methods like fault collapsing and dominating faults to skip
some parts of computation.

References

[1] http://www.systemc.org

[2] D. Gajski, J. Zhu, et al,, SpecC: Specification language and
design methodology, Kluwer Academic Publishers, New York,
2000.

[3] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: Efficient
computation of observability-based code coverage metrics for
functional simulation,” in Proc. Design Automation Conf., pp.
152-157, June 1998.

[4] S.Devadas, A. Ghosh, and K. Keutzer, “An observability based
code coverage metric for functional simulation,” in Proc. Int.
Conf. Computer-Aided Design, pp. 418-425, Nov. 1996.

[5] B. Beizer, Software Testing Techniques, Van Nostrand Rhein-
hold, New York, second edition, 1990.

[6] B. Marick, The Craft of Software Testing, Prentice-Hall, En-
glewood Cliffs, New Jersey, 1995.

[7] JM. Voas, “PIE: A dynamic failure-based technique,” IEEE
Trans. on Software Engineering, Vol. 18-8, pp. 717-727, Au-
gust 1992.

[8] T. Goradia, “Dynamic impact analysis: A cost effective tech-
nique to enforce error propagation,” in Proc. Int. Symp. on
Software Testing and Application, Mar. 1993.

[9] J.C. Costa, S. Devadas, and J.C. Monteiro, “Observability
analysis of software for coverage-directed validation,” in Proc.
Int. Conf. Computer-Aided Design, pp. 27-32, Nov. 2000.

[10] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Sys-
tems Testing and Testable Design, IEEE Press, New York,
1990.

[11] D. M. Lewis, Hierarchical Compiled Event-Driven Logic Sim-
wlation, in Proc. Int. Conf. Computer-Aided Design, pp. 498-
500, 1989.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

