
Transaction-based Waveform Analysis for IP Selection

Jian Liu, Eugene Shragowitz

Department of Computer Science and Engineering, University of Minnesota
Minneapolis, Minnesota 55455 USA

ABSTRACT - In a process of IP selection, it is necessary to
establish whether a candidate IP is equivalent to a behavioral
model of a design proposed by a customer. I t is desirable to
per form this ver ification to exclude IPs, which “ don’ t match”
the rest of the design. This work combines a simulation
approach to establishing equivalence between models with
formal regular expression techniques to provide transaction-
level preliminary evaluation of IP suitability. Such evaluation
could precede a decision to acquire IP.

1. INTRODUCTION

IP reuse is becoming an essential part of SoC designs. In IP-
based design flow, a designer may have his own model of
component for quick prototyping. Then he needs to find out
whether an IP core can be used to replace this model.

Generally, simulation and formal verification are two major
approaches to establishing equivalence between hardware
models [1]-[2]. Each of these approaches taken alone has
serious deficiencies in the context of IP. The traditional
formal verification approach is not applicable at this stage of
IP selection because vendors usually don’ t release internal
details of their models prior to a sale. Simulation via
Internet is a practical approach to conduct evaluation in such
circumstances. The waveform obtained form simulated IPs
can be compared with the waveforms from behavioral
models to evaluate their match.

Commercial waveform analysis tools [3] establish similarity
between two waveforms only if one waveform presents a
copy of the other displaced in time. It is very likely that two
independently developed models for the same specification
produce different waveforms at the specified ports for the
same testbenches. Causes of differences in waveforms are
numerous and are not expired by such factors as a different
number of clock cycles per operation, different word length,
SET/RESET conditions at asynchronous inputs, etc. In spite
of substantial visual differences in waveforms, two models
could be equivalent in a specific sense.

Framework proposed in our paper introduces a formal
technique for the post-simulation waveform comparison. It
performs evaluation of hardware models by comparing
waveforms at respective ports. In this work, waveform
analysis is raised from the signal-event level presented by
simulation to a transaction level, where a transaction consists
of a sequence of input/output signal events. For example, the
memory read/write transaction typically consists of setting
address, enabling memory and reading/writing data. Fig. 1
illustrates the proposed waveform analysis.

The rest of the paper is organized as follows. The waveform
coding method is presented in Section 2. The outline of the
framework followed by description of each step is given in
Section 3. Section 4 provides examples.

Transaction specification
 in regular expression

Transaction
recognizer

Proposed
waveform
matcher

Equivalence/
distance report

Figure 1. Traditional and proposed waveform comparison

2. CODING SIMULATION WAVEFORMS
In this section, we describe how to code simulation
waveforms into data structures called waveform strings,
which are compared to each other. We focus on synchronous
sequential circuits with single or multiple clocks.

Given a set of interface signals, i.e. primary inputs and
outputs. Each PI/PO is either a bit or a bit vector. The
following terminology is used in the text.

Waveform character : A waveform character is a vector
with components defined by signal values at ports of a model
at any clock cycle.

Waveform str ing: A waveform string is a series of
waveform characters produced at ports at consecutive clock
cycles.

Waveform component str ing: A waveform component
string is a series of values for a given port at consecutive
clock cycles of simulation.

In the sequential circuits, a signal is either edge sensitive or
level sensitive. For edge-sensitive signals, waveforms at the
input/output are sampled at the active clock edge and the
values are registered as an effective value. For level-
sensitive signals, the last values during the active level of
each clock period are effective.

For example, consider the waveform of D-f/f from Fig. 2, the
correspondent waveform strings contain 8 waveform
characters.

0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
1 1 1 0 0 0 1 1

W av ef o rm
com ponent
st r i ngs o f
 D , Q , /Q

 0 2 4 6 8 10 12 14ns T i m e

Si gn al V a l u e

W av ef orm f o r si gnal D

W av ef o rm f o r c l ock

W av ef orm f o r si gnal Q

 Q
D C L K /Q

W av ef orm f o r si gnal /Q

D - ty pe f l i p -f l op

 Figure 2. Waveform coding for D-flip/flop simulation

3. TRANSACTION-BASED WAVEFORM
ANALYSIS

In the described framework, analysis is conducted in three
phases. At phase 1, regular expressions are used as a vehicle
to capture transactions. Designers describe the same type of
transactions for two models as regular expressions. DFAs are
automatically derived from these regular expressions and
used to scan the coded waveform strings and recognize
transaction tokens. At phase 2, the transaction tokens are
labeled and sorted in ascending order of their starting
positions. At phase 3, transaction-based measures of
distance between waveforms are introduced; the minimum
distance is found.

Phase 1: Identifying transaction tokens using regular
expressions

Regular expressions (REs) REs are provenly equivalent to
FSMs. They are used in many fields, including software
engineering [6] and hardware design. Applications of RE in
hardware design include interface synthesis [7] and formal
model checkers specification [8]. In this work, REs are used
for waveform transformations and comparisons. In this work,
the technique is extended to the vector interpretation of a
character.
According to definitions in section 2, each waveform character in
the regular expression is a vector, every coordinate of which is
associated with a particular signal. Assume that a waveform
character is associated with N signals

nSSS ,..., 21
, and the

possible value set of each signal is
nVVV ...,, 21

, and the alphabet

for the waveform character is }|,...{ 2,1 iin Vaaaa ∈>< .

Similar to meta-characters used in traditional REs, meta-
components could be introduced for each vector component. There
are two types of meta-components in this application. One type
includes predefined meta-components. The other type includes
meta-components with the values defined over the value set

iV or

its subset defined by users.
There are two predefined meta-components, “ -” and “ /” . The first
one stands for don’ t care condition. It can be mapped to any signal
value. The second one is a transaction delimiter. This means the
signal value at this position is not a part of this transaction and it
may have any value from the value set.

As an example, let us consider D-flip/flop and describe its
work in terms of transactions. Generally, when D is set to 1/0
at certain clock cycle, Q and /Q will be 1/0 and 0/1 at the

next clock cycle. A regular expression for the transaction of
setting output Q to 1 consists of two generalized vector-
characters (1 / /) (/ 1 0). Similarly for setting output Q to 0,
the regular expression is (0 / /) (/ 0 1). With this regular
expression specification, we can identify seven transactions
in the waveform in Fig. 3.

In our work, users are allowed to define meta-components.
Each meta-component is associated with a name and a value.
The name is provided by the user, while the value is
determined when scanning of strings is performed. Use of
meta-components enables the symbolic representation of
transactions. More details are given in section 4.

0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
1 1 1 0 0 0 1 1

Waveform Strings

Component-string
 Of D, Q, /Q

 Regular expressions for D-flip/flop
 D Q /Q D Q /Q
1) (1 / /) 2) (0 / /)
 (/ 1 0) (/ 0 1)

Figure 3: Example of identifying transactions using regular
expressions

For two models M and M’, the same transaction may
produce different sequences of signal events. Therefore, the
designer should provide a pair of regular expressions, each
correspondent to the models M and M’ respectively.
Phase 1 consists of two steps:
1. Regular expressions are converted into DFAs [4].
2. Waveform strings are scanned by DFAs to identify the
transaction tokens. If user-defined meta-components are used in
regular expressions, the value for each of them is resolved at this
step and stored internally.
Each transaction token is a sub-waveform string that is an
instance of a regular expression. At the end of step 2, a set of
transaction tokens is identified for a waveform string of each
model.

Phase 2: Labeling tokens

The transaction tokens are sorted in ascending order by their
starting time in each waveform string. An identifier is assigned to
the tag field of each token. The same identifiers are assigned to
identical tokens in the same waveform string and in two different
strings if the strings are matched. This phase can be broken into
two steps.
1. For each of waveform strings, the transaction tokens obtained in
the previous phase are lined up.
2. For any pair of transaction tokens <t1,t2>, if and only if the
tokens are associated with the same regular expression pair and
with the same name-value table, they are labeled by the same
identifier. It implies that transactions are instances not only of the
same type, but also associated with the same data.
By the end of phase 2, two sequences of transactions TS1 and TS2
are formed. Each element in the corresponding transaction
sequence is associated with one token from the token sequence
formed by the previous phase for the input stream.

Phase 3: Finding minimum distance

At this phase the algorithm produces quantitative measures of a
distance between the waveform strings for two models in the
context of transaction tokens.
In the following text, we first introduce quantitative metrics
for the distance between waveform strings. Then we describe
how the metrics are adapted to the context of transaction
tokens.

Quantitative metrics for distance between waveform strings

Given two strings s1 and s2, different metrics can be used to
evaluate the similarity of two strings. In our work, we
propose two metrics for the string distance measurement.
The first one is the edit distance and the second is the block
distance. The edit distance is the number of operations
(insertion, deletion, and substitution of one symbol)
necessary to convert one string into the other. This metric
has been adopted by many different applications [5]. The
block distance is the minimum number of block operations
that are needed to convert one string into another for the
given edit distance. Each block operation consists of a series
of consecutive edit operations of the same type. For
example, given two strings “111” and “1110000” , the edit
distance is 4, and the block distance is 1. Since a small
difference in designs may result in consecutive mismatches
in waveforms, the block metric can interpret such situations
more effectively. In this work, the edit and block distances
are derived for each pair of interested common component
waveform string.

Distances in the context of transaction tokens

Assume that the complete transaction sequence during
simulation is TS. After phases 1 and 2, two transaction
sequences TS1 and TS2 are derived and the identical
transactions are labeled with the same identifiers. Since we
describe only the transactions which may produce
differences in waveforms, both TS1 and TS2 are
subsequences of the input stream TS. It is possible that TS1
and TS2 are not identical. The reasons are twofold. Firstly,
the regular expressions may not be accurate or complete to
capture the transactions. Secondly, the models themselves
may contain bugs, therefore transactions are not executed as
expected and are not recognized. In order to measure the
divergence between waveforms in such context, the
following definition is introduced:

Alignment sequence: Assume that tags of transaction token
sequences TS1 and TS2 are >< mxxx ..., ,21

 and

>< nyyy ..., ,21
 for two models respectively. An

alignment sequence >< kmmm ..., ,21
is an indexed

common subsequence of TS1 and TS2. Each element im of

this sequence is associated with a pair of indexes),(ii ba

defined by positions in TS1 and TS2. It is assumed that
tokens in TS1 and TS2 that combined by the alignment

sequence into im correspond to the same token in TS.

Fig. 4 gives examples of alignment sequences. Assume that
TS is { A, A, B, C, D} , TS1 and TS2 are { A, A, C, D} and { A,
C, D} respectively. This figure illustrates two possible
alignment sequences for TS1 and TS2. In the first one, the A
of TS2 is associated with the first A of TS1. In the second
one, the A of TS2 is associated with the second A of TS1.

 A A B C D

A A C D

 A C D

T S

T S1

T S2

Figure 4. Example of alignment sequences

If a given alignment sequence contains X transactions, then
the corresponding transaction tokens partition each of the
original waveform strings into the 2X+1 sub-strings that
includes X transactionalized sub-strings and X+1 plain
waveform sub-strings that are not recognized as tokens. For
each pair of plain sub-strings, the edit and block distance can
be derived. Finally the distance for two waveform strings is
defined by the sum of these distances. Fig. 5 illustrates this
ideology.

 Waveform
String 1

Waveform
String 2

Plain waveform sub-strings

Transactionalized waveform sub-strings

� distance

 Figure 5. Distance for a given alignment sequence

For each alignment sequence, a pair of edit and block
distance (ED, BD) is derived. As the edit and block distance
is dependent on the alignment sequence, it is desirable to
find minimum edit and block distances between the
waveforms and the correspondent alignment sequence is
called optimal alignment sequence. Our experiments show
that in most practical cases, the Longest Common
Subsequence of TS1 and TS2 is the optimal alignment
sequence. In short, phase 3 consists of two steps to find the
minimum distance.
1. Find the Longest Common Subsequence of TS1 and TS2.
2. The LCS is used as the alignment sequence, distance upon
LCS is calculated.

4. Examples

The algorithm for waveform analysis is implemented in C++ at
SUN SPARC Ultra 5/10 workstation. A set of experiments has
been conducted. But for the sake of brevity, only two cases are
used below to demonstrate the effectiveness of the approach.

Case 1. PIC15C5X compatible microcontroller
In this experiment, the Free-RISC8 core available at the website [9]
is used as the Model 1, and the Model 2 is SILICORE [10]
product. In this example, the waveforms of signals at the
instruction port, ROM address bus, and IO data ports, that are
common in the interfaces of both models, were compared. For a

microcontroller, each instruction can be deemed as a transaction.
The instruction set includes 32 instructions, most of them require
one clock cycle to complete and only 3 instructions require 2 or
more clock cycles. For example, one of such instructions is GOTO
instruction. The models differ for the multiple clock cycle
instructions. Each multi-cycle instruction requires 2 clock cycles in
the first model. For the second model, this transaction requires 3
clock cycles. Table 1 presents regular expressions for this
instruction for both models.

Table 1: Regular expressions for Multiple Cycle instruction
for two models

Model 1
Inst ROM_addr IO_ports

Model 2
Instr ROM_addr IO_ports

 (x y z)
 (- - -)

(x y z)
(- - -)
(- - -)

Along with this regular expression pair, we introduce following
definitions for meta-components:
META_COMPONENT MUL_CYCLE_OPR {101XXXXXXXX 1,
1001XXXXXXXX 1000XXXXXXXX} x;
META_COMPONENT y, z;
The above regular expression pairs combined with the definitions
of meta-component shows that in the simulation, if the instruction
X of the ROM(y) is executed, the model 2 will take one more cycle
to finish. For a testbench segment that contains 37 instructions,
Table 2 summarizes the following distances between waveforms.

Table 2: Edit and block distances for signal waveforms
with & without transaction recognition

Signals Edit/Block Distance
Without Transaction
Recognition

Edit/Block Distance
With Transaction
Recognition

Instruction 3/3 1/1
ROM_address 3/3 1/1
IO_port 3/1 1/1
Total 9/7 3/3

Case 2: DES engine
In this experiment, we compared two DES models, both of them
implemented standard DES encryption/decryption algorithm and
are compatible with NIST-800-17. The first one was available at
[11], and the other is downloaded from [10].
For this design we can consider encryption of input data as a
transaction. The major difference is that the second design can
operate in a pipeline mode, while the first one can only process a
new encryption after the previous transaction is completely
finished. Such differences are reflected by the regular expression
in Table 3, where x, y and z are user-defined meta-components.

Table 3: Regular expressions for encryption for two models

Model 1
Decrypt d_in key d_out

Model 2
Reset decrypt d_in key d_out

 (0 x y -)
{ 15} 2
 (0 x y z)

 (0 1 x / /)
 (0 1 / y /)
 (0 1 / / /) { 15}
 (0 1 / / z)

1 In the binary op-code, the sequence 101 is a code for GOTO
instruction, the following part is the address of the next instruction.
2 { 15} indicates this item is repeated for 15 times.

For the first model, when a plain text and a key are inputs, they
must be kept stable for 15 clock cycles, the cipher is available until
at the 16th clock cycle. For the second model, data and key are
stable for the first 2 clock cycles, then after 15 clock cycles, the
cipher will be available. Meanwhile, a new plain text and key pair
serve as the input for following transactions.
90 test vectors were used to simulate the both IP models. Table 4
presents the distances for waveforms with and without transaction
recognition.

Table 4: Edit and block distances for signal waveforms
with & without transaction recognition

Signals Edit/Block Distance
Without Transaction

Recognition

Edit/Block Distance
With Transaction

Recognition
D_in 1335/16 17/1
Key 1351/57 17/2
D_out 1351/90 17/1
Total 4037/163 51/4

As it is confirmed by experiments quantitative measures of
distance on the transaction level drastically reduce the
amount of work on interpretation of simulation results and
allows a designer to concentrate on a few mismatches instead
of very many. Provided with the exact location and source of
mismatches in waveforms on the transaction level, a designer
has a choice to ignore the differences as not significant, or
introduce a glue logic to eliminate differences.

4. REFERENCES

[1] C. Kern and M. R. Greenstreet, “Formal Verification in
Hardware Design: A Survey”, ACM Transactions on Design
Automation of Electronic Systems, Volume 4, Issue 2, 1999.

[2] F. Corno, M. S. Reorda, G. Squillero, “Simulation-based
Sequential Equivalence Checking of RTL VHDL”, proc. of 6th
IEEE Intl. Conf. On Electronics, Circuits, and Systems, 1999.

[3] DAI Comparescan homepage,
http://www.designacc.com/products/comparescan/index.html,
May, 2000.

[4] A. V. Aho, R. Sethi, J. D. Ulman, “ Compilers: Principles,
Techniques, and Tools” , Addison Wesley Publisher, 1988.

[5] D. Sanko, “Edit Distance for Genome Comparison Based on
Non-local Operations”, proc. of 3rd Annual Symposium on
Combinatorial Pattern Matching, pp. 121-135, 1992.

[6] F. Lustman, “Specifying Transaction-based Information
Systems with Regular Expressions”, IEEE trans. on Software
Engineering, Vol. 20, Issue 3, pp. 207-217. March 1994.

[7] R. Passerone, J. A. Rowson, “Automatic Synthesis of
Interface between Incompatible Protocols” , proc. of Design
Automation Conference, 1998.

[8] IBM Formal Checkers Specification:
http://www.haifa.ibm.com/projects/verification/RB_Homepag
e/ps/checkers.ps, 2001.

[9] Homepage of Silicore. http://www.silicore.net, 1999.
[10] Free IP project, available at

http://www.free-ip.com/risc8/index.html, 2001.
[11] Open Cores project, available at http://www.opencores.org.

2001.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

