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ABSTRACT - In a process of IP selection, it is necessary to 
establish whether  a candidate IP is equivalent to a behavioral 
model of a design proposed by a customer. I t is desirable to 
per form this ver ification to exclude IPs, which “ don’ t match”  
the rest of the design. This work combines a simulation 
approach to establishing equivalence between models with 
formal regular  expression techniques to provide transaction-
level preliminary evaluation of IP suitability.  Such evaluation 
could precede a decision to acquire IP. 

 

1. INTRODUCTION 

IP reuse is becoming an essential part of SoC designs.  In IP-
based design flow, a designer may have his own model of 
component for quick prototyping. Then he needs to find out 
whether an IP core can be used to replace this model.  

Generally, simulation and formal verification are two major 
approaches to establishing equivalence between hardware 
models [1]-[2]. Each of these approaches taken alone has 
serious deficiencies in the context of IP. The traditional 
formal verification approach is not applicable at this stage of 
IP selection because vendors usually don’ t release internal 
details of their models prior to a sale.  Simulation via 
Internet is a practical approach to conduct evaluation in such 
circumstances. The waveform obtained form simulated IPs 
can be compared with the waveforms from behavioral 
models to evaluate their match. 

Commercial waveform analysis tools [3] establish similarity 
between two waveforms only if one waveform presents a 
copy of the other displaced in time. It is very likely that two 
independently developed models for the same specification 
produce different waveforms at the specified ports for the 
same testbenches. Causes of differences in waveforms are 
numerous and are not expired by such factors as a different 
number of clock cycles per operation, different word length, 
SET/RESET conditions at asynchronous inputs, etc. In spite 
of substantial visual differences in waveforms, two models 
could be equivalent in a specific sense.  

Framework proposed in our paper introduces a formal 
technique for the post-simulation waveform comparison. It 
performs evaluation of hardware models by comparing 
waveforms at respective ports. In this work, waveform 
analysis is raised from the signal-event level presented by 
simulation to a transaction level, where a transaction consists 
of a sequence of input/output signal events. For example, the 
memory read/write transaction typically consists of setting 
address, enabling memory and reading/writing data. Fig. 1 
illustrates the proposed waveform analysis. 

The rest of the paper is organized as follows. The waveform 
coding method is presented in Section 2. The outline of the 
framework followed by description of each step is given in 
Section 3. Section 4 provides examples. 
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Figure 1. Traditional and proposed waveform comparison 

 

2. CODING SIMULATION WAVEFORMS  
In this section, we describe how to code simulation 
waveforms into data structures called waveform strings, 
which are compared to each other. We focus on synchronous 
sequential circuits with single or multiple clocks.   

Given a set of interface signals, i.e. primary inputs and 
outputs. Each PI/PO is either a bit or a bit vector. The 
following terminology is used in the text.  

Waveform character : A waveform character is a vector 
with components defined by signal values at ports of a model 
at any clock cycle. 

Waveform str ing: A waveform string is a series of 
waveform characters produced at ports at consecutive clock 
cycles. 

Waveform component str ing: A waveform component 
string is a series of values for a given port at consecutive 
clock cycles of simulation.  

In the sequential circuits, a signal is either edge sensitive or 
level sensitive. For edge-sensitive signals, waveforms at the 
input/output are sampled at the active clock edge and the 
values are registered as an effective value. For level-
sensitive signals, the last values during the active level of 
each clock period are effective.  

For example, consider the waveform of D-f/f from Fig. 2, the 
correspondent waveform strings contain 8 waveform 
characters.  
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 Figure 2. Waveform coding for D-flip/flop simulation 

3. TRANSACTION-BASED WAVEFORM 
ANALYSIS  

In the described framework, analysis is conducted in three 
phases. At phase 1, regular expressions are used as a vehicle 
to capture transactions. Designers describe the same type of 
transactions for two models as regular expressions. DFAs are 
automatically derived from these regular expressions and 
used to scan the coded waveform strings and recognize 
transaction tokens. At phase 2, the transaction tokens are 
labeled and sorted in ascending order of their starting 
positions.  At phase 3, transaction-based measures of 
distance between waveforms are introduced; the minimum 
distance is found. 

Phase 1:  Identifying transaction tokens using regular 
expressions 

Regular expressions (REs) REs are provenly equivalent  to 
FSMs. They are used in many fields, including software 
engineering [6] and hardware design.  Applications of RE in 
hardware design include interface synthesis [7] and formal 
model checkers specification [8]. In this work,  REs are used 
for waveform transformations and comparisons. In this work, 
the technique is extended to the vector interpretation of a 
character.   
According to definitions in section 2, each waveform character in 
the regular expression is a vector, every coordinate of which is 
associated with a particular signal. Assume that a waveform 
character is associated with N signals 

nSSS ,..., 21
, and the 

possible value set of each signal is 
nVVV ...,, 21

, and the alphabet 

for the waveform character is }|,...{ 2,1 iin Vaaaa ∈>< . 

Similar to meta-characters used in traditional REs, meta-
components could be introduced for each vector component.  There 
are two types of meta-components in this application. One type 
includes predefined meta-components. The other type includes 
meta-components with the values defined over the value set 

iV  or 

its subset defined by users. 
There are two predefined meta-components, “ -”  and “ /” . The first 
one stands for don’ t care condition. It can be mapped to any signal 
value. The second one is a transaction delimiter. This means the 
signal value at this position is not a part of this transaction and it 
may have any value from the value set. 

As an example, let us consider D-flip/flop and describe its 
work in terms of transactions. Generally, when D is set to 1/0 
at certain clock cycle, Q and /Q will be 1/0 and 0/1 at the 

next clock cycle. A regular expression for the transaction of 
setting output Q to 1 consists of two generalized vector-
characters (1 / /)  (/ 1 0). Similarly for setting output Q to 0, 
the regular expression is (0 / /) (/ 0 1). With this regular 
expression specification, we can identify seven transactions 
in the waveform in Fig. 3. 

In our work, users are allowed to define meta-components. 
Each meta-component is associated with a name and a value. 
The name is provided by the user, while the value is 
determined when scanning of strings is performed. Use of 
meta-components enables the symbolic representation of 
transactions. More details are given in section 4. 
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Figure 3: Example of identifying transactions using regular 
expressions 

For two models M and M’, the same transaction may 
produce different sequences of signal events. Therefore, the 
designer should provide a pair of regular expressions, each 
correspondent to the models M and M’ respectively.  
Phase 1 consists of two steps: 
1. Regular expressions are converted into DFAs [4].  
2. Waveform strings are scanned by DFAs to identify the 
transaction tokens. If user-defined meta-components are used in 
regular expressions, the value for each of them is resolved at this 
step and stored internally. 
Each transaction token is a sub-waveform string that is an 
instance of a regular expression. At the end of step 2, a set of 
transaction tokens is identified for a waveform string of each 
model.  

Phase 2: Labeling tokens 

The transaction tokens are sorted in ascending order by their 
starting time in each waveform string. An identifier is assigned to 
the tag field of each token. The same identifiers are assigned to 
identical tokens in the same waveform string and in two different 
strings if the strings are matched.  This phase can be broken into 
two steps. 
1. For each of waveform strings, the transaction tokens obtained in 
the previous phase are lined up. 
2. For any pair of transaction tokens <t1,t2>, if and only if the 
tokens are associated with the same regular expression pair and 
with the same name-value table, they are labeled by the same 
identifier. It implies that transactions are instances not only of the 
same type, but also associated with the same data. 
By the end of phase 2, two sequences of transactions TS1 and TS2 
are formed. Each element in the corresponding transaction 
sequence is associated with one token from the token sequence 
formed by the previous phase for the input stream. 

 



Phase 3: Finding minimum distance 

At this phase the algorithm produces quantitative measures of a 
distance between the waveform strings for two models in the 
context of transaction tokens.  
In the following text, we first introduce quantitative metrics 
for the distance between waveform strings. Then we describe 
how the metrics are adapted to the context of transaction 
tokens.  

Quantitative metrics for distance between waveform strings   

Given two strings s1 and s2, different metrics can be used to 
evaluate the similarity of two strings. In our work, we 
propose two metrics for the string distance measurement. 
The first one is the edit distance and the second is the block 
distance. The edit distance is the number of operations 
(insertion, deletion, and substitution of one symbol) 
necessary to convert one string into the other. This metric 
has been adopted by many different applications [5]. The 
block distance is the minimum number of block operations 
that are needed to convert one string into another for the 
given edit distance. Each block operation consists of a series 
of consecutive edit operations of the same type. For 
example, given two strings “111”  and “1110000” , the edit 
distance is 4, and the block distance is 1. Since a small 
difference in designs may result in consecutive mismatches 
in waveforms, the block metric can interpret such situations 
more effectively. In this work, the edit and block distances 
are derived for each pair of interested common component 
waveform string. 

Distances in the context of transaction tokens 

Assume that the complete transaction sequence during 
simulation is TS. After phases 1 and 2, two transaction 
sequences TS1 and TS2 are derived and the identical 
transactions are labeled with the same identifiers. Since we 
describe only the transactions which may produce 
differences in waveforms, both TS1 and TS2 are 
subsequences of the input stream TS. It is possible that TS1 
and TS2 are not identical. The reasons are twofold. Firstly, 
the regular expressions may not be accurate or complete to 
capture the transactions. Secondly, the models themselves 
may contain bugs, therefore transactions are not executed as 
expected and are not recognized. In order to measure the 
divergence between waveforms in such context, the 
following definition is introduced: 

Alignment sequence: Assume that tags of transaction token 
sequences TS1 and TS2 are >< mxxx ..., ,21

 and 

>< nyyy ..., ,21
 for two models respectively. An 

alignment sequence >< kmmm ..., ,21
is an indexed 

common subsequence of TS1 and TS2. Each element im of 

this sequence is associated with a pair of indexes ),( ii ba  

defined by positions in TS1 and TS2. It is assumed that 
tokens in TS1 and TS2 that combined by the alignment 

sequence into im  correspond to the same token in TS. 

Fig. 4 gives examples of alignment sequences. Assume that 
TS is { A, A, B, C, D} , TS1 and TS2 are { A, A, C, D}  and { A, 
C, D}  respectively. This figure illustrates two possible 
alignment sequences for TS1 and TS2. In the first one, the A 
of TS2 is associated with the first A of TS1. In the second 
one, the A of TS2 is associated with the second A of TS1. 

 A        A      B      C       D    

A        A               C       D    

      A                  C        D    

T S 

T S1 

T S2  

Figure 4. Example of alignment sequences 

If a given alignment sequence contains X transactions, then 
the corresponding transaction tokens partition each of the 
original waveform strings into the 2X+1 sub-strings that 
includes X transactionalized sub-strings and X+1 plain 
waveform sub-strings that are not recognized as tokens. For 
each pair of plain sub-strings, the edit and block distance can 
be derived. Finally the distance for two waveform strings is 
defined by the sum of these distances. Fig. 5 illustrates this 
ideology. 
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 Figure 5. Distance for a given alignment sequence 

For each alignment sequence, a pair of edit and block 
distance (ED, BD) is derived. As the edit and block distance 
is dependent on the alignment sequence, it is desirable to 
find minimum edit and block distances between the 
waveforms and the correspondent alignment sequence is 
called optimal alignment sequence. Our experiments show 
that in most practical cases, the Longest Common 
Subsequence of TS1 and TS2 is the optimal alignment 
sequence. In short, phase 3 consists of two steps to find the 
minimum distance. 
1. Find the Longest Common Subsequence of TS1 and TS2. 
2. The LCS is used as the alignment sequence, distance upon 
LCS is calculated. 

4. Examples 

The algorithm for waveform analysis is implemented in C++ at 
SUN SPARC Ultra 5/10 workstation. A set of experiments has 
been conducted. But for the sake of brevity, only two cases are 
used below to demonstrate the effectiveness of the approach. 
 
Case 1. PIC15C5X compatible microcontroller 
In this experiment, the Free-RISC8 core available at the website [9] 
is used as the Model 1, and the Model 2 is SILICORE [10] 
product. In this example, the waveforms of signals at the 
instruction port, ROM address bus, and IO data ports, that are 
common in the interfaces of both models, were compared. For a 



microcontroller, each instruction can be deemed as a transaction. 
The instruction set includes 32 instructions, most of them require 
one clock cycle to complete and only 3 instructions require 2 or 
more clock cycles. For example, one of such instructions is GOTO 
instruction. The models differ for the multiple clock cycle 
instructions. Each multi-cycle instruction requires 2 clock cycles in 
the first model. For the second model, this transaction requires 3 
clock cycles.  Table 1 presents regular expressions for this 
instruction for both models.  

Table 1: Regular expressions for Multiple Cycle instruction 
for two models 

Model 1 
Inst   ROM_addr  IO_ports 

Model 2 
Instr  ROM_addr IO_ports 

      (x          y                z) 
      (-           -                 -)          

(x        y                 z) 
(-        -                   -) 
(-        -                   -) 

 
Along with this regular expression pair, we introduce following 
definitions for meta-components: 
META_COMPONENT MUL_CYCLE_OPR {101XXXXXXXX 1, 
1001XXXXXXXX 1000XXXXXXXX} x;  
META_COMPONENT  y, z; 
The above regular expression pairs combined with the definitions 
of meta-component shows that in the simulation, if the instruction 
X of the ROM(y) is executed, the model 2 will take one more cycle 
to finish. For a testbench segment that contains 37 instructions, 
Table 2 summarizes the following distances between waveforms. 

Table 2: Edit and block distances for signal waveforms 
with & without transaction recognition  

Signals Edit/Block Distance 
Without Transaction 
Recognition 

Edit/Block Distance 
With Transaction 
Recognition 

Instruction 3/3 1/1 
ROM_address 3/3 1/1 
IO_port 3/1 1/1 
Total  9/7 3/3 

 
Case 2: DES engine 
In this experiment, we compared two DES models, both of them 
implemented standard DES encryption/decryption algorithm and 
are compatible with NIST-800-17. The first one was available at 
[11], and the other is downloaded from [10].  
For this design we can consider encryption of input data as a 
transaction. The major difference is that the second design can 
operate in a pipeline mode, while the first one can only process a 
new encryption after the previous transaction is completely 
finished.  Such differences are reflected by the regular expression 
in Table 3, where x, y and z are user-defined meta-components.  
 
Table 3: Regular expressions for encryption for two models 

Model 1 
Decrypt d_in key d_out 

Model 2 
Reset decrypt d_in key d_out 

 ( 0            x      y   - ) 
{ 15} 2 
 ( 0            x      y   z ) 

 (0        1         x      /      / ) 
 (0        1         /      y      /) 
 (0        1        /      /        /)  { 15}  
 (0         1      /        /      z) 

                                                           
1 In the binary op-code, the sequence 101 is a code for GOTO 
instruction, the following part is the address of the next instruction. 
2 { 15}  indicates this item is repeated for 15 times. 

 
For the first model, when a plain text and a key are inputs, they 
must be kept stable for 15 clock cycles, the cipher is available until 
at the 16th clock cycle. For the second model, data and key are 
stable for the first 2 clock cycles, then after 15 clock cycles, the 
cipher will be available. Meanwhile, a new plain text and key pair 
serve as the input for following transactions. 
90 test vectors were used to simulate the both IP models. Table 4 
presents the distances for waveforms with and without transaction 
recognition. 

Table 4: Edit and block distances for signal waveforms 
with & without transaction recognition  

Signals Edit/Block Distance 
Without Transaction 

Recognition 

Edit/Block Distance 
With Transaction 

Recognition 
D_in 1335/16 17/1 
Key 1351/57 17/2 
D_out  1351/90 17/1 
Total  4037/163 51/4 

 
As it is confirmed by experiments quantitative measures of 
distance on the transaction level drastically reduce the 
amount of work on interpretation of simulation results and 
allows a designer to concentrate on a few mismatches instead 
of very many. Provided with the exact location and source of 
mismatches in waveforms on the transaction level, a designer 
has a choice to ignore the differences as not significant, or 
introduce a glue logic to eliminate differences. 
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