
Abstract Determining the depth of sequential circuits is a cru-
cial step towards the completeness of bounded model checking
proofs in hardware verification. In this paper, we formulate se-
quential depth computation as a logical inference problem for
Quantified Boolean Formulas. We introduce a novel technique to
simplify the complexity of the constructed formulas by applying
simple transformations to the circuit netlist. We also study the
structure of the resulting simplified QBFs and construct an effi-
cient SAT-based algorithm to check their satisfiability. We report
promising experimental results on some of the ISCAS 89 bench-
marks.

I. Introduction
The crucial demands to design bug-free products caused today’s typi-
cal verification teams to be the size of entire design teams ten years
ago. Still, faulty chips are fabricated, forcing first customers to find
out about undetected glitches, and causing severe company losses for
replacement. The infamous Pentium floating-point bug is one exam-
ple.
By far, the most common verification paradigm in use today is simu-
lation. Such a verification strategy is becoming increasingly untena-
ble, however, because of time-to-market pressures and high costs of
design errors discovered following product release. In addition, simu-
lation-based verification cannot guarantee that a design is bug-free; at
best, simulation can reduce the probability of releasing a buggy design
to acceptable levels but can never completely certify design correct-
ness.
Formal hardware verification is a promising alternative to traditional
simulation. Formal hardware verification can be broadly classified
into two major categories: property checking and equivalence check-
ing. Property checking verifies the correctness of a property pertaining
to a hardware model, whereas equivalence checking verifies the
equivalence between two models. Most of the techniques utilized for
property checking apply as well to equivalence checking.
There is a rich literature on the different approaches to property check-
ing of hardware systems. These approaches can be broadly divided
into two groups: theorem proving and model checking.
Model checking [5] is a predominant technique in formal hardware
verification. In model checking, the system to be verified is modeled
as a Kripke structure, and the specification is modeled as a formula in
some temporal logic. Binary Decision Diagrams (BDDs) [3] are used
to symbolically represent sets of states and transition relations in Krip-
ke structures.
Despite the enormous success of symbolic model checking techniques
[4], most practical designs were still outside the scope of existing
tools. BDD-based model checking techniques heavily rely on the
availability of efficient representation and manipulation using BDDs.
However, BDDs can grow exponentially in size. Exponential BDD
sizes are caused by either “state explosion” or humongous transition

relations. If such a situation occur, BDD-based approaches are
doomed to fail.
To surmount this, several solutions were suggested of which Bounded
Model Checking (BMC) [1, 2] is one. BMC checks safety and liveness
properties of a system using a satisfiability (SAT) solver. In BMC, a
Propositional formula is generated that is satisfiable if there exists a
path ending in a state that satisfies the property checked. If such a state
can not be found at depth , the search is repeated at depth . One
advantage of BMC over BDD-based model checking is the absence of
a state keeping-device. In BDD-based model checking, at each itera-
tion a BDD keeps track of states. This might cause BDD explosion.
On the other hand, BMC requires a reasoning engine with the capabil-
ity of handling a larger number of variables. In fact, each unfolding of
the transition relation corresponds to adding a new set of variables. In
general, this is not a major obstacle for SAT-solvers. One major draw-
back of BMC, however, is its lack of completeness. In other words, we
do not know when to stop incrementing the value of .
In this paper, we tackle the issue of completeness for BMC. We take
a fresh look at the problem of determining the sequential depth of a
circuit using search-based techniques. Search-based techniques elim-
inate the need for a BDD-based state-keeping device and consequently
avoid the possibility of exponential space requirements. Once the se-
quential depth of a circuit is determined, it can guide BMC or any sim-
ilar approach when checking safety properties (e.g., invariants.) As a
result, BMC can now be used not only to find bugs, but also to prove
correctness.
The contributions in this paper are two-fold. First, we formulate se-
quential depth computation an a logical inference problem for Quan-
tified Boolean Formulas (QBF) and present a powerful reduction
technique that simplifies the formulas by introducing safe modifica-
tions to the circuit’s state transition graph. The modifications are safe
in the sense that the sequential depth is left intact but the complexity
of computing it is dramatically reduced. Second, we study the struc-
ture of the resulting simplified QBFs and construct a SAT-based ap-
proach to solve their satisfiability. For these formulas, the algorithm is
far more efficient than state-of-the-art QBF solvers.
The paper is organized as follows. In section II, we review relevant
work on sequential depth computation and show how it relates to the
particular approach we describe. Section III introduces finite state ma-
chines, state transition graphs, and the notion of sequential depth using
graph-theoretic concepts. Section IV formulates sequential depth
computation as a logical inference problem for QBF. In section V, we
describe how to simplify the resulting QBFs by introducing state tran-
sition graph modifications that keep the sequential depth intact. Sec-
tion VI is devoted to describing a SAT-based algorithm that efficiently
solves the simplified QBFs. Experimental results on some of the IS-
CAS 89 benchmarks are discussed in section VII and the paper is con-
cluded in section VIII with some pointers to future work.

 –

i i 1+

i

SAT-based Sequential Depth Computation
Maher Mneimneh, Karem Sakallah

University of Michigan

{maherm,karem}@umcih.edu

II. Previous Work

We review some of the literature related to sequential depth computa-
tion using search-based approaches. Although BDD-based approach-
es that perform breadth-first search of the state transition graph
compute sequential depth, we will not describe such techniques here
for the sake of brevity.
The problem of determining when it is safe to stop going into deeper
states when checking safety properties has been addressed by Sheeran
et. al in [9]. The authors observe that no more iterations should be per-
formed if no new states exist in future iterations. They check for that
by searching for a path of length starting at the initial state (a path,
as defined in the next section, should have distinct states.) If no path
exists, then no new states exist at depth and the iteration is stopped.
On the other hand, if a path exists, then a new state exists and the iter-
ation continues to larger values of . The authors use a SAT solver to
check the existence of a path at a given depth. A major disadvantage
of that approach is the over-approximations of the sequential depth
that might result. The existence of a path from the initial state to some
state does not guarantee that this state has not been encountered on a
different and shorter path. The authors provide a complete formulation
in terms of shortest paths but no experimental evaluation is presented.
In [10], random simulation is utilized to provide an estimate of the se-
quential depth. A queue is used to keep track of states. The algorithm
starts by storing the initial state in the queue and setting its depth to 0.
At each iteration, a state is dequeued, and a random input is used to
compute its next state. This step is repeated for a number of times de-
termined by a threshold. If the resulting next state has not been en-
countered before, the state is queued and its depth is set to that of the
present state plus one. When the threshold is reached, a new state is
dequeued and the above procedure is repeated. When the queue is
empty, the algorithm terminates. The sequential depth is the depth of
the last stated dequeued. The above algorithm samples the state space
and consequently might result in under as well as over-approxima-
tions of the sequential depth. An improvement of the algorithm that
profiles the toggle activity of state variables is also provided.
In [8], Plaisted et al. present an algorithm for solving the satisfiability
problem for QBFs and discuss its use in determining fixpoints of re-
petitive systems. However, no experimental analysis showing the ef-
fectiveness of their QBF solver on such systems is presented.

III. Preliminaries

A finite-state machine (FSM) M is defined as a 6-tuple
 where is a finite set of states, is the

input alphabet , is the output alphabet , is the state-
transition function, is the output function, and is
the set of initial states.
Synchronous Sequential circuits are modeled using FSMs. A synchro-
nous sequential circuit has a finite number of inputs
(), a finite number of outputs (), and a
finite number of state or memory elements (). The
combinational part of the circuit is made up of internal signals
() representing the outputs of combinational gates. A
clock signal synchronizes the operation of the memory elements.
Each of these signals takes one of two possible values or . We will
refer to as the input variables, as the
output variables, as the state variables , and

 as the internal variables.
The state-transition function determines the next state
of the machine based on its current state and inputs. The output func-

tion determines the machine’s output based on its
current state and inputs. We can write:

where , , ,
, , and .

We define the transition relation of the circuit as:

where is the XNOR function. Intuitively, if
there is a transition from state to state on input . Otherwise,

. If the internal variables are part of
the transition relation, we write:

The state transition graph of an FSM , STG(), is a labeled direct-
ed graph where each vertex corresponds to a state
of (and is labeled with), and each edge between two ver-
tices and corresponds to a transition from state to state in

. The edge is labeled where is the input that causes the
transition from to and is the output during that transition.
Given a directed graph . A walk of length is a succession
of directed edges . If the directed edges of a
walk are different, the walk is called a trail. A trail whose vertices are
all different is called a path.
Given a directed graph . The distance between two vertices

, denoted is the shortest path between and .
The eccentricity of , is the longest of all the shortest paths
between and every other vertex in . We can write

 for all . The radius of is the mini-
mum eccentricity among all its vertices,
for all . The diameter of is the maximum eccentricity among
all its vertices, .
Given a directed graph . Consider two vertices and .

 is reachable from if a path exists from to . In addition,
each vertex is reachable from itself.
Consider an FSM with a single initial state . We define the se-
quential depth of as the eccentricity of its initial state in the cor-
responding state transition graph STG(M), and denote it by

. Consider two states and . If there is a path from

i

i

i

M Q Σ ∆ δ λ Q0, , , , ,()5 Q Σ
∆ δ:Q Σ Q→×

λ:Q Σ ∆→× Q0

m
x1 x2 … xm, , , l z1 z2 … zl, , ,

n y1 y2 … yn, , ,
k

w 1 w 2 … wk, , ,
clk

0 1
x1 x2 … xm, , , z1 z2 … zl, , ,

y1 y2 … yn, , ,
w 1 w 2 … wk, , ,

δ: Q Σ Q→×

λ : Q Σ ∆→×

y+ δ y x,()5 z λ y x,()5

x x1 … xm, ,(); y y1 … yn, ,(); y+ y1
+ … yn

+, ,();
z z1 … zl, ,(); δ δ1 … δn, ,(); λ λ1 … λl, ,();

T y+ y x, ,() y i
+ δ i y x,()¯()

i 15

n

`5

 ¯ T y+ y x, ,() 15
y y+ x

T y+ y x, ,() 05 w1 w2 … w k, , ,

T y+ y x w, , ,() y i
+ δ i y x w, ,()¯()

i 15

n

`5

M M
V E,〈 〉 v VP si

M si e EP
si sj si sj

M ik ol6 ik

si sj ol

G V E,〈 〉 k
k v0v1 v1v2 … vk 1– vk, , ,

G V E,〈 〉
v u, VP d v u,() v u

v ecc v()
v V

ecc v() max ud v u,()5 u VP G
radius G() minv ecc v()()5

v VP G
diameter G() maxv ecc v()()5

G V E,〈 〉 v0 vk

vk v0 v0 vk

Figure 1: Flowchart of the algorithm for computing sequential depth

START

Read Circuit
cycle = 0

Is formula (1) true for
i = cycle + 1?

NO

YES

SeqDepth = cycle

ENDcycle = cycle + 1

START

Read Circuit
cycle = 0

Is formula (1) true for
i = cycle + 1?

NO

YES

SeqDepth = cycle

ENDcycle = cycle + 1

M s0

M s0

SeqDepth M() s0 si

 to we call the start-state and the end-state for that path.
For all paths we consider, the start-state is the initial state unless a dif-
ferent start-state is specified. Similarly, if there is a walk between
and , is the start-state and is the end-state for that walk.

IV. Sequential Depth Computation By Logical Infer-
ence

Since the definition of depth depends on paths in the state-transition
graph, we will define paths in terms of the transition relation of the cir-
cuit. Let be the transition relation where

 are the input variables,
current-state variables, are next-state variables,
and are internal variables. We define

 as follows:

and for ,

Similarly, we define as follows:

where for , and

Intuitively, if is reachable from in a path of
length and is otherwise.
We have previously defined sequential depth as the eccentricity of the
initial state, or in other words, as the longest of all shortest paths be-
tween the initial state and every other reachable state. Thus, one way
to compute sequential depth is to find a reachable state that has the

largest distance from the initial state (recall that distance between two
vertices is the shortest path between them.) Such a procedure can be
performed iteratively. We start at depth 1 and proceed as follows. At
depth , we look for a state whose distance from the initial state is .
Such a state will have the property that no path of length less than
has that state as an end-state; otherwise, the path of length is not the
shortest for that state. A logical formulation of that property is

(1)

where is the predicate of the initial state.
If the above formula is true, the algorithm proceeds to deeper itera-
tions since new states might be found whose shortest distance from the
initial state is greater than . The algorithm terminates when no state
satisfying the above property can be found. In other words, the algo-
rithm terminates when the above logical formula is false. A flowchart
for computing sequential depth based on this algorithm is illustrated
in Figure1.
As an example, consider the sequential circuit and its corresponding
STG in Figure2(a) and (b). Figure2(c) shows the computation tree
that results from unrolling the STG. We start by setting .
The above formula searches for a path of length 1 whose end-state is
different from the initial state. is one such path. As a result,

 is incremented to 1. Next, the formula searches for a path
length 2 whose end-state is not also an end-state for any path of length
1. is such a path and is incremented to 2. In the
third iteration, the formula searches for a path of length 3 with an end-
state that is not an end-state for any path of length 2 or 1. The formula
is false in that case; no such state can be found as is apparent from the
computation tree of Figure2(c). The algorithm terminates returning a
sequential depth of 2.
Searching for a state that satisfies the above formula is complicated
by the fact that at a given depth , the search should consider paths of
length for all values of less than to ensure that the path to is
the shortest. This can be very expensive rendering the algorithm inap-
plicable but for simple circuits. In the next section we introduce a ma-
jor simplification that significantly reduces the complexity of the
formula to be checked.

V. Simplified Sequential Depth Computation

Checking the satisfiability of (1) suffers from two major complica-
tions. First, the quantifiers and negation in transform the
above formula into a QBF that can not be simply checked using a SAT
solver. Second, when searching for a new state at depth , we have to
check all depths less than to ensure that the state is on a shorter path.
This check can result in very expensive computations.

s0 si s0 si

s0

si s0 si

T y+ y x w, , ,()
x x1 x2 … xm, , ,()5 y y1 y2 … yn, , ,()5

y+ y1
+ y2

+ … yn
+, , ,()5

w w 1 w 2 … wk, , ,()5
walki y0 y,()

walk1 y0 y,() xw T y y0 x w, , ,()∃5

i 1>

walki y0 y,() y1y2…y i 1–∃5

walk1 y0 y1,() walk1 y1 y2,() … walk1 y i 1– y,()· · ·

pathi y0 y,()

path1 y0 y,() xw T y y0 x w, , ,() y y0?()·∃5

pathi y0 y,() y1y2…y i 1–∃5

path1 y0 y1,() path1 y1 y2,() … path1 yi 1– y,()· · · ·

y2 y0?()
…

y yi 2–?() y yi 3–?() … y y0?()· · ·

x x1 x2… xn, ,()5 y y1 y2 … yn, , ,()5

x y? x1 y1⊕() x2 y2⊕() … xn yn⊕()+ + +↔

pathi y0 y,() 15 y y0

i 0

i i
i

i

y ∃ I y0() pathi y0 y,() pathi 1– y0 y,() … path1 y0 y,()¬· ·¬··

I y0()

i

cycle 05

00 01→
cycle

00 01 11→ → cycle

Figure 2: (a) A sequential circuit (b) its corresponding STG and (c) computation tree.

x

clk

D Q

Q’

clk

D Q

Q’

x

clk

D Q

Q’clk

D Q

Q’

clk

D Q

Q’clk

D Q

Q’ 00

11

01

0

10

0

1

1

1 0,1

0

00

11

01

0

10

0

1

1

1 0,1

0

(a) (b) (c)

00

11

01 01

11

00

01

10

00

11

01 01

11

00

01

10

s
i

j j i s

pathi y0 y,()

i
i

In this section we address the second problem. We would like to sim-
plify the logical formula so that we do not have to go all the way back
to depths of length when searching for a new state. To better under-
stand the problem, consider again the computation tree in Figure2(c).
Assume we are checking for new states at depth 3. Possible paths of
length 3 are and . Note
that , , and

 are not paths since each has a repeated state.
Consider the path . This is not the shortest path
to state since the path of length 2 ends in that state.
For it was enough to check paths of length 2 to decide that it is not
on a shortest path during iteration 3. Now, consider the path

. Although there is no path of length 2 having
 as an end-state, is such a path having length 1. In that

case, to conclude that is not the shortest path to
 we had to go back to paths of length .

We can avoid the situation encountered in the last example by intro-
ducing a simple modification to the STG being traversed. Consider the
STG shown in Figure3(b) derived from that of Figure2(b) by intro-
ducing new edges from every state to the initial state . The addi-
tional edges are shown in bold. Transitions along these edges take
place whenever a new auxiliary input has the value 1. When the aux-
iliary input is 0, the operation of the original machine is not altered.
The computation tree corresponding to the new STG is shown in
Figure3(c). Consider again the path . We can
check walks of length 2 only to deduce that is not a new state. The
walk establishes such proof. In the STG of
Figure3(b), we do not have to go back and search all depths smaller
than the one considered; at depth , it is enough to check for walks of
length to prove or disprove the existence of a shortest path of
length . This results in substantial reductions when checking our for-
mula
Next, we present two theorems that prove the correctness of the above
approach.

Theorem 1 Given an FSM having an initial state , and its cor-
responding STG, . Let be a new FSM whose STG is de-
rived from that of by adding transitions from every state to the
initial state . Then .

The above theorem ensures that by adding transitions to the initial
state, the sequential depth of the machine is not altered.

Theorem 2 Given an FSM having an initial state . Let
STG(M) be such that there is a transition from every state in to .
Let be a state such that there is a path from to of length ,

. Then there is a walk from to of length for every
such that .
The above theorem ensures that every state reachable at depth
through a path from the initial state of an FSM , will be also reach-
able at any depth through a walk from the initial state.
For brevity reasons, we omit the proofs of the above theorems.
The above theorems enable us to reduce the formula for checking the
sequential depth to:

(2)

because by Theorem 2:

In addition, from basic graph theory we have:

Thus,

and consequently,

To obtain the STG with transitions from every state to the initial state,
we have to modify the given circuit. The new circuit corresponding to
that of Figure2(a) is shown in Figure3(a). The bold parts corresponds
to the additional logic. An auxiliary input is added. Each next-state
variable of the original circuit is ANDed with the negated auxiliary in-
put and the output is fed to the latches. Whenever the auxiliary input
is 1, the next state will be the initial state (in that case). Whenever
the auxiliary input is 0, the machine’s operation is identical to the orig-
inal circuit. Note that if the initial state is different from , the
logic should be modified accordingly.
Note also that these additional transitions might be present in the orig-
inal circuit if the initialization is modeled at the logic level. In that
case, the above modifications do not need to be added.

VI. SAT-based Solution to Depth Computation

In this section, we present an efficient satisfiability checking proce-
dure for formulas of structure similar to (2).

1

00 10 01 11→ → → 00 10 11 01→ → →
00 10 11 00→ → → 00 01 11 00→ → →

00 01 11 01→ → →
00 10 01 11→ → →

11 00 01 11→ →
11

00 10 11 01→ → →
01 00 01→

00 10 11 01→ → →
01 1

00

00 10 11 01→ → →
01

00 00 01→ →

i
i 1–
i

M s 0

STG M() M9
M

s0 SeqDepth M() SeqDepth M9()5

M s0

M s0

si s0 s j l

l 0> s0 sj m m
m l≥

l
M

m l≥

y ∃ I y0() pathn y0 y,() walkn 1– y0 y,()¬··

pathn 1– y0 y,() … path1 y0 y,()+ +() walkn 1– y0 y,()→

walkn 1– y0 y,() pathn 1– y0 y,() … path1 y0 y,()+ +()→

pathn 1– y0 y,() … path1 y0 y,()+ +() walkn 1– y0 y,()↔

pathn 1– y0 y,() … path1 y0 y,()¬· ·¬() walkn 1– y0 y,()¬↔

Figure 3: (a) The modified sequential circuit (b) its corresponding STG and (c) computation tree.

00

11

01
00

10

00

01

01

01
00,01

00
1-

1-

1-1-

00

11

01
00

10

00

01

01

01
00,01

00
1-

1-

1-1-

Aux
x

clk

D Q

Q’

clk

D Q

Q’

Aux
x

clk

D Q

Q’clk

D Q

Q’

clk

D Q

Q’clk

D Q

Q’

00

10

11

01

00

01

11

00

10

01

00

10

00

10

11

01

00

01

11

00

10

01

00

10

00

10

11

01

00

10

11

01

00

01

11

00

10

01

11

00

10

01

00

10

01

00

10

(a) (b) (c)

00

00…0

Recall that the above formula is in QBF form and consequently can
not be checked immediately using a SAT solver. One possibility is to
use a QBF solver. However, even formulas resulting from small cir-
cuits are out of the scope of state-of-the-art QBF solvers.
Let’s take a closer look at the above formula. represents

 iterations of the transition relation with additional
constraints that the states along the paths are distinct.
represents iterations of the transition relation. and

 do not share any intermediate variables. The only
variables shared between the two formulas are those corresponding to
the initial state and the final state . This suggests an efficient se-
quential depth computation algorithm that is presented in the flow-
chart of Figure4.
The algorithms starts by reading the sequential circuit and setting the
variable . Let’s consider iteration of the algorithm. At it-
eration , , and the algorithm has to check the satisfiability
of (2). Our algorithm decomposes checking the satisfiability of (2)
into two simpler checks. The algorithm starts by constructing a CNF
formula representing a path of length starting at the initial state.
A SAT solver is used to find a satisfiable assignment for the construct-
ed formula which corresponds to:

 (3)

If (3) is unsatisfiable, we automatically know that (2) is unsatisfiable.
Thus, the algorithms terminates and .
If on the other hand, (3) is satisfiable, we construct a CNF formula rep-
resenting a walk of length and set its end-state to , the end-state
on the path of length that was returned as a satisfying solution
for (3). The formula corresponds to:

(4)

A SAT solver is used to check (4). If (4) is unsatisfiable, then there is
no walk of length starting at the initial state and ending in . Con-
sequently, is a new state at depth that satisfies (2). Thus,

 is incremented and the whole procedure is repeated again.
If (4) is satisfiable, then do not satisfy (2) and we have to search for
another solution. We repeat the procedure again by try to find a satis-
fiable assignment to (3) other than . Consequently, we add a con-
straint to (3) enforcing the SAT solver to find a state different from .
Whenever no state can satisfy (3), we terminate setting the sequential
depth to . Note that all the added constraints to (3) at depth are used
at all the following iterations. This ensures that no time is wasted look-
ing for states that are not on shortest paths.
Let’s consider the execution of the algorithm on the circuit of
Figure3(a), whose computation tree is shown in Figure3(c).
The algorithm starts by setting . A CNF formula corre-
sponding to is constructed. No learned clauses are
present at this time to be added. We find a satisfying assignment for

. One such solution is . is a new state
so we set .
Next, we construct a formula corresponding to . A sat-
isfying solution to is where .
To check whether is a new state, we construct a formula corre-
sponding to Such a formula is unsatisfiable (no walk
of length 1 exists that terminate in .) Thus is a new state; we set

.
Again, we construct a formula corresponding to . A sat-
isfying solution is where . We check
whether is satisfiable. Sine there is a walk

, is satisfiable and is not a new
state. We add a constraint to forcing to be different
The resulting formula is . Satisfiability
check is repeated on the new formula. A new satisfying solution is

 where . We check whether there is a
walk of length 2 ending in . The check returns .
Thus is not a new state. Again, we add the constraint to

. Checking the new formula
 yields no satisfying assign-

ment. Thus no new states exist at depth . The algorithm terminates;
the sequential depth is 2.

VII. Experimental Results

To experimentally evaluate the effectiveness of our algorithm, we im-
plemented it in C++ and used Chaff [7] as the underlying SAT solver.
We report our results on the ISCAS 89 benchmarks. All experiments
were conducted on a 2 GHz Pentium 4 machine having 1 GB of RAM
and running the Linux operating system. To our knowledge, there is
no published data on the sequential depth of ISCAS benchmarks com-
puted using SAT-based search only and to which we can compare our
results. For that reason, we compare our results to those obtained in [6]
where a combination of SAT, BDDs, and partitioning techniques are
used to perform reachability analysis. For this comparison, we note
the following. First, the techniques in [6] compute the whole set of
reachable states using breadth-first search (BFS). In that case, sequen-
tial depth is the number of BFS iterations. Our algorithm does not
compute the set of reachable states. Second, in [6], the authors set the

pathn y0 y,()
n T y+ y x w, , ,()

walkn 1– y0 y,()
n 1– pathn y0 y,()

walkn 1– y0 y,()

y0 y

cycle 05 i
i cycle i5

i 1+

I y0() pathn y0 y,()·

SeqDepth i5

i ys

i 1+

I y0() walkn 1– y0 ys,()·

i ys

ys i 1+
cycle

ys

ys

ys

i i

cycle 05
path1 00 y,()

path1 00 y,() 00 01→ y 015
cycle 15

path2 00 y,()
path2 00 y,() 00 01 11→ → y 115
11

walk1 00 11,()
11 11

cycle 25
path3 00 y,()

00 10 01 11→ → → y 115
walk2 00 11,()

Figure 4: Flowchart of the enhanced algorithm for determining se-
quential depth

START

Read Circuit
cycle = 0

Construct CNF for
path of length cycle + 1

Is there a satisifiable
solution to path

(Check using s SAT Solver)

SeqDepth = cycle

NO

•Let end-state of path be s
•Construct CNF for
walk of length cycle and end-state s

Update learned clauses (if any)
and add them to path formula

YES

cycle = cycle + 1

NO

Add learned
clause to path

YES

END

Is there a satisifiable
solution to walk

(Check using s SAT Solver)

START

Read Circuit
cycle = 0

Construct CNF for
path of length cycle + 1

Is there a satisifiable
solution to path

(Check using s SAT Solver)

SeqDepth = cycle

NO

•Let end-state of path be s
•Construct CNF for
walk of length cycle and end-state s

Update learned clauses (if any)
and add them to path formula

YES

cycle = cycle + 1

NO

Add learned
clause to path

YES

END

Is there a satisifiable
solution to walk

(Check using s SAT Solver)

00 01 11→ → walk2 00 11,() 11
path3 00 y,() y

path3 00 y,() y 11?()·

00 10 11 01→ → → y 015
01 00 00 01→ →

01 y 01?
path3 00 y,() y 11?()·
path3 00 y,() y 11?()· y 01?()·

3

time limit to 100,000 seconds whereas we set the time limit to 5,000
seconds.

Experimental results for a sample of the ISACS benchmarks are re-
ported in TableI. The name of the circuit appears in column 1. Col-
umns 2 and 3 show the sequential depth and the running time for our
algorithm. In case the time limit was reached, we report the maximum
depth attained. Column 4 reports the maximum number of reachability
steps in [6]; a (c) next to a number indicates that reachability was car-
ried to completion. Empty cells in column 4 indicate non-reported data
in [6].
For the small benchmarks, up to s1196, our algorithm is very effective
in determining the sequential depth. The least time reported is 0.18
seconds for s386, and the longest time is 232.84 seconds for s1196.
Although s386 is deeper than s1196, s386 has 13 reachable states
while s1196 has 2616. Consequently, more searching is needed in the
case of s1196 before reaching a fixpoint at the sequential depth.
For s1269, s3271, s3330, and s5378, the time limit of 5000 seconds
was reached. Although reachability analysis completed successfully
for these benchmarks in [6], the maximum depth we attained in 5000
seconds is very close to the sequential depth (except for s5379.) This
maximum depth can be very effective in guiding BMC. In fact, the
BMC tool should keep iterating for at least the value of the maximum
depth.
The results for s1423 and s6669 are interesting. Reachability analysis
in [6] could not complete: a maximum depth of 15 and 3 were obtained
for s1423 and s6669. However, we were able to reach a depth of 26 for
s1423 and 5 for s6669. When combined with BMC, we are able to
check for properties at depths that BDDs can not handle.

VIII. Conclusion

Determining the depth of sequential circuits enables search-based ver-
ification techniques such as bounded model check to prove correct-
ness of designs rather than just find bugs.

To achieve completeness for Bounded Model Checking, we presented
a formulation of sequential depth computation as a logical inference
problem for Quantified Boolean Formulas. We studied the structure of
the resulting formulas and showed that their complexity can be drasti-
cally reduced by modifying the netlist of the circuit they are construct-
ed from. We proved that such modifications leave the sequential depth
intact and consequently are safe to apply. We also presented an effi-
cient SAT-based algorithm to solve QBFs resulting from our simplifi-
cations. Our experimental results showed that SAT-based depth
computation can sometimes be a good alternative to BDD-based tech-
niques.
Since our algorithm learns states that violate some property and adds
them to the clause database one at a time, its memory requirements are
exponential in the worst case (this situation arises when the number of
states is exponential.) To surmount this, we are currently investigating
the possibility of adding sets of states at a time. In addition, we are ex-
ploring two other directions to improve our approach. We are studying
the possibility of applying abstractions that preserve the sequential
depth of a circuit. These abstractions can help simplify the complexity
of the QBFs to be checked. We are also investigating better algorithms
to solve the formulas that arise during depth computation. These algo-
rithms try to utilize symmetries in the transition relation and along dif-
ferent paths to simplify the satisfiability check.

References
[1] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Sym-

bolic Model Checking Using SAT Procedures instead of BDDs,”
in 36th Design Automation Conference, 1999.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in TACAS’99, 1999.

[3] R. E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” in IEEE Transactions on Computers, 35(8), pp.
677-691, August 1986.

[4] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill, “Symbolic Model Checking for Sequential Circuit Verifica-
tion,” in IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits 13(4), pp. 401-424, April 1994.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verifi-
cation of Finite-state Concurrent Systems Using Temporal Logic
Specifications,” in ACM Transactions on Programming Lan-
guages and Systems , 8(2), pp. 244-263, 1986.

[6] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik, “Partition-
Based Decision Heuristics for Image Computation Using SAT
and BDDs,” in Proceedings of the International Conference on
Computer-Aided Design, 2001.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT solver,” in Proceedings of
the Design Automation Conference, 2001.

[8] D. A. Plaisted, A. Biere, and Y. Zhu, “A Satisfiability Procedure
for Quantified Boolean Formulae,” submitted for publication,
Discrete Applied Mathematics.

[9] M. Sheeran, S. Singh, and G. Stalmarck, “Checking Safety Prop-
erties Using Induction and a SAT-solver,” in Formal Methods in
Computer Aided Design, 2000.

[10]C.-C. Yen, K.-C Chen, and J.-Y. Jou, “A Practical Approach to
Cycle Bound Estimation for Property Checking,” in 11th IEEE/
ACM International Workshop on Logic Synthesis , pp. 149-154,
June 2002.

TABLE I:Experimental data on a sample of the ISCAS
89 benchmarks

Circuit
Sequential

Depth Time (sec)
Maximum

Depth in [6]

s298 18 19.3 -
s386 7 0.18 -

s499 21 1.07 -

s510 46 144.81 -
s641 6 97.03 -

s713 6 126.94 -

s820 10 2.51 -
s953 10 102.23 -

s1196 2 232.84 -

s1269 7 5000 10(c)
s1423 26 5000 15

s1488 21 96.87 -

s3271 14 5000 17(c)
s3330 7 5000 9(c)

s5378 19 5000 45(c)

s6669 5 5000 3

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

