
Memory Access Pattern Analysis and Stream Cache Design
for Multimedia Applications

Memory system is a major performance and power bottleneck
in embedded systems especially for multimedia applications.
Most multimedia applications access stream type of data
structures with regular access patterns. It is observed that
conventional caches behave poorly for stream-type data
structure. Therefore, prediction-based prefetching techniques
have been extensively researched to exploit the regular access
patterns. Prefetching, however, may pollute the cache if the
prediction is not accurate and needs extra hardware
prediction logic. To overcome these problems, we propose a
novel hardware prefetching technique that is assisted by static
analysis of data access pattern with stream caches. With the
proposed stream cache architecture, we could achieve
significant performance improvement compared with the
conventional cache architecture.

I. Introduction

Memory system is a major performance and power
bottleneck [9] in embedded systems as the performance gap
between processors and memories is ever increasing.
Though general cache schemes such as direct and
set-associative caches can attenuate the gap on average,
there is still much room for optimization if the memory
access pattern is known a priori. In particular, multimedia
applications (e.g. MPEG encoding/decoding, speech
processing etc.) are characterized by their excessive data
memory accesses but with regular access patterns for stream
data structures. Therefore, we are concerned about memory
system design for multimedia embedded systems.

Several researches have focused on prefetching
techniques to exploit the stream-like access pattern.
Prefetching can be triggered either by a hardware
mechanism, or by a software instruction, or by a
combination of both. The hardware approach detects
accesses with regular patterns and speculatively issues
prefetches at run time, which may cause some run-time
overhead and a cache pollution problem in case of
misprediction. On the other hand, the software approach
relies on the compiler to analyze the program and to insert
prefetching instructions, which may increase the code size.

In this paper, we propose a novel hardware prefetching
technique that is assisted by a static analysis of data access
pattern. We first obtain the physical memory trace of target
multimedia applications and identify the data structures with
regular access patterns in the source code level by static
analysis. Then, we allocate each data structure into a special
cache, called stream cache. A stream cache is similar to a

conventional hardware prefetch buffer that fetches the data
earlier than needed to reduce the cache miss penalty, based
on the prediction of the next access.

It is, however, distinguished from the conventional
prefetch buffer in two aspects. First, prediction is performed
by the static analysis to avoid costly hardware prediction
logic but with higher prediction accuracy. Second, each
stream cache is assigned a different address space so that
there is no cache pollution problem. Since a stream cache is
an add-on feature to any existing architecture, the proposed
technique is complementary to any previous efforts for
optimal memory system design. More detailed comparison
with related works is discussed in the next section.

Static analysis of data access patterns from the given
memory trace and automatic synthesis of on-chip stream
caches are two main themes of this paper. We identify three
different types of access patterns and as many stream cache
configurations for a set of popular multimedia applications.
With the proposed stream cache architecture, we could
obtain significant performance improvement compared with
traditional cache architecture without any prediction logic.

The related works in the embedded memory system
design are compared with the proposed technique in the next
section. In section 3 we present the stream cache architecture
template that our approach is based on. In section 4, our
proposed methodology is explained. We present
experimental results with a set of real multimedia
applications, showing significant performance improvement
over the existing cache configurations in section 5. Finally,
we envision some perspectives of our approach and draw
conclusions in section 6.

II. Related Works

While it has been a major topic for general purpose
computer architecture with uncountable number of research
results, optimal memory system design gains attention
recently for embedded systems as a part of design space
exploration. Unlike the general purpose systems, embedded
systems have more chances of memory optimization because
we may concentrate on the memory access patterns only for
a given set of applications.

APEX approach is similar to ours in that it uses special

This work was supported by National Research Laboratory Program (number
M1-0104-00-0015) and Brain Korea 21 Project.
The RIACT at Seoul National University provided research facilities for this
study.

Chanik Park
Software Center

Samsung Electronics
599, Shinsa-dong, Kangnam-ku

Seoul 135-893, KOREA
ci.park@samsung.com

Soonhoi Ha
The school of Electric Engineering

and Computer Science
Seoul National University
Seoul 151-742, KOREA

sha@iris.snu.ac.kr

Junghee Lee
The school of Electric Engineering

and Computer Science
Seoul National University
Seoul 151-742, KOREA
konnen@iris.snu.ac.kr

memory modules for predefined memory access patterns [5].
They have a library of special purpose memory modules in
addition to a conventional cache; indirect reference
module for linked list access pattern is an example. And,
they categorize three kinds of memory access patterns:
access patterns can be determined at compile time, access
patterns the programmer has prior knowledge on, and access
patterns that are complex and difficult to predict. Since they
focus on the methodology, but not on memory modules
themselves nor on access pattern analysis, our work is
distinguished from their work.

Some hardware architectures to exploit the regularity of
memory accesses have also been proposed for high
performance computing [2][3]. Those proposed hardware
architectures prefetch data with rather complex prediction
logic, among which the preloading scheme is an important
technique that many papers cited [3][11]. In this paper, we
compare the performance of our approach with that of the
preloading scheme.

The preloading scheme uses a reference prediction table
to predict the next access. Each entry of the reference
prediction table stores the PC of the load instruction,
previous effective address, stride, and the state. If there is an
entry of which PC is the same as the look-ahead PC, it
prefetches the cache line. Look-ahead PC is the next PC
expected to be executed. After every memory access it
updates the reference prediction table. This scheme can
exploit some of the regularity of the memory access. But it
requires complex hardware logics and pollutes the cache if
the prediction fails. On the other hand, our approach needs
much less additional hardware without cache pollution
problem.

There are also software techniques to prefetch data and
instruction [4]. Those prefetch approaches are primarily
based on prediction from the static analysis of the source
code. In our approach, however, we prefetch data based on
the static analysis of memory traces obtained from the
dynamic execution profile through simulation.

Memory access pattern analysis has been also used for
source code transformation or data layout optimization
[10] [6]. Catthoor et al. observed that the source code should
be first optimized to generate the optimal memory access
patterns for a given memory architecture. They proposed
several optimization techniques. For example, they pack the
data structures according to their size and bit-width and
allocate them into memory modules to minimize the
memory cost [10]. They examine the memory access
patterns in the source code to estimate the memory system
performance and apply transformation techniques. Even
though we also examine the memory access patterns for the
data structures in the source code, we use physical memory
address traces to obtain the prediction information for data
prefetching.

Data layout optimization for memory hierarchy is a
technique to reduce cache misses [6]. While previous
researches mainly aim to reduce the conflict misses, our
approach reduces mainly the capacity and cold misses [7]
for stream-type data structures.

Fig. 1. Architecture template

III. Stream Cache Architecture

A. Architecture Template

Fig. 1 shows the proposed memory architecture template
that consists of a processor, a conventional on-chip L1 cache
and a set of customized stream caches. Stream caches are
assigned different address spaces from the conventional
cache. A memory access request from the processor is
routed to one of the caches based on the mapped address.

If a memory access occurs to a stream cache, the stream
cache controller issues a prefetch request of the next address
that is the sum of the current address plus the stride value
stored in the Stride register inside the stream cache
controller. There are other additional hardware logics;
address decoders and bus arbiters for multiple caches. Even
though they may increase the clock cycle, their effect is
negligible in most cases [5]. Another possible side-effect of
prefetching logic is the increased miss penalty of the
conventional cache in case memory request is interfered by
the outstanding prefetching request issued earlier.

B. Stream Cache

A stream cache module is parameterized by the number of
banks, the line size, and the number of lines, which are
determined by the memory access pattern analysis. A
micro-architecture template of a stream cache module is
displayed in Fig. 2. The line size is determined by the stride
value. If the stride value is one, we can increase the line size
to reduce the communication overhead. Otherwise, the line
size is set to one to remove unnecessary prefetch overhead.

Fig. 2. Stream cache micro-architecture

for (i=0 ; i<N ; i++) {
 …
 … = bitStream[i];
 for (j=0 ; j<M ; j++) {
 …
 … = qOutput[j];
 … = mBlock[i][j];
 }
 … = qOutput[i];
 … = ctab[…];
}

The number of lines is determined either by how many data
should be prefetched or by how large working set should be
preserved. In this paper, we assume that the number of
lines is two for simplicity: one for current access and the
other for the next access.

It is observed that three types of memory access pattern
are frequent in multimedia applications. The stream cache
modules are configured differently for each type. If the static
analysis reveals another memory access pattern, a different
stream cache configuration may be added. In this paper,
however, we are concerned about three memory access
patterns and the associated three types of stream cache
configuration as shown in Fig. 3: fixed-stride, 2-way, and 2D
stream caches. Fig. 3 also shows the pseudo code of the
corresponding control logic of the stream cache.

Fixed-stride stream cache has the basic configuration that
consists of a single bank and the fixed stride value is stored
in the Stride register (Fig. 3(a)). If the current access fails,
miss penalty should be paid to fetch the request data.
Otherwise, the cache returns the requested data immediately
from the cache, In both cases, it issues the next prefetch
request whose address is the sum of the current address plus
the stride value. This type of access pattern is typically
observed at a one-dimensional bit stream buffer.

2-way stream cache has two banks of fixed-stride stream
cache. Two banks have their own stride values while
memory accesses to these banks are interleaved as illustrated
in Fig. 3(b). We preserve two outstanding access locations
for the same data structure. The flag used in the pseudo code
of Fig. 3(b) indicates which bank is used last. This type of
access pattern is typically observed at a buffer accessed in a
nested loop structure.

2D stream cache has also two banks of fixed-stride stream
cache. In this configuration, two banks are assigned two
different sets of access regions in an alternating fashion as
shown in Fig. 3 (c). After the last access of a region, the
bank starts prefetching the next data of another assigned
region while the current memory access is routed to the
other bank. Thus, another Region-Stride register is needed to
keep the distance between the assigned regions. The flag
used in the pseudo code of Fig. 3(c) also indicates which
bank is used last. This type of access pattern is typically
observed at a 2-dimensional array.

Fig. 4 presents an example code. There are three stream
type data structures: bitStream, qOutput, and mBlock. The
bitStream buffer is suitable for the fixed-stride stream cache
and its stride is one. The qOutput buffer has outstanding two
interleaved access locations between the inner and the outer
loop body, so becomes the target of an 2-way stream cache.
Buffer mBlock is a two dimensional array, thus suitable for
the 2D stream cache. The inner loop defines a region of
fixed-stride access while the outer loop guides the access
region change. Since the distance between the regions is
fixed, the value is stored in the Region-Stride register. If the
memory access pattern to the ctab data structure is not
identified as a known pattern, ctab is assigned to a normal
cache. The resultant stream cache architecture is displayed
in Fig. 5.

(a) Fixed-stride stream cache

(b) 2-way stream cache

(c) 2D stream cache

Fig. 3. Three kinds of access patterns and their mapping to the
corresponding stream caches. The pseudo code of the associated
controller logic of Fig. 2 is also shown.

Fig. 4. An example code with three different types of stream data
structures

Fig. 5. Example of stream cache assignment

IV. Overall Procedure

The overall procedure of the stream cache synthesis is
depicted in Fig. 6. It consists of 5 main steps. The first step
is to build the memory trace of applications. Memory trace
contains physical access, symbolic name, size, and access
type (read or write). We use the tracer of ARMulator to get
physical addresses, sizes, and access types of the memory
trace. To get a symbolic name we read the symbol table
generated by the armlink and determine whether a physical
address lies in any buffer region defined in the symbol table.
The symbol table contains the start addresses of buffers and
their sizes. We trace not only the physical addresses but also
their symbolic names to identify the target stream data
structures of the stream caches in the source code. Source
code analysis can provide those information but it is rather
complex and can be affected by the compiler.

The next step is the access pattern analysis step, the heart
of the proposed methodology. For each predefined memory
access pattern and the associated stream cache configuration,
we make a specific cache simulation model. Assuming that a
data structure has a regular memory access pattern we
calculate the stride with first some accesses. Then, we
simulate cache behaviors for each stream cache type. If the
stream cache miss rate is below the threshold, the buffer is
considered to fit for the corresponding stream cache. We set
the threshold value to 3% determined after extensive
simulations. If the correct stream cache is used, the cache
miss rate is drastically reduced. During the simulation, we
analyze interference between data structures and examine
the possibility of stream cache sharing. If cache sharing
does not increase the expected cache miss ratio, two data
structures may share the same stream cache.

Fig.6. Overall procedure

The third step is to map the data structures to the stream
cache modules. If a data structure has a fixed-stride access
pattern and its simulated cache miss rate is below the
threshold, it is mapped to a fixed-stride stream cache. We
consider the most frequently accessed structure first.
Fixed-stride stream cache has higher priority than other
stream caches because fixed-stride stream cache has the least
hardware area. Such heuristic works quite well as confirmed
by experiments. Finding out the optimal mapping order is
left for a future work. In this step, we consider the resource
constraint given by the user such as the number of stream
cache modules. For stream cache sharing, the stride values
of two shared data structures should be the same and the
interference may not increase the miss rate over a certain
threshold.

The fourth step is to assign the target data structure to a
data section determined from the previous mapping step.
The address space is split into stream cache sections and a
normal data cache section. Many embedded software
development toolkits support this feature. We use the scatter
loading feature of ARM Developer Suite to assign a buffer
to a specific data section [12].

The last step is to synthesize the stream cache modules as
decided in the mapping step. As explained earlier, for each
stream cache module, we synthesize the necessary hardware
glue logic as well as the control logic. If there is a stream
cache with stride one and the line size is greater than one, it
can use the burst mode of off-chip memory. In this case, the
corresponding control logic should be augmented.

V. Experiment

A. Setup

We modified the tracer of ARMulator for trace-driven
simulation and used Dinero IV 4.7 to simulate the normal
data cache. We developed our own simulator for stream
caches. The CPU model of ARMulator is ARM7TDMI and
the number of stream caches is 8 at most for each
application.

We used nine real multimedia applications. We first
performed static analysis of the memory traces obtained
from the simulation, and then cache simulation for
performance comparison.

B. Static Analysis Result

Table 1 presents the number of data structures with regular
memory access patterns for each application. For example,
h263_enc has 14 buffers with fixed-stride access pattern, 1
buffer with 2-way and 18 buffers with 2D pattern. The
examples of epic and gsm have no such data structure.

Table 2 presents the counts of actually mapped data
structures and their portion among the total access counts.
Since we restrict the maximum number of stream caches to 8,
some data structures could not be mapped to a stream buffer,
but to a normal cache.

TABLE I
Number of data structures with regular data access patterns

Application Fixed-stride 2-way 2D
adpcm_dec 3 0 0
adpcm_enc 2 0 0
cd2dat 1 0 3
epic 0 0 0
gsm 0 0 0
h263_dec 12 0 4
h263_enc 14 1 18
jpeg 3 1 0

TABLE II
Number of mapped data structures within resource constraints

Used stream caches Application Mapped data
structures

Portion
(%) Total F 2w 2D

adpcm_dec 3 35.05 3 3
adpcm_enc 2 21.82 2 2
cd2dat 4 14.51 4 1 3
epic 0 0 0
gsm 0 0 0
h263_dec 15 8.91 8 6 2
h263_enc 22 33.13 8 2 1 5
jpeg 4 5.27 4 3 1

In the cases of adpcm_dec, adpcm_enc, and h263_enc we

can anticipate a significant performance improvement from
the proposed architecture because mapped data structures
take large portion of memory access counts. On the other
hand, we may not expect such improvement from h263_dec
and jpeg examples.

C. Cache Simulation Result

We compare the performance of the proposed architecture
with two alternatives: conventional normal cache
architecture, and the preloading scheme. When comparing
the cache miss rate with preloading scheme, we ignore the
cache pollution problem so that the performance of the
preloading scheme is somewhat exaggerated. Cache
pollution can be simulated if we use time-accurate
simulation, which we avoid due to excessive simulation
time.

Table 3 and 4 present simulation results for direct map
and 2-way set associated normal caches respectively,
varying the normal cache sizes. For a given cache size, the
preloading and the stream cache architecture show
significant improvement in terms of miss rates. As expected
from the analysis step, the jpeg result is not so good though
cache miss rate is reduced from the normal cache only.
Therefore, it is not recommended to use stream caches for
the jpeg application. A stream cache identifies the data
structures with globally regular access pattern. But the
preloading scheme detects also the case where only a part of
accesses is regular. Unlike other cases the jpeg application
has many partial regular access patterns, so the preloading
scheme shows better result than the stream caches. In the
cases of adpcm_dec, adpc_enc and h263_enc, the cache miss
rates are reduced to less than half. In these cases it is
favorable to use the stream caches.

TABLE III
Miss rate(%) with direct-map normal cache

Application 1K 2K 4K 8K 16K
Normal 14.58 8.13 3.43 3.15 3.03
Preloading 13.16 7.61 3.27 2.99 2.87

adpcm_dec

Stream 6.49 0.05 0.05 0.05 0.05
Normal 5.32 2.8 1.95 1.95 1.95
Preloading 4.76 2.42 1.59 1.59 1.59

adpcm_enc

Stream 0.19 0.13 0.10 0.08 0.07
Normal 9.01 3.70 2.44 1.79 1.79
Preloading 5.01 2.05 1.10 0.76 0.76

cd2dat

Stream 3.20 1.71 0.57 0.14 0.14
Normal 5.32 2.24 1.94 1.85 1.80
Preloading 0.86 0.67 0.40 0.34 0.30

h263_dec

Stream 3.32 0.45 0.16 0.09 0.02
Normal 8.23 5.71 4.91 3.96 3.45
Preloading 2.29 1.82 1.22 0.71 0.48

h263_enc

Stream 1.83 1.29 0.72 0.56 0.49
Normal 4.45 1.55 0.73 0.64 0.45
Preloading 3.81 1.09 0.28 0.23 0.05

jpeg

Stream 4.22 1.32 0.65 0.57 0.37

TABLE IV
Miss rate(%) with 2-way set associative normal cache

Application 1K 2K 4K 8K 16K
Normal 7.40 7.18 3.87 0.97 0.88
Preloading 7.16 6.95 3.74 0.93 0.85

adpcm_dec

Stream 0.09 0.05 0.05 0.05 0.05
Normal 3.17 1.76 0.14 0.14 0.14
Preloading 3.07 1.88 0.11 0.11 0.11

adpcm_enc

Stream 0.08 0.07 0.06 0.06 0.06
Normal 6.16 1.77 0.44 0.28 0.01
Preloading 3.09 1.12 0.26 0.15 0.00

cd2dat

Stream 2.55 0.86 0.14 0.14 0.14
Normal 2.07 1.62 1.21 1.12 1.09
Preloading 0.71 0.44 0.14 0.08 0.06

h263_dec

Stream 0.51 0.34 0.06 0.02 0.01
Normal 5.89 4.76 3.39 2.74 2.28
Preloading 2.04 1.30 0.76 0.37 0.18

h263_enc

Stream 1.50 1.07 0.64 0.50 0.48
Normal 1.69 1.30 0.64 0.38 0.37
Preloading 1.31 1.05 0.29 0.03 0.02

jpeg

Stream 1.65 1.27 0.60 0.34 0.34

Fig. 7 shows the minimum required cache size to have the
cache miss rate less than 1%. Since the hardware overheads
of the stream cache itself and its controller are much smaller
than the normal cache size, we ignored the overheads in this
comparison. Note that the preloading scheme needs
comparable hardware overhead with the normal cache size
as admitted in the reference [2]. The size 10K of Y
coordinate means that any size of normal cache could not
achieve such miss rate. Note that with stream caches, only
1K to 4K direct-map cache can meet such low cache miss
rate constraint in all applications.

Using stream caches may increase the power consumption
from increased off-chip memory accesses. But it will reduce
the power consumption of on-chip cache accesses because
the stream caches is much smaller than the normal cache. It
should be verified in the future work, however, what would
be the overall effect on power consumption.

[

\

]

^

_

`

a

b

c

d

\[

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
]
�
�
�

�
]
a
^
�
�
�
�

�
]
a
^
�
�
�
�

��
�
�

l������ �����

x
��
��

�

�
�
�
�
�
�
�¥
�
Sv
T

y�����

{ �� ���� ���

~ ��� ��

Fig.7. Minimum required direct-map cache size for less than 1% miss
rate

D. Stream Cache Parameter

The effect of the number of lines is ignored in our

experiments because it needs time accurate simulation to
evaluate how much miss penalty of normal cache increases
due to prefetching interference. Though we leave this
experiment as a future work, we expect that the effect will
be small enough to be ignored for miss rate computation.

On the other hand, the number of stream caches affects
the performance. If more stream caches are used, more data
structures will be mapped to stream caches, thus reducing
the miss rate more. The performance improvement should be
obtained with the increased hardware cost. Table 5 shows
such trade-off relationship.

In h263_dec, the total access count portion is not varied
much so that using 4 stream caches would have the best
performance/cost ratio. In the case of h263_enc the portion
of using 4 stream caches is much smaller than that of using 8
stream caches. Fig. 8 presents the result of miss rate
simulation of each case graphically.

TABLE V

Mapped data structures according to the count of stream cache used

Used stream caches Application Mapped data
structures

Portion
(%) Total F 2w 2D

11 8.81 4 2 2
15 8.91 8 6 2

h263_dec

16 9.04 12 6 6
6 22.51 4 3 1

22 33.13 8 2 1 5
h263_enc

23 33.16 12 3 1 8

[

[Ỳ

\

\Ỳ

]

]Ỳ

^

^Ỳ

_

_Ỳ

`

�]a^�� � � �]a^�� � �

l � � �� � � � �� � �

x
��
�
��
��

SP
T y� ��� �

{ �� �� � � �� �

_ ~ � �� �� � � � � � �

c ~ � �� �� � � � � � �

\] ~ � �� �� � � � � � �

Fig. 8. Miss rate with 2K 2-way associative cache according to the
count of stream caches used

VI. Conclusions

This paper presents a static analysis technique of memory
access patterns based on the physical memory traces. And,
we introduce a new cache module, called stream cache, that
prefetches the data with higher accuracy without
complicated hardware prediction logic. Experiments with
real multimedia applications show very promising results
that stream cache is a useful memory module for memory
system exploration of multimedia embedded systems. Our
work can be extended to more diverse optimization
possibilities. We can increase the number of regular memory
access patterns and add more diverse configurations
optimized for access patterns. Not only customized cache
but also communication channel or bus architecture could be
the target of our framework.

Data layout optimizations for stream cache would be
helpful. While the compiler helps us only to assign buffers
to specific data section in current framework, if the compiler
can be aware of the stream cache, new compiler
optimization may greatly improve the performance. Also,
source code optimization would affect the performance with
the stream cache architecture.

References

[1] P. Baglietto, M. Maresca and M.Migliardi, "Image

processing on high-performance RISC systems," Proc. of
the IEEE, vol 84, no.7, 1996.

[2] J.L. Baer and T.F Chen, "An effective on-chip
preloading scheme to reduce data access penalty," Proc. of
the Conference on Supercomputing, 1991.

[3] T.F, Chen and J. L. Baer, "Effective hardware-based
data prefetching for high-performance processors," IEEE
Trans. on Computers. VOL 44, No. 5, May 1995.

[4] T.F. Chen and J.L. Baer, "A performance study of
software and hardware prefetching schemes," Proc. of the
21st Annual International Symposium on Computer
Architecture, pp. 223-232, 1994.

[5] P.Grun, N.Dutt, and A.Nicolau. "APEX: access pattern
based memory architecture exploration," in ISSS, 2001.

[6] S. Rubin, R.Bodik, and T.Chilimbi. "An efficient
profile-analysis framework for data-layout optimizations,"
in POPL 2002.

[7] N.P.Jouppi, "Improving direct-mapped cache
performance by the addition of a small fully-
associative cache and prefetch buffers," in ISCA 1990.

[8] S.Palacharla and R.E.Kessler, "Evaluating stream
buffers as a secondary cache replacement," in ISCA 1994.

[9] S. Przybylski, "Sorting out the new DRAMs," in Hot
Chips Tutorial, Stanford, CA, 1997.

[10] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.
Nachtergaele, and A. Vandecappelle, Custom Memory
Management Methodology, Kluwer, 1998.

[11] C. Zhang and S.A. McKee, "Hardware-only stream
prefetching and dynamic access ordering," in ICS 2000.

[12] ARM Ltd., Linker and Utilities Guide, ARM
Developer Suite Release 1.2, 2001.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

