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Memory system is a major performance and power bottleneck 
in embedded systems especially for multimedia applications. 
Most multimedia applications access stream type of data 
structures with regular access patterns. It is observed that 
conventional caches behave poorly for stream-type data 
structure. Therefore, prediction-based prefetching techniques 
have been extensively researched to exploit the regular access 
patterns.  Prefetching, however, may pollute the cache if the 
prediction is not accurate and needs extra  hardware 
prediction logic. To overcome these problems, we propose a 
novel hardware prefetching technique that is assisted by static 
analysis of data access pattern with stream caches. With the 
proposed stream cache architecture, we could achieve 
significant performance improvement compared with the 
conventional cache architecture. 

I. Introduction 

Memory system is a major performance and power 
bottleneck [9] in embedded systems as the performance gap 
between processors and memories is ever increasing. 
Though general cache schemes such as direct and 
set-associative caches can attenuate the gap on average, 
there is still much room for optimization if the memory 
access pattern is known a priori. In particular, multimedia 
applications (e.g. MPEG encoding/decoding, speech 
processing etc.) are characterized by their excessive data 
memory accesses but with regular access patterns for stream 
data structures. Therefore, we are concerned about memory 
system design for multimedia embedded systems.  

Several researches have focused on prefetching 
techniques to exploit the stream-like access pattern. 
Prefetching can be triggered either by a hardware 
mechanism, or by a software instruction, or by a 
combination of both. The hardware approach detects 
accesses with regular patterns and speculatively issues 
prefetches at run time, which may cause some run-time 
overhead and a cache pollution problem in case of 
misprediction. On the other hand, the software approach 
relies on the compiler to analyze the program and to insert 
prefetching instructions, which may increase the code size.  

In this paper, we propose a novel hardware prefetching 
technique that is assisted by a static analysis of data access 
pattern. We first obtain the physical memory trace of target 
multimedia applications and identify the data structures with 
regular access patterns in the source code level by static 
analysis. Then, we allocate each data structure into a special 
cache, called stream cache. A stream cache is similar to a 

conventional hardware prefetch buffer that fetches the data 
earlier than needed to reduce the cache miss penalty, based 
on the prediction of the next access.  

It is, however, distinguished from the conventional 
prefetch buffer in two aspects. First, prediction is performed 
by the static analysis to avoid costly hardware prediction 
logic but with higher prediction accuracy. Second, each 
stream cache is assigned a different address space so that 
there is no cache pollution problem. Since a stream cache is 
an add-on feature to any existing architecture, the proposed 
technique is complementary to any previous efforts for 
optimal memory system design. More detailed comparison 
with related works is discussed in the next section. 

Static analysis of data access patterns from the given 
memory trace and automatic synthesis of on-chip stream 
caches are two main themes of this paper. We identify three 
different types of access patterns and as many stream cache 
configurations for a set of popular multimedia applications. 
With the proposed stream cache architecture, we could 
obtain significant performance improvement compared with 
traditional cache architecture without any prediction logic. 

The related works in the embedded memory system 
design are compared with the proposed technique in the next 
section. In section 3 we present the stream cache architecture 
template that our approach is based on. In section 4, our 
proposed methodology is explained. We present 
experimental results with a set of real multimedia 
applications, showing significant performance improvement 
over the existing cache configurations in section 5. Finally, 
we envision some perspectives of our approach and draw 
conclusions in section 6.  

II. Related Works 

While it has been a major topic for general purpose 
computer architecture with uncountable number of research 
results, optimal memory system design gains attention 
recently for embedded systems as a part of design space 
exploration. Unlike the general purpose systems, embedded 
systems have more chances of memory optimization because 
we may concentrate on the memory access patterns only for 
a given set of applications.  

APEX approach is similar to ours in that it uses special 
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memory modules for predefined memory access patterns [5]. 
They have a library of special purpose memory modules in 
addition to a conventional cache; indirect  reference 
module for linked list access pattern is an example. And, 
they categorize three kinds of memory access patterns: 
access patterns can be determined at compile time, access 
patterns the programmer has prior knowledge on, and access 
patterns that are complex and difficult to predict. Since they 
focus on the methodology, but not on memory modules 
themselves nor on access pattern analysis, our work is 
distinguished from their work.  

Some hardware architectures to exploit the regularity of 
memory accesses have also been proposed for high 
performance computing [2][3]. Those proposed hardware 
architectures  prefetch data with rather complex prediction 
logic, among which the preloading scheme is an important 
technique that many papers cited [3][11]. In this paper, we 
compare the performance of our approach  with that of the 
preloading scheme.  

The preloading scheme uses a reference prediction table 
to predict the next access. Each entry of the reference 
prediction table stores the PC of the load instruction, 
previous effective address, stride, and the state. If there is an 
entry of which PC is the same as the look-ahead PC, it 
prefetches the cache line. Look-ahead PC is the next PC 
expected to be executed. After every memory access it 
updates the reference prediction table. This scheme can 
exploit some of the regularity of the memory access. But it 
requires complex hardware logics and pollutes the cache  if 
the prediction fails. On the other hand, our approach needs 
much less additional hardware  without cache pollution 
problem. 

There are also software techniques to prefetch data and 
instruction [4]. Those prefetch approaches are primarily 
based on prediction from the static analysis of the source 
code. In our approach, however, we prefetch data based on 
the static analysis of memory traces obtained from the 
dynamic execution profile through simulation. 

Memory access pattern analysis has been also used for 
source code transformation or data layout optimization  
[10] [6]. Catthoor et al. observed that the source code should 
be first optimized to generate the optimal memory access 
patterns for a given memory architecture. They proposed 
several optimization techniques. For example, they pack the 
data structures according to their size and bit-width and 
allocate them into memory modules to minimize the 
memory cost [10]. They examine the memory access 
patterns in the source code to estimate the memory system 
performance and apply transformation techniques. Even 
though we also examine the memory access patterns for the 
data structures in the source code, we use physical memory 
address traces to obtain the prediction information for data 
prefetching.  

Data layout optimization for memory hierarchy is a 
technique to reduce cache misses [6]. While previous 
researches mainly aim to reduce the conflict misses, our 
approach reduces mainly the capacity and cold misses [7] 
for stream-type data structures. 

Fig.  1. Architecture template 
 

III. Stream Cache Architecture 

A. Architecture Template 

Fig. 1 shows the proposed memory architecture template 
that consists of a processor, a conventional on-chip L1 cache 
and a set of customized stream caches. Stream caches are 
assigned different address spaces from the conventional 
cache. A memory access request from the processor is 
routed to one of the caches based on the mapped address. 

If a memory access occurs to a stream cache, the stream 
cache controller issues a prefetch request of the next address 
that is the sum of the current address plus the stride value 
stored in the Stride register inside the stream cache 
controller. There are other additional hardware logics; 
address decoders and bus arbiters for multiple caches. Even 
though they may increase the clock cycle, their effect is 
negligible in most cases [5]. Another possible side-effect of 
prefetching logic is the increased miss penalty of the 
conventional cache in case memory request is interfered by 
the outstanding prefetching request issued earlier.  

B. Stream Cache 

A stream cache module is parameterized by the number of 
banks,  the line size, and the number of lines, which are 
determined by the memory access pattern analysis. A 
micro-architecture template of a stream cache module is 
displayed in Fig. 2. The line size is determined by the stride 
value. If the stride value is one, we can increase the line size 
to reduce the communication overhead. Otherwise, the line 
size is set to one to remove unnecessary prefetch overhead. 

 

Fig.  2. Stream cache micro-architecture 



for ( i=0 ; i<N ; i++ ) { 
 … 
 … = bitStream[ i ]; 
 for ( j=0 ; j<M ; j++ ) { 
  … 
  … = qOutput[ j ]; 
  … = mBlock[ i ][ j ]; 
 } 
 … = qOutput[ i ]; 
 … = ctab[…]; 
} 

The number of lines is determined either by how many data 
should be prefetched or by how large working set should be 
preserved. In this paper, we assume that the  number of 
lines is two for simplicity: one for current access and the 
other for the next access. 

It is observed that three types of memory access pattern 
are frequent in multimedia applications. The stream cache 
modules are configured differently for each type. If the static 
analysis reveals another memory access pattern, a different 
stream cache configuration may be added. In this paper, 
however, we are concerned about three memory access 
patterns and the associated three types of stream cache 
configuration as shown in Fig. 3: fixed-stride, 2-way, and 2D 
stream caches. Fig. 3 also shows the pseudo code of the 
corresponding control logic of the stream cache.  

Fixed-stride stream cache has the basic configuration that 
consists of a single bank and the fixed stride value is stored 
in the Stride register (Fig. 3(a)). If the current access fails, 
miss penalty should be paid to fetch the request data. 
Otherwise, the cache returns the requested data immediately 
from the cache, In both cases, it issues the next prefetch 
request whose address is the sum of the current address plus 
the stride value. This type of access pattern is typically 
observed at a one-dimensional bit stream buffer. 

2-way stream cache has two banks of fixed-stride stream 
cache. Two banks have their own stride values while 
memory accesses to these banks are interleaved as illustrated 
in Fig. 3(b). We preserve two outstanding access locations 
for the same data structure. The flag used in the pseudo code 
of Fig. 3(b) indicates which bank is used last. This type of 
access pattern is typically observed at a buffer accessed in a 
nested loop structure. 

2D stream cache has also two banks of fixed-stride stream 
cache. In this configuration, two banks are assigned two 
different sets of access regions in an alternating fashion as 
shown in Fig. 3 (c). After the last access of a region, the 
bank starts prefetching the next data of another assigned 
region while the current memory access is routed to the 
other bank. Thus, another Region-Stride register is needed to 
keep the distance between the assigned regions. The flag 
used in the pseudo code of Fig. 3(c) also indicates which 
bank is used last. This type of access pattern is typically 
observed at a 2-dimensional array. 

Fig. 4 presents an example code. There are three stream 
type data structures: bitStream, qOutput, and mBlock.  The 
bitStream buffer is suitable for the fixed-stride stream cache 
and its stride is one. The qOutput buffer has outstanding two 
interleaved access locations between the inner and the outer 
loop body, so becomes the target of an 2-way stream cache. 
Buffer mBlock is a two dimensional array, thus suitable for 
the 2D stream cache. The inner loop defines a region of 
fixed-stride access while the outer loop guides the access 
region change. Since the distance between the regions is 
fixed, the value is stored in the Region-Stride register. If the 
memory access pattern to the ctab data structure is not 
identified as a known pattern, ctab is assigned to a normal 
cache. The resultant stream cache architecture is displayed 
in Fig. 5. 

 
(a) Fixed-stride stream cache 

 
(b) 2-way stream cache 

 
(c) 2D stream cache 

 
Fig. 3. Three kinds of access patterns and their mapping to the 
corresponding stream caches. The pseudo code of the associated  
controller logic of Fig. 2 is also shown. 
 
 

Fig.  4. An example code with three different types of stream data 
structures 



 
Fig.  5. Example of stream cache assignment 

IV. Overall Procedure 
 

The overall procedure of the stream cache synthesis is 
depicted in Fig. 6. It consists of 5 main steps. The first step 
is to build the memory trace of applications. Memory trace 
contains physical access, symbolic name, size, and access 
type (read or write). We use the tracer of ARMulator to get 
physical addresses, sizes, and access types of the memory  
trace. To get a symbolic name we read the symbol table 
generated by the armlink and determine whether a physical 
address lies in any buffer region defined in the symbol table.  
The symbol table contains the start addresses of buffers and 
their sizes. We trace not only the physical addresses but also 
their symbolic names to identify the target stream data 
structures of the stream caches in the source code. Source 
code analysis can provide those information but it is rather 
complex and can be affected by the compiler. 

The next step is the access pattern analysis step, the heart 
of the proposed methodology. For each predefined memory 
access pattern and the associated stream cache configuration, 
we make a specific cache simulation model. Assuming that a 
data structure has a regular memory access pattern we 
calculate the stride with first some accesses. Then, we 
simulate cache behaviors for each stream cache type. If the 
stream cache miss rate is below the threshold, the buffer is 
considered to fit for the corresponding stream cache. We set 
the threshold value to 3% determined after extensive 
simulations. If the correct stream cache is used, the cache 
miss rate is drastically reduced. During the simulation, we 
analyze interference between data structures and examine 
the possibility of stream cache sharing. If  cache sharing 
does not increase the expected cache miss ratio, two data 
structures may share the same stream cache. 

 

 
 

Fig.6. Overall procedure 

The third step is to map the data structures to the stream 
cache modules. If a data structure has a fixed-stride access 
pattern and its simulated cache miss rate is below the 
threshold, it is mapped to a fixed-stride stream cache. We 
consider the most frequently accessed structure first. 
Fixed-stride stream cache has higher priority than other 
stream caches because fixed-stride stream cache has the least 
hardware area. Such heuristic works quite well as confirmed 
by experiments. Finding out the optimal mapping order is 
left for a future work. In this step, we consider the resource 
constraint given by the user such as the number of stream 
cache modules. For stream cache sharing, the stride values 
of two shared data structures should be the same and the 
interference may not increase the miss rate over a certain 
threshold. 

The fourth step is to assign the target data structure to a 
data section determined from the previous mapping step. 
The address space is split into stream cache sections and a 
normal data cache section. Many embedded software 
development toolkits support this feature. We use the scatter 
loading feature of ARM Developer Suite to assign a buffer 
to a specific data section [12]. 

The last step is to synthesize the stream cache modules as 
decided in the mapping step. As explained earlier, for each 
stream cache module, we synthesize the necessary hardware 
glue logic as well as the control logic. If there is a stream 
cache with stride one and the line size is greater than one, it 
can use the burst mode of off-chip memory. In this case, the 
corresponding control logic should be augmented. 

 
 

V. Experiment 
 

A. Setup 
 

We modified the tracer of ARMulator for trace-driven 
simulation and used Dinero IV 4.7 to simulate the normal 
data cache. We developed our own simulator for stream 
caches. The CPU model of ARMulator is ARM7TDMI and 
the number of stream caches is 8 at most for each 
application.  

We used nine real multimedia applications. We first 
performed static analysis of the memory traces obtained 
from the simulation, and then cache simulation for 
performance comparison.  
 
B. Static Analysis Result 
 
Table 1 presents the number of data structures with regular 
memory access patterns for each application. For example, 
h263_enc has 14 buffers with fixed-stride access pattern, 1 
buffer with 2-way and 18 buffers with 2D pattern. The 
examples of epic and gsm have no such data structure. 

Table 2 presents the counts of actually mapped data 
structures and their portion among the total access counts. 
Since we restrict the maximum number of stream caches to 8, 
some data structures could not be mapped to a stream buffer, 
but to a normal cache. 



TABLE I 
Number of data structures with regular data access patterns 

Application Fixed-stride 2-way 2D 
adpcm_dec 3 0 0 
adpcm_enc 2 0 0 
cd2dat 1 0 3 
epic 0 0 0 
gsm 0 0 0 
h263_dec 12 0 4 
h263_enc 14 1 18 
jpeg 3 1 0 

TABLE II 
Number of mapped data structures within resource constraints 

Used stream caches Application Mapped data 
structures 

Portion 
(%) Total F 2w 2D 

adpcm_dec 3 35.05 3 3   
adpcm_enc 2 21.82 2 2   
cd2dat 4 14.51 4 1  3 
epic 0 0 0    
gsm 0 0 0    
h263_dec 15 8.91 8 6  2 
h263_enc 22 33.13 8 2 1 5 
jpeg 4 5.27 4 3 1  

 
In the cases of adpcm_dec, adpcm_enc, and h263_enc we 

can anticipate a significant performance improvement from 
the proposed architecture because mapped data structures 
take large portion of memory access counts. On the other 
hand, we may not expect such improvement from h263_dec 
and jpeg examples.  

C. Cache Simulation Result 

We compare the performance of the proposed architecture 
with two alternatives: conventional normal cache 
architecture, and the preloading scheme. When comparing 
the cache miss rate with preloading scheme, we ignore the 
cache pollution problem so that the performance of the 
preloading scheme is somewhat exaggerated. Cache 
pollution can be simulated if we use time-accurate 
simulation, which we avoid due to excessive simulation 
time.  

Table 3 and 4 present simulation results for direct map 
and 2-way set associated normal caches respectively, 
varying the normal cache sizes. For a given cache size, the 
preloading and the stream cache architecture show 
significant improvement in terms of miss rates. As expected 
from the analysis step, the jpeg result is not so good though 
cache miss rate is reduced from the normal cache only. 
Therefore, it is not recommended to use stream caches for 
the jpeg application. A stream cache identifies the data 
structures with globally regular access pattern. But the 
preloading scheme detects also the case where only a part of 
accesses is regular. Unlike other cases the jpeg application 
has many partial regular access patterns, so the preloading 
scheme shows better result than the stream caches. In the 
cases of adpcm_dec, adpc_enc and h263_enc, the cache miss 
rates are reduced to less than half. In these cases it is 
favorable to use the stream caches. 

TABLE III 
Miss rate(%) with direct-map normal cache 

Application 1K 2K 4K 8K 16K 
Normal 14.58 8.13 3.43 3.15 3.03 
Preloading 13.16 7.61 3.27 2.99 2.87 

adpcm_dec 

Stream 6.49 0.05 0.05 0.05 0.05 
Normal 5.32 2.8 1.95 1.95 1.95 
Preloading 4.76 2.42 1.59 1.59 1.59 

adpcm_enc 

Stream 0.19 0.13 0.10 0.08 0.07 
Normal 9.01 3.70 2.44 1.79 1.79 
Preloading 5.01 2.05 1.10 0.76 0.76 

cd2dat 

Stream 3.20 1.71 0.57 0.14 0.14 
Normal 5.32 2.24 1.94 1.85 1.80 
Preloading 0.86 0.67 0.40 0.34 0.30 

h263_dec 

Stream 3.32 0.45 0.16 0.09 0.02 
Normal 8.23 5.71 4.91 3.96 3.45 
Preloading 2.29 1.82 1.22 0.71 0.48 

h263_enc 

Stream 1.83 1.29 0.72 0.56 0.49 
Normal 4.45 1.55 0.73 0.64 0.45 
Preloading 3.81 1.09 0.28 0.23 0.05 

jpeg 

Stream 4.22 1.32 0.65 0.57 0.37 

TABLE IV 
Miss rate(%) with 2-way set associative normal cache 

Application 1K 2K 4K 8K 16K 
Normal 7.40 7.18 3.87 0.97 0.88 
Preloading 7.16 6.95 3.74 0.93 0.85 

adpcm_dec 

Stream 0.09 0.05 0.05 0.05 0.05 
Normal 3.17 1.76 0.14 0.14 0.14 
Preloading 3.07 1.88 0.11 0.11 0.11 

adpcm_enc 

Stream 0.08 0.07 0.06 0.06 0.06 
Normal 6.16 1.77 0.44 0.28 0.01 
Preloading 3.09 1.12 0.26 0.15 0.00 

cd2dat 

Stream 2.55 0.86 0.14 0.14 0.14 
Normal 2.07 1.62 1.21 1.12 1.09 
Preloading 0.71 0.44 0.14 0.08 0.06 

h263_dec 

Stream 0.51 0.34 0.06 0.02 0.01 
Normal 5.89 4.76 3.39 2.74 2.28 
Preloading 2.04 1.30 0.76 0.37 0.18 

h263_enc 

Stream 1.50 1.07 0.64 0.50 0.48 
Normal 1.69 1.30 0.64 0.38 0.37 
Preloading 1.31 1.05 0.29 0.03 0.02 

jpeg 

Stream 1.65 1.27 0.60 0.34 0.34 

Fig. 7 shows the minimum required cache size to have the 
cache miss rate less than 1%. Since the hardware overheads 
of the stream cache itself and its controller are much smaller 
than the normal cache size, we ignored the overheads in this 
comparison. Note that the preloading scheme needs 
comparable hardware overhead with the normal cache size 
as admitted in the reference [2]. The size 10K of Y 
coordinate means that any size of normal cache could not 
achieve such miss rate. Note that with stream caches, only 
1K to 4K direct-map cache can meet such low cache miss 
rate constraint in all applications. 

Using stream caches may increase the power consumption 
from increased off-chip memory accesses. But it will reduce 
the power consumption of on-chip cache accesses because 
the stream caches is much smaller than the normal cache. It 
should be verified in the future work, however, what would 
be the overall effect on power consumption. 
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Fig.7.  Minimum required direct-map cache size for less than 1% miss 
rate 
 
D. Stream Cache Parameter 

 
The effect of the number of lines is ignored in our 

experiments because it needs time accurate simulation to 
evaluate how much miss penalty of normal cache increases 
due to prefetching interference. Though we leave this 
experiment as a future work, we expect that the effect will 
be small enough to be ignored for miss rate computation. 

On the other hand, the number of stream caches affects 
the performance. If more stream caches are used, more data 
structures will be mapped to stream caches, thus reducing 
the miss rate more. The performance improvement should be 
obtained with the increased hardware cost. Table 5 shows 
such trade-off relationship.  

In h263_dec, the total access count portion is not varied 
much so that using 4 stream caches would have the best 
performance/cost ratio. In the case of h263_enc the portion 
of using 4 stream caches is much smaller than that of using 8 
stream caches. Fig. 8 presents the result of miss rate 
simulation of each case graphically. 

 
TABLE V 

Mapped data structures according to the count of stream cache used 
 

Used stream caches Application Mapped data 
structures 

Portion 
(%) Total F 2w 2D 

11 8.81 4 2  2 
15 8.91 8 6  2 

h263_dec 

16 9.04 12 6  6 
6 22.51 4 3 1  

22 33.13 8 2 1 5 
h263_enc 

23 33.16 12 3 1 8 
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Fig. 8. Miss rate with 2K 2-way associative cache according to the 
count of stream caches used 

VI. Conclusions 
 

This paper presents a static analysis technique of memory 
access patterns based on the physical memory traces. And, 
we introduce a new cache module, called stream cache, that 
prefetches the data with higher accuracy without 
complicated hardware prediction logic. Experiments with 
real multimedia applications show very promising results 
that stream cache is a useful memory module for memory 
system exploration of multimedia embedded systems. Our 
work can be extended to more diverse optimization 
possibilities. We can increase the number of regular memory 
access patterns and add more diverse configurations 
optimized for access patterns. Not only customized cache 
but also communication channel or bus architecture could be 
the target of our framework. 

Data layout optimizations for stream cache would be 
helpful. While the compiler helps us only to assign buffers 
to specific data section in current framework, if the compiler 
can be aware of the stream cache, new compiler 
optimization may greatly improve the performance. Also, 
source code optimization would affect the performance with 
the stream cache architecture. 
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