
Multi-Parametric Improvements for Embedded Systems using Code-Placement
and Address Bus Coding

Sri Parameswaran J¨org Henkel Haris Lekastas

Dept. of Comp. Science & Eng. NEC USA Inc. NEC USA Inc.
The University of New South Wales Princeton, NJ Princeton, NJ

Kensington, NSW 2052 henkel@nec-lab.com lekatsas@nec-lab.com
sridevan@cse.unsw.edu.au

Abstract
Code placement techniques for instruction code have shown
to increase an SOCs performance mostly due to the increased
cache hit ratios and as such those techniques can be a major
optimization strategy for embedded systems. Little has been
investigated on the interdependencies between code placement
techniques and interconnect traffic (e.g. bus traffic) and opti-
mization techniques combining both. In this paper we show as
the first approach of its kind that a carefully designed known
code placement strategy combined and adapted to a known in-
terconnect encoding scheme does not only lead to a perfor-
mance increase but it does also lead to a significant reduction
of interconnect-related energy consumption. This becomes es-
pecially interesting since future SOC bus systems (or more
general: ”networks on a chip”) are predicted to be a dominant
energy consumer of an SOC. We show that a high-level opti-
mization strategy like code placement and a lower-level opti-
mization strategy like interconnect encoding are NOT orthogo-
nal. Specifically, we report cache miss reduction ratios of 32%
in average combined with bus related energy savings of 50.4%
in average (with a maximum of up to 95.7%) by means of our
combined optimization strategy. The results have been verified
by means of diverse real-world SOC applications.

1 Introduction
The advent of silicon technologies will lead to System on
Chips (SOC) that will reach one billion transistor designs
within the next few years. A major reason preventing the
integration of several hundred million transistors on a single
chip (indeed, this would be possible through today’s main-
stream0.13µ silicon technologies and wafer technologies) is
the energy dissipation problem. The per- square-mm and
per-time generated heat energy can hardly be carried off-chip
without substantial (i.e. costly) effort and thus prevent those
designs finding their way into mainstream consumer prod-
ucts. An additional constraint is implied by mobile com-
puting/communication/entertainment devices which draw their
current from capacity-limited batteries. The problem has been
addressed at various levels of abstraction starting from new sil-
icon technologies, through gate-level, RT-level, architectural-
level and eventually to system-level approaches. However, it
can be observed that many proposed approaches are orthogonal
(at least as far as many methods within a certain abstraction-
level are concerned). In other words, power saving/reducing
methods are often designed, without having complementary
methods in mind and thus complicating or even preventing the
effective implementation of one or more other power saving
methods. There is currently promising evidence by new re-
search at the system-level that the tuning of parameters of var-
ious system parts can lead to substantial power savings. Work
in this direction is typically carried out at a high-level of ab-
straction and thus cannot capture subtle architectural charac-
teristics.
In this paper we present the first approach that combines,

Benchmark Before After
Compress 527685559 535616238

Mpeg 420232997 401858247
Rstest 415164716 410877294

Table 1: Average number of transitions before and after code
placement for three benchmarks

adapts and optimizes two methods for significantly reducing
the power consumption of communication dominated systems.
We present a code placement strategy that, among others,
reduces the communication overhead between CPU and the
memory hierarchy. Code placement reduces the power by re-
ducing memory accesses and by reducing the number of wait
cycles in the processor. However, code placement does not re-
duce the average number of bus transitions (see Table 1). Thus
a bus encoding mechanism is needed to amplify the power sav-
ings in the processor and memory.
This encoding leads to ultra-low bus power consumption com-
bined with an effectively increased bus bandwidth that yields
a higher system performance as well (we will later on explain
why bus power and interconnect power in general will be a
major contributor to the system power consumption in future
silicon technologies). We achieve interconnect energy savings
of 50.4% compared to the case where a single method is ap-
plied and thus report energy savings that top all other known
stand-alone energy saving techniques addressing SOC inter-
connect.
The paper is structured as follows: the next Section 1.1 gives
an introduction to the related work in both code placement and
bus encoding. Our techniques for code placement and bus en-
coding are then introduced in detail in Sections 2 and 3, respec-
tively. The validation environment is given in Section 4 and the
experimental part follows in Section 5 and finally conclusions
arrived at in Section 6.
1.1 Related work
In the following we report on the most relevant work on the
two areas of code placement techniques and bus encoding tech-
niques. Both areas are crucial to our approach which is the first
one to combine, adapt and optimize two previously separately
treated low energy methods to achieve an ultra-low energy dis-
sipating interconnect for SOC designs.
Several articles have appeared in recent literature about reduc-
ing cache misses by reorganizing data or instructions in the
cache. The work on cache misses has predominantly con-
centrated on data cache optimisations [4][13][12]. Hwu et al,
in [1], McFarling in [2] and [3], Chow in [7], Tomiyama and
Yasuura in [11], Kirovski et al in [10], Kirk in [8] and [9], Li
and Wolf in [5], and Parameswaran in [15] have given various
methods to reduce instruction cache misses in microprocessor
based systems. All of these systems are at the function level.
In [27], algorithms were presented in order to reduce the total
cache misses at the assembler block level.

1

In recent work it has been recognized that inter-wire capaci-
tances increasingly contribute to the power consumed on a bus
system. Various approaches have tried to address this problem
and bus-related power consumption in general.
Initial work on bus encoding has been conducted by
Stan/Burleson [16]. The basic idea is to transfer an inverted
word through the bus whenever it can reduce the Hamming
distance between a word and its previous word. Later in [17],
they introduced Limited-Weight Codes (LWC) for low power
encoding and provided optimal statistic performance for ran-
dom data.
The above schemes belong to the class of space-time redundant
encoding, where bus sizes are augmented. While the above en-
codings were developed for random input, researchers started
to address data source properties. Panda/Dutt [20] developed
a scheme to map arrays in memory for reducing energy on ad-
dress bus.
Exploiting the characteristic that consecutive memory accesses
tend to have a consecutive addresses, Mehta et al. introduced
Gray code for address bus [21]. To further reduce the energy
on an address bus, Benini et al. proposed a prediction scheme
taking high regularity of data on address buses into considera-
tion [23]. E. Musoll et al. [18] proposed the WZE (Working-
Zone Encoding) scheme to exploit locality of memory refer-
ence.
Meanwhile, theoretical approaches for bus encoding were de-
veloped. In [25], Ramprasad et al. started to use a general
communication model to analyze bus-encoding schemes giv-
ing lower bounds on average signal transition activities. The
work introduced so far is focussed on reducing transition activ-
ities on a bus based on the assumption that the inter-wire para-
sitic capacitances are negligible. However, with the advent of
deep sub-micron technology, inter-wire parasitic capacitances
become a major issue. Sotiriadis/Chandrakasan stated in [22]
that simply minimizing transition might not lead to optimal
power reduction. They developed a model to incorporate the
inter-wire capacitances of a bus and search the code space to
find the best codes for inputs based on their bus power model.
In the work conducted by Kim et al. [24], two new schemes
have been introduced for low power buses. Schemes address-
ing data properties for deep sub-micron technologies are pro-
posed by Henkel/Lekatsas [19] through re-arranging bus lines
and then applying local bus invert. Macchiarulo et al. [26] have
shown that the layout of an address bus can be arranged for low
power consumption.

1.2 Motivation and Focus
Deep sub-micron silicon designs of 0.10u and beyond lead to
a shift in optimization strategies for SOCs for several reasons:

1. due to the small feature sizes, inter-wire capacitances of,
for instance, bus lines become dominating (compared to
intrinsic bus line capacitances). Hence, the relative share
of energy consumption of the SOC buses compared to all
other components will increase by up to around 30% in
future designs.

2. architectural optimizations like improved code placement
techniques do not only increase the performance (as
shown in [27], they may also dramatically change the ex-
tension of the traffic on the buses involved. For example,
an improved code placement technique might lead to a
higher cache hit ratio and thus a) reduce the number of
related bus transactions between the cache and the main
memory b) shift the bus traffic to the processor-to-cache
bus instead and c) decrease the amount of total related bus
transactions.

This leads to interdependencies that were previously not con-
sidered to be orthogonal. Now, with deep sub-micron designs

emerging, code placement (and other, higher level optimiza-
tion techniques for SOCs) has a direct impact on the bus-
related energy consumption and as such influences the energy
consumption of the whole SOC. Previously considered rele-
vant was the energy savings that come with the reduced exe-
cution time (improved performance) of an application with a
more efficient code placement. Now, it does matter in which
way a code placement technique implicitly shifts transactions
from one bus to another and it does matter how efficiently these
buses make use of bus encoding schemes to reduce the en-
ergy consumption. In this context it also does matter how long
(physically) those buses are inducing a direct relationship be-
tween a code placement technique and physical parameters.
This work focuses on these relationships and presents, as the
first approach, a quantification and optimization of interdepen-
dencies between:

a) code placement on the one side and processor-to-
cache and cache-to-mainmemory bus lengths on the
other side

b) code placement and energy-saving bus encoding
schemes

We will show that these interdependencies and their exploita-
tion lead to a reduction of 50.4% in average (maximum of
95.7%) of the address bus energy consumption of a whole
SOC.

1.3 Assumptions
The following assumptions hold for the approach introduced
later in this section:

1) The systems considered are single microprocessor
systems, with memory and instruction cache which
is configured for a single application. This is quite
common in embedded systems.

2) The size of code block placed is no bigger than the
size of the cache. This assumption is quite valid in
embedded systems where the basic blocks are usually
small enough to fit into small cache sizes. If the task
is too large for the cache it is possible to break up the
task into smaller granules such that each granule will
fit into the cache.

3) Only Level-1 caches are available for use. Once again
in an embedded system, where frequently there is no
cache at all, it is unlikely that more than a single level
of cache is going to be available for use.

4) The caches are direct mapped. High-speed systems
frequently use direct mapped systems in order to
speed up the system as much as possible. This as-
sumption makes it easier to analyse due to the deter-
ministic mapping to cache from memory.

5) The problem is sufficiently large so that the total size
of the instructions (in bytes) are several times larger
the size of cache. This is a reasonable assumption in
a realistic system.

2 Allocation of Assembly Level Basic Blocks in
Cache and Memory

This section details the code placement methodology. Note
here that the methodology looks at the code at the assembler
level. The basic blocks here are blocks of assembler instruc-
tions which are executed together. This methodology con-
tains an algorithm with two parts. The first part places basic
blocks in the cache so that basic blocks with high frequency
are swapped out as little as possible. The second part of the
algorithm takes the placed basic blocks and maps them into
main memory. This algorithm is performed as a preprocessing
step, taking the application’s original instructions in memory
and re-mapping them to different locations.

1 2 3 4 5

1 2 3 4 5

m
a

in
m

e
m

o
ry

I-
c
a

c
h

e

6

6

Figure 1: The memory allocation example

In order to re-map instructions, it was necessary to identify
basic blocks. After the identification of basic blocks, we had
to identify which blocks executed consecutively. We identified
them by running the application through an instruction set sim-
ulator and finding blocks of instructions which were always
executed together. The number of basic blocks within appli-
cations under consideration varied from 100 - 900. A more
comprehensive study of the approach is given in [27].

2.1 Part 1: Cache Allocation
The methodology used for ordering basic blocks in the cache
is as follows. All the loops containing a particular basic block
are grouped into a single super loop. Thus a loop will be only
a member of one super loop. Each super loop’s execution fre-
quency (fsl) is defined as the addition of all the execution fre-
quencies of the component loops. The super loops are ordered
in descending order of frequency. The ordered super loop list
is given assl1, sl2, ...slp.
For super loopsl1, the basic blocks within it are taken in order
(from highest to lowest frequency of execution of basic blocks
- fb) and these basic blocks (only whole basic blocks are al-
lowed) are allocated to the cache from the lowest address to
the highest until the cache is completely filled or there are no
remaining basic blocks within that super loop. Once this step
is finished, and if there are any remaining basic blocks, we
find the largest basic block from the remaining basic blocks of
sl1. This large basic block is allocated to the bottom of the
cache, say with starting addressAls, and ending at the end of
the cache. After this we take the next largest basic block and
allocate its starting address in the cache toAls. The ending
address will be less than the final address of the cache. Then
if another unallocated basic block can be found which can go
into the space (below the basic block we just allocated, and
above the last cache address), we allocate that basic block into
the available space. We keep doing this until we reach the end
of the cache. We take the next largest unallocated basic block,
and start it at addressAls and we repeat the process until all ba-
sic blocks are allocated. This is then repeated for all the other
super loops in the ordered list.

2.2 Part 2: Memory Allocation
The memory allocation part of the algorithm takes the already
placed basic blocks in the cache and directly maps them to the
memory. Figure 1 shows an example of how the basic blocks
are mapped to memory from the cache. In this figure blocks 1
to 5 are mapped directly on to the memory, but the block 6 is
mapped to some memory locations further away, such that the
mapped block will end up in the desired position in the cache.
Thus if a basic block is mapped to the location fromtx to ex
in cache of the processor, then the basic block can be placed
in memory in any one of the address ranges from addresses
tx + i ∗ S to ex + i ∗ S, wherei is a positive integer andS
is the size of the cache. However, since basic blocks in the
cache will wrap around the cache, an offsetZr, can be added
to each basic block allocated from super loopslr, and the basic
block can be placed from memory locationtx + Zr + i ∗ S to
memory locationex+Zr+i∗S. This introduction of the offset

allows the reduction in size of the total memory needed for the
system.

2.2.1 Algorithm
Part 1. ordering basic blocks in cache

For Each super loop in ordered list {
Until Cache is filled {

Allocate basic blocks to the cache in descending order of
frequency fb until no more blocks can be allocated

}
Reorder Unallocated basic blocks in order of size and place
in list BBu (BBu = bbu1, bbu2, bbu3...bbuy, where y is the
number of unallocated basic blocks for that super loop)
Allocate bbu1 from address Als to end of cache (where Als = S
- sizeof (bbu1))
Removebbu1 from BBu

Repeatuntil all basic blocks are allocated {
Find the next largest unallocated Task bbup from the list
BBu

Allocate bbup from address Als to Ale where Ale =
Als + sizeof(bbup)

Mark bbup from list BBu as allocated
Move along the list BBu and place as many basic blocks
as possible between Ale and S
Mark placed basic blocks as allocated }}

Part 2. Memory Allocation Let us assume that the super loops
used in the system aresl1, sl2, sl3...slk. The associated cache
is C. For each super loopslr, the basic blocks to be executed
in that super loop are as follows:bb1, bb2, bb3......bbm where m
is the number of basic blocks.

Reorder super loops from largest sum to smallest sum of total basic
block size and name them sla, slb, slc...

For all basic blocks ordered in the cache allocation order in sla do {
i = 0

While basic block is not allocated do {
If memory locations tx + i ∗ S to ex + i ∗ S is free then

Map basic block to address tx + i ∗ S to ex + i ∗ S
Else

i + + } }
For all basic blocks ordered in descending order of size in the next super
loop until the end of the super loop list do {

Allocate largest basic block in the first available contiguous
memory block (Mx to My), which will hold the basic block

Calculate Zr = (MxmodS) − tx, where tx is the address
in which the basic block being allocated starts in the cache at
address 0 and slr is the present super loop under consideration

While basic block not allocated do {
If memory locations tx + Zr + i ∗ S to ex + Zr + i ∗ S
is free then

Map basic block to address tx + Zr + i ∗ S to ex +
Zr + i ∗ S

Else
i++ }}

3 Enhancing Code Placement’s Efficiency
through Adaption of Bus Coding

The code placement algorithm introduced in Section 2 reduces
the number of cache misses. Hence, the traffic on the CPU-to-
cache bus and the cache-to-main-memory bus is significantly
reduced, leading to a higher performance of the whole sys-
tem and a decrease of the interconnect energy dissipation. The
aim of this Section is to adapt a bus encoding scheme that
amplifies these two effects even further and thus leads to an
ultra-low bus power consumption combined with an effectively
increased bus-bandwidth that yields a higher system perfor-
mance as well. Since we target sub-0.10µ technologies it is
necessary to also provide means for cross-talk reduction since
signal integrity is another major concern. In the following we
introduce the bus encoding scheme to address these problems.

Normalized i, jt+1

coupling value 00 01 10 11
00 0 1 1 0
01 0 0 2 0

i, jt 10 0 2 0 0
11 0 1 1 0

Table 2: Normalized coupling capacitance for all transition
combinations of two adjacent bus linesi andj

3.1 Buses in Deep-submicron Designs
The closer geometrical proximity of adjacent bus lines in sub-
0.10µ technologies leads to effects that are almost negligible
in technologies not as advanced as0.10µ and below: two adja-
cent bus lines form a parasitic capacitance between them. This
effect does not only lead to cross-talk and delay effects, it also
leads to an increased power consumption since the parasitic
capacitance is charged and discharged when there is a voltage
swing between two or more bus lines. Thus, each bus line’s
capacitance can be represented as

Ci = CB + CC,left + CC,right (1)

whereCB is the base (or intrinsic) capacitance (capacitance
between bus line and metal layers) andCC,left, CC,right are
the left and right coupling capacitance between bus lineI and
it’s left and right neighbor (if any) respectively. Table 2 shows
the normalized coupling capacitanceCC between a bus linei
and one of its neighborsj according to the values the bus lines
take at timeT1 = t andT2 = t + 1. Obviously, the coupling
effect is highest when both lines are subject to a transition in
the opposite direction. We have measured the absolute capaci-
tancesCB andCC for a0.10µ technology:

CB = 42.22pF/m
CC = 35.89pF/m

According to Equation 1 and the table above, the maximum
capacitance for a bus lineI we can expect is:

Ci,max = (42.22+2×35.89+2×35.89)pF = 185pF/m (2)

Compared to the case where the inter-wire capacitances are
negligible (i.e.Ci,max = CC = 42.22pF/m this is 4.4 times
higher. This is why inter-wire effects have to be taken into
consideration.
There are several means to diminish or at least reduce the prob-
lem of inter-wire capacitances:

a) Widen the distance between bus lines: this is typically
not preferred since the total area of the bus systems
grows too large.

b) Use P&Rplace & route tools that avoid side-by-side
routing of bus lines. This is what is actually done
in the newest generation of P&R tools. However,
the interconnect complexity of one billion transistor
SOCs with multiple bus hierarchies and long buses
with many cores connected to them will prevent a sat-
isfying solution at a feasible routing time (complexity
of the routing problem).

c) Change the geometrical shape of bus lines: the bus
lines themselves can be re-shaped. For example, the
cross-sectional shape can be made narrower such that
the distance between two bus lines increases with-
out sacrificing space for the whole bus. However,
the main disadvantage of this approach is that the
cross-sectional area of a bus line is fixed, since the
current-per-area ratio is fixed for any certain technol-
ogy. That typically leads to solutions where the bus
line is buried deeper into the substrate with the height

'0'

'1'

'1'

'1'

'0'

..
.

..
.

-

-

-

..
.

..
.

t

b
u

s
li

n
e

s

T=t
0

w
w

=
4

T=t -1
0

l=x
l

h=x =x +3
h l

i=l

Figure 2: a) a32-bit bus partitioned in 8 windows of 4bit each
b) and c) examples for calculating the TA measure for two
cases within a window

being larger than the width of a bus line. However,
even though the inter-wire capacitance decreases due
to a decreasing distance between bus lines, it does in-
crease due to the increased flank area of two opposing
bus lines. In conclusion: what is won through a wider
distance has to be, at least partly, given up through the
effect of larger flank areas.

d) Bus encoding techniques that take inter-wire capaci-
tances into consideration when words are transmitted
via a bus system.

Within this section, we focus on the latter technique, namely
on finding a bus encoding technique that compliments the code
placement technique introduced earlier and thus leads to an
ultra-low bus power consumption combined with an effectively
increased bus-bandwidth that yields a higher system perfor-
mance
3.2 Reducing Power and Increasing Signal Integrity
In the following we introduce an encoding method that solves
the problems discussed in sub-section 3.1 and that serves as
an enhancement to further optimize the advantages achieved
through the code placement techniques from Section2.
Let us first define what we call awindow:

wl,h(ww) = {l, h| h − l = ww − 1, h > l, 0 ≤ (h, l) ≤ bw − 1}
(3)

with l, h being the lower and upper border bit positions of the
window, respectively,ww the window size in bits andbw the
bus size in bits.
Now, let us first define what we call the Transition Activity TA
for a windowwl,h(ww). In order to make the formula easier
readable we simply usew to denote the window. Furthermore,
let us assume thatbx is the x’th bit within a window withBx
being the value of that bit (i.e.Bx ∈ {0, 1}). Thus, we can
define the TA measure as follows:

TA(w) =
∑

∀bi∈w

(
(
Bi ⊕ B−1

i

)
+

(
Bi ⊕ B−1

i

)
·

∑

∀bj∈w,bj �=bi

(Bi ⊕Bj))

(4)

TherebyB−1
i gives the value of bitbi at timet−1 i.e. the tem-

poral predecessing value. Thus,Bi⊕B−1
i determines whether

bit bi has a high/low or low/high transition (=1) or not (=0).
Accordingly this specific bit will contribute to the TA measure
or not. Figure 2 gives an idea on how TA is measured using an
example. There, the portion of the TA measure contributed by
i = a+1 is demonstrated. The dotted line shows the scope that
is important for the calculation of the respective TA portion. It
equals to 2.
It is very important to note that TA as shown does NOT violate

the causality principle as it might seem from the Figure 2. This
is because the bus word referring to timeT = t − 1 is stored
in a register. But even the bus word for timet is stored in a
register since the word is not yet put on the bus (it is just in the
I/O register of a device) and thus TA does work as intended by
Equation 4.
According to Equation 4 every value of a bit different to the bit
under review is contributing 1 or 0 to the value of TA depend-
ing on whether it is different in value or not. That each contri-
bution is equally sized (1 or 0 with no other values allowed)
is justified by our capacitance measure that gives us values
of base capacitance compared to coupling capacitances of the
closest neighbors (a maximum of three left or right neighbors
in a 4-bit window) that are approximately the same and thus
contribute the same to the power/energy consumption. Win-
dow sizes larger than 4 bit yielded lower energy savings since
such a model would assume that inter-wire capacitances reach
far beyond the closest neighbor (which is actually not the case).
Window sizes less than 4 bits on the other side might be more
beneficial in terms of power savings (3 would be ideal since it
exactly reflects the physical relationship ofadjacent bus lines)
but the additional hardware effort cannot be justified.
In the next step we use the TA as a measure to determine
whether we should invert the information in the window or not.
Please note that the TA scheme is able to measure the impact
of coupling capacitances. A Hamming Distance measure, as
used for regular invert schemes would not lead to a reasonable
improvement in power/energy consumption. It would only re-
duce the number of transitions. But the number of transitions
does not necessarily reflect the amount of power/energy that is
consumed. Our whole scheme works according to the follow-
ing procedure: For all windows the TA measure is calculated

Strategy of the Scheme
1) For All windowswi ∈ W
2) determine TA(wi)
3) If TA(wi) > TAmax(ww)/2
4) Then
5) hi ta+ = 1
6)
7) If hi ta > (#windows)/2
8) Then
9) For All windowswi ∈ W

10) invert(wi)

11) done.

Figure 3: The strategy of the Scheme

(lines 1-2). If the measure exceeds half of the maximum value
(dependent on the window sizeww) then it is counted (lines
3-5). After all TA measures are calculated, it is determined
whether more than half of the windows have a high TA value
(Equation 4) If that is the case the information in the windows
is transmitted inverted. Please note that decoding can be done
inversely. Only 1 extra bit line is used for that sinceall win-
dows will be inverted or not (majority vote).
Also, note that this code explains only the strategy. It does
not in any way reflect the implementation that, of course, is in
hardware.
Hardware related issues
The design bus encoding interface including an encode/decode
pair uses approximately 400 gates; it does not incur an ad-
ditional clock cycle; the critical path is between 2-3ns)).The
whole encoding scheme has been designed with signal in-
tegrity in mind since this is another major issue in sub-0.10µ
designs. As explained earlier, the scheme aims to minimize the
switching activities within a certain window as the TA mea-
sure (Equation 4) shows. That means that the probability of
switching within a window is being reduced and thus reduces

Core
Placement

Bus
Lengths +

Coding

Code
Placement

Dinero

QPT

Bus

CPU

ISS

Performance Data

Power Data

Executable
Code

Power
Models

I$

D$

Main
Memory

Figure 4: The whole set-up for power and performance estima-
tion and including the focus of this work i.e. code placement
strategy adapted to bus encoding and bus length determination.

the probability of violating the signal integrity through, for ex-
ample, crosstalk between two adjacent bus lines. Bus lines
located at the border of a window may still interfere with bus
lines located at the border of adjacent windows. But note that
due to the scheme, this effect is not any larger than in the non-
encoded case.
Minimizing the remaining border-to-border effects could be
achieved by increasing the window size. However, this would
decrease the efficiency of the encoding scheme and thus it is
contrary to the low power goal.

4 Validation Environment
We explain the experiments in Section 5, but in prelude to it
we briefly introduce our validation environment.
It is the main goal of this work to show the efficiency of com-
bining code placement and bus coding for an ultra-low power
bus/interconnect for an SOC. These two methodologies are
highlighted in a dashed box in Fig. 4. The bus lengths of the
involved buses (i.e. buses between instruction cache and main
memory and instruction cache and CPU) are crucial param-
eters for the power consumption. The lengths are determined
by the results of the core placement (memory, cache and CPU).
The results of the code placement and the bus coding scheme
are fed into the power models of instruction cache and the bus
system, respectively. Further power models in the environment
are a CPU power model, a data cache power model and a main
memory power model. All models plus the code placement and
bus encoding mechanisms are fed by instruction traces through
the”QPT”/”Dinero” tool set sequence [6]. The output of the
environment is power and performance data. For more detailed
information please refer to [14].

5 Experiments and Results
The target system the experiments were conducted on is shown
in Fig. 5: it shows a chip layout with the interesting parts mag-
nified: the CPU, the instruction cache (”I$”), and the main
memory banks. The buses that are affected by our code place-
ment and bus encoding methodologies are buses”Bus1” and
”Bus2”. The length and/or the ratio of the lengths of these
buses varies with the placement and relative size of all cores
comprised within this SOC. Hence, the bus power consump-
tion will not only depend on our methodologies (see Sections 2

CPU

Placement Dir.

P
la

c
e

m
e

n
t

D
ir.Bus1

Bus2

Memory
Banks

I$CPU

ASIC

Peripherals Graph
Ctr

Memory
Banks

I$

D$

D$

Figure 5: Chip-layout and buses ”Bus1” and ”Bus2” that are
subject to extension/contraction according to the placement of
the involved cores.

and 3) but also on the geometrical characteristics of”Bus1”
and”Bus2”. This is one of the parameters that will be investi-
gated in this section.
The experiments were conducted with the evaluation environ-
ment shown in Fig. 4. Here are the main steps:

1) Placing the instruction code according to Section 2.
2) Generating traces for the new code allocation.
3) Running the traces through the bus encoding scheme

(Section 3).
4) Measuring power and performance with the evalua-

tion environment.
5) Varying instruction cache sizes.
6) Varying the ratios of bus lengths”Bus1” to ”Bus2”

(see Fig. 5) according to different placement scenar-
ios of the affected cores.

7) Repeating steps 1)-4) for all applied combinations of
parameters.

We performed experiments on a set of five applications. The
applications have been chosen with as much variety in char-
acteristics as possible in order to show the wide application
area of the methodology. Thus, the applications varied in size
(8k to 200k), application area (video, animation, algorithmic
etc.) and application domain (data dominated or control domi-
nated). The applications used were: a complete MPEGII video
encodermpeg, a video trick animation algorithmtrick1, the
Whetston benchmark sequenceswhetston, the unix command
compresscompress, and a chromakey video mixer as part of a
digital video studio equipment.
The results achieved are shown in Table 5. The first column
gives the application name and the number of instructions exe-
cuted for that application. The second column gives the cache
sizes. The third column gives the cache miss rates before code
placement and the fourth column gives the miss rates after
code placement. The next five columns (columns 5-9) are re-
sults which have been obtained by simulating with bus lengths
of 0.2mm for the cpu-cache bus and 3.8mm for the cache-
memory bus. The fifth column gives the energy expended for a
system without optimization. Column six shows the the energy
expended with address coding only, and the seventh column
shows energy consumption in the busses if only code place-
ment was performed and finally in column eight we show the
energy consumption when both address coding and code place-
ment methodologies are applied. Column nine shows the per-
centage improvement between column eight and column five.
Columns 10-14 are in a similar format to Columns 5-9 except
that they are results of a simulation with 0.5mm and 3.5 mm
for the respective bus lengths. Likewise, Columns 15-19 are
results of a simulation with 0.8mm and 3.2 mm for the respec-
tive bus lengths.

Maximum Energy savings for each of the bu

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

mpeg trick1 whetston compress rstest

Application

 S
a
v
i
n
g 0.2/3.8mm

0.5/3.5mm
0.8/3.2mm

Figure 6: The graph of Max Savings

As can be seen from the figures, the energy savings of the bus
system are quite substantial. The maximum savings achieved
for each of the applications with differing bus lengths are
given in Figure 6. Even though the energy consumption
of the buses using current mainstream silicon technologies
(i.e. 0.18µ, 0.13µ) is only around 5% to 20% of the whole
SOC, it is anticipated that in sub-0.10µ technologies this por-
tion raises to 20% to 30% [28].
On average, for the applications investigated in our experi-
ments, the energy consumption of the bus system is reduced by
54.6% for the 0.2/3.8 mm (”Bus1” / ”Bus2”) bus case, 50.4%
for the 0.5/3.5 mm bus case and 46.6% for the 0.8/3.2 mm bus
case.
Another factor is the relative lengths of the busses: at some
point the relative length of the busses are going to be of im-
portance. If the two busses were of equal length, then the en-
ergy consumption might have even increased. At that point
the designer will have to decide upon the relative merits of en-
ergy saving, crosstalk reduction and performance. Typically,
”Bus1” will be much shorter than”Bus2” since this is the
preferable outcome of place&route according to the sizes of
the involved cores (instruction cache, main memory banks,
CPU). Our methodology favors this tendency as we can ob-
serve that results are best for a smaller”Bus1” to ”Bus2”
ratios for reasonable cache misses. As the cache misses in-
crease beyond 50% the energy dissipation does not always fa-
vor smaller bus ratios. Note that the best results were achieved
for ”feasible” instruction cache sizes i.e. cache sizes that are
neither too small nor too large as to fit the entire code in the in-
struction cache anyway. These are design points chosen by de-
signers as the best compromise between effort (i.e. costs) and
results (e.g. performance, power). In those cases (bold high-
lighted) we can always achieve a large drop in cache misses.
The implications are a higher performance and a lower en-
ergy consumption. Also, the performance of the entire system
increases substantially because of the reduction in the cache
misses (due to the code placement strategy) as can be seen
from columns 3 and 4.
Thus we can state that the two combined methods should be
used in conjunction to produce ultra low power systems with
increased performance and reduced crosstalk.
For certain applications it can be seen that address coding alone
will produce superior results to that of the combined scheme
(see Compress with a cache size of 64 in Table 2). This is due
to the fact that the code placement algorithms has a number
of jump instructions which are further away than in the non-
code-placed algorithm and this is causing it to increase the bus
activity. Note that for this application there was little reduction

Bus length ratio 0.2/3.8 0.5/3.5 0.8/3.2

Appl. I-$ Miss Code-placed No-opt A Only C only A&C % Imp. No-opt A Only C only A & C % Imp. No-opt A Only C only A & C % Imp.
Instr Size Ratio Miss Rat. 105J 105J 105J 105J 105J 105J 105J 105J 105J 105J 105J 105J

128 72.94% 71.34% 6.63 4.00 6.61 4.33 34.7% 6.31 3.81 6.30 4.13 34.6% 5.98 3.61 6.00 3.93 34.4%
256 56.20% 51.26% 5.22 3.15 4.72 3.03 41.9% 5.13 3.10 4.71 3.02 41.2% 5.04 3.04 4.69 3.01 40.4%

mpeg 512 47.85% 36.35% 4.51 2.72 3.62 2.52 44.1% 4.54 2.74 3.80 2.65 41.7% 4.57 2.76 3.98 2.77 39.3%
22406459 1024 32.93% 20.77% 3.25 1.96 2.19 1.53 53.0% 3.49 2.11 2.60 1.81 48.1% 3.73 2.25 3.00 2.09 43.9%

2048 2.60% 1.39% 0.69 0.42 0.58 0.44 36.3% 1.36 0.82 1.27 0.96 29.6% 2.02 1.22 1.95 1.47 27.3%

128 100.00% 100.00% 37.91 22.45 38.52 22.31 41.2% 34.92 20.67 35.48 20.55 41.2% 31.93 18.90 32.44 18.79 41.2%
256 99.58% 97.16% 37.76 22.36 30.67 15.31 59.5% 34.79 20.60 28.32 14.14 59.4% 31.83 18.84 25.98 12.97 59.3%

trick1 512 87.70% 62.15% 33.49 19.83 22.91 14.89 55.5% 31.24 18.49 22.23 14.45 53.8% 28.98 17.16 21.54 14.00 51.7%
1.03E+08 1024 71.17% 0.04% 27.56 16.31 2.13 1.19 95.7% 26.29 15.56 5.30 2.96 88.7% 25.02 14.81 8.47 4.73 81.1%

2048 17.70% 0.00% 8.35 4.49 1.93 2.09 75.0% 10.29 6.09 4.82 3.64 64.6% 12.22 7.23 7.70 5.82 52.4%

128 97.25% 93.51% 0.48 0.33 0.47 0.32 33.4% 0.44 0.30 0.43 0.30 33.2% 0.41 0.28 0.40 0.27 32.9%
whetston 256 69.46% 47.81% 0.35 0.24 0.24 0.17 50.9% 0.34 0.23 0.24 0.17 48.3% 0.32 0.22 0.25 0.17 45.5%
1749402 512 6.18% 6.10% 0.05 0.04 0.05 0.04 31.1% 0.09 0.06 0.09 0.06 30.9% 0.12 0.08 0.12 0.09 30.8%

1024 0.06% 0.06% 0.03 0.02 0.02 0.02 30.9% 0.07 0.04 0.06 0.04 30.9% 0.10 0.07 0.10 0.07 30.9%

64 89.79% 89.79% 12.52 8.11 12.57 8.30 33.6% 11.65 7.55 11.69 7.73 33.6% 10.78 6.98 10.82 7.15 33.6%
128 74.49% 53.55% 10.51 6.81 7.77 5.15 51.0% 9.97 6.46 7.69 5.10 48.8% 9.44 6.11 7.62 5.05 46.5%

compress 256 54.73% 19.69% 7.91 5.13 3.10 2.18 72.5% 7.81 5.06 3.75 2.64 66.2% 7.71 4.99 4.40 3.10 59.8%
53280973 512 13.33% 2.92% 2.48 1.61 1.06 0.77 68.8% 3.28 2.13 2.05 1.49 54.6% 4.08 2.65 3.03 2.20 46.0%

1024 2.39% 0.48% 1.04 0.68 0.77 0.55 47.4% 2.08 1.35 1.81 1.30 37.7% 3.13 2.03 2.86 2.05 34.4%
2048 0.83% 0.10% 0.84 0.54 0.70 0.54 35.9% 1.91 1.24 1.73 1.33 30.6% 2.99 1.94 2.76 2.12 29.1%

128 86.86% 84.16% 7.79 4.44 7.72 4.26 45.4% 7.27 4.14 7.23 3.99 45.2% 6.75 3.85 6.74 3.72 45.0%
rstest 256 49.23% 16.30% 4.62 2.63 1.88 1.13 75.6% 4.63 2.64 2.36 1.41 69.5% 4.64 2.64 2.84 1.70 63.3%

28235416 512 43.79% 4.35% 4.16 2.37 0.79 0.52 87.5% 4.25 2.42 1.39 0.92 78.3% 4.33 2.47 2.00 1.32 69.5%
1024 23.57% 1.30% 2.45 1.40 0.44 0.30 87.7% 2.83 1.61 1.09 0.75 73.6% 3.20 1.82 1.74 1.19 62.8%
2048 23.52% 0.01% 2.45 1.40 0.47 0.28 88.4% 2.82 1.61 1.19 0.71 74.9% 3.19 1.82 1.90 1.14 64.5%

Table 3: Table of results
in cache misses.
We mentioned earlier that the signal integrity has been a con-
cern in this work even though performance and power con-
sumption were the main goals:

a) The code placement method leads to a decreased traf-
fic on the CPU-to-cache bus and the cache-to-main-
memory bus. This reduced traffic isnot traded against
an increased traffic elsewhere. Consequently, there is
a lower vulnerability through crosstalk just through
the minimized traffic on the buses.

b) In a second step, the data on these buses is encoded to
increase signal integrity (see Section 3).

6 Conclusions
In this work we have expoited the interdependencies between
a high-level optimization technique, namely code placement,
and a lower-level optimization technique, namely bus encod-
ing. It could be shown that these previously orthogonally han-
dled techniques are in fact interdependent on each other due
to the increasing influence of deep sub-micron effects. As a
result we have achieved much higher interconnect energy sav-
ings than any of these methods can achieve when applied solely
(according to related research): the average SOC interconnect
energy savings are 50% with a maximum of 95.7% The perfor-
mance improvements are shown by large reductions in cache
misses.. We have validated the results by means of real-world
SOC applications that range in size between 8k and 200k lines
of code. As an added benefit, the probability of crosstalk ef-
fects is reduced by both code placement and bus encoding tech-
niques.

References
[1] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W.

Hwu, IMPACT: an architectural framework for multiple-instruction-
issue processors in Computer Architecture News. vol.19, no.3; May
1991;

[2] S. McFarling,Program optimization for instruction caches, in ASPLOS
III Proceedings. Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ACM, New
York, NY, USA; 1989; x+303 pp. p.183 91, 1989.

[3] S. McFarling,Procedure merging with instruction caches, in SIGPLAN
Notices. vol.26, no.6; June 1991; p.71

[4] P. Panda, N. Dutt, and A. Nicolau,Memory organization for improved
data cache performance in embedded processors, , 1996.

[5] L. Yanbing and W. Wolf,Hardware/software co-synthesis with memory
hierarchies, Design Automation Conference, 1998.

[6] M. D. Hill, J. R. Laurus, A. R. Lebeck et al.,WARTS: Wisconsin Archi-
tectural Research Tool Set, Computer Science Department University
of Wisconsin.

[7] F. Chow, A portable machine-independent global optimizer—Design
and measurements, Tech. report 83-254, PhD thesis, Computer Systems
Lab, Stanford Univ., 1983.

[8] D. B. Kirk, SMART (strategic memory allocation for real-time)
cache design, in Proceedings. Real Time Systems Symposium (Cat.
No.89CH2803 5). IEEE Comput. Soc. Press, Los Alamitos, CA, USA;
1989; pp. p.229 37, 1989.

[9] D. B. Kirk and J. K. Strosnider,SMART (strategic memory allocation
for real-time) cache design using the MIPS R3000, in Proceedings. 11th
Real Time Systems Symposium (Cat. No.90CH2933 0). IEEE Comput.
Soc. Press, Los Alamitos, CA, USA; 1990; xi+341 pp. p.322 30, 1990.

[10] D. Kirovski, L. Chunho, M. Potkonjak, and S.-W. H. Mangione,
Application-driven synthesis of memory-intensive systems-on-chip,
IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, vol. 18, pp. 1316-1326, 1999.

[11] H. Tomiyama and H. Yasuura,Code placement techniques for cache
miss rate reduction, ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 2, 1997.

[12] C. Kulkarni, F. Catthoor, and H. De Man,Code transformations for
low power caching in embedded multimedia processors, Proceedings
of the First Merged International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing IEEE Comput. Soc,
Los Alamitos, CA, USA; p.292-7 , 1998.

[13] F. Catthoor, N. D. Dutt, and C. E. Kozyrakis,How to solve the current
memory access and data transfer bottlenecks: at the processor archi-
tecture or at the compiler level?,Proceedings Design, Automation and
Test in Europe Conference and Exhibition 2000 , 2000.

[14] Taken out to enable blind review.
[15] S. Parameswaran,Code placement in Hardware Software Co-Synthesis

to Improve Performance and Reduce Cost, Design Automation and Test
in Europe, pp. 627-633, 2001.

[16] M.R. Stan, W.P. Burleson,Bus-Invert Coding for Low-Power I/O, IEEE
Tr. on VLSI Systems, Vol. 3, No. 1, pp.49-58, Mar. 1995.

[17] M. R. Stan, W. P. Burleson,Low-Power Encodings for Global Com-
munication in CMOS VLSI, IEEE Tr. on VLSI Systems, Vol. 5, No. 4,
pp.444-455, Dec 1997.

[18] E. Musoll, T. Lang, J. Cortadella,Working-Zone Encoding for Reduc-
ing the Energy in Microprocessor Address Buses, IEEE Tr. on VLSI
Systems, Vol. 6, No. 4, pp. 568-572, Dec. 1998.

[19] J. Henkel, H. Lekatsas,ABC: adaptive address bus coding for low
power deep sub-micron designs, Proc. of Design Automation Confer-
ence, pp 744-749, 2001.

[20] P.R. Panda, N.D. Dutt,Low-Power Memory Mapping Through Reduc-
ing Address Bus Activity, IEEE Tr. On VLSI Systems, Vol. 7, No. 3, pp.
309-320, Sept. 1999.

[21] H. Mehta, R.M. Owens, M.J. Irwin,Some issues in gray code address-
ing, Proc. Of IEEE Conf. On sixth. Great Lakes Symp. On VLSI, pp.
178-181, 1996.

[22] P.P. Sotiriadis, A. Chandrakasan,Bus energy minimization by transition
pattern coding (TPC) in deep sub-micron technologies, IEEE/ACM In-
ternational Conference on Computer Aided Design, pp. 322- 327, 2000.

[23] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, C. Silvano,Asymp-
totic zero-transition activity encoding for address busses in low-power
microprocessor-based systems, Proc. of The Seventh Great Lakes
Symp. On VLSI, pp. 77-82, 1997.

[24] K. Kim, K. Baek, N. Shanbhag, C.L. Liu, S. Kang,Coupling- driven
signal encoding scheme for low-power interface design, IEEE/ACM In-
ternational Conference on Computer Aided Design, pp. 318-321, 2000.

[25] S. Ramprasad, N. R. Shanbhag, I. N. Hajj,Information- Theoretic
Bounds on Average Signal Transition Activity, IEEE Transaction on
VLSI vol. 7, no. 3, pp. 359-368, 1999.

[26] L. Macchiarulo, E. Macii, M. Poncino,Low-Energy Encoding for
Deep-Submicron Address Buses, IEEE/ACM Proc. of International
Symposium on Low Power Electronics and Design (ISLPED’01),
pp.176-181, 2001.

[27] Taken out to enable blind review.
[28] National Technology Roadmap for Semiconductors, Semiconductor In-

dustry Association (SIA), 1997.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

