
BEAM: Bus Encoding Based on Instruction-Set-Aware Memories

Yazdan Aghaghiri
University of Southern California

3740 McClintock Ave
Los Angeles, CA 90089

Tel: 213-740-4437
Fax:213-740-9803

yazdan@sahand.usc.edu

Farzan Fallah
Fujitsu Laboratories of America

595 Lawrence Expressway
Sunnyvale, CA 94085

Tel: 408-530-4544
Fax: 408-530-4515

farzan@fla.fujitsu.com

Massoud Pedram
University of Southern California

3740 McClintock Ave
Los Angeles, CA 90089

Tel: 213-740-4458
Fax: 213-740-9803

pedram@ceng.usc.edu

Abstract – This paper introduces a new approach for
minimizing power dissipation on the memory address bus. The
proposed approach relies on the availability of smart memories
that have certain awareness of the instruction format of one or
more architectures. Based on this knowledge, the memory
calculates or predicts the instruction and data addresses.
Hence, not all addresses are sent from the processor to the
memory. This, in turn, significantly reduces the activity on the
memory bus. The proposed method can eliminate up to 97% of
the transitions on the instruction address bus and 75% of the
transitions on the data address bus with a small hardware
overhead. The actual power savings of 85% for the instruction
bus and 64% for the data bus were achieved for a per-line bus
capacitance of 10pF.

1 Introduction
With the rapid increase in the complexity and performance of VLSI
chips and the popularity of battery-powered, handheld electronic
systems, power consumption has become a key consideration in the
design process. In every processor, a considerable number of I/O
pins (i.e., address and data bus pins) are dedicated to interfacing
with external memory. To reduce the power consumption, the
values sent over these buses can be encoded so that the bus
switching activity is minimized. A number of coding techniques
have been proposed in the literature to reduce the number of
transitions in memory buses ([2] - [13]). In all of these techniques,
encoders and decoders are employed to encode and decode the
addresses and/or data that are sent over the bus. Consequently,
when evaluating the performance of an encoding technique, one
must consider not only the percentage of switching activity
reduction on the bus, but also the delay and power consumption
overhead of the encoding and decoding circuitry. Notice that this
circuitry may be implemented in the processor and in the memory
chips in order to minimize the power dissipation and speed
overhead.

In this paper we propose a new technique for minimizing power
dissipation on the memory address bus. This technique, which we
will call BEAM for “Bus Encoding based on instruction-set-Aware
Memories” is based on programmable smart memories that can be
configured to attain certain awareness about the instruction set
architecture of the processor. Consequently, to some extent, they
can calculate or predict the instruction or data addresses, thereby,
eliminating the burden on the processor to send these addresses on
the memory bus. This will in turn reduce the switched capacitance
of the bus. Therefore, in the BEAM technique, memory attempts to
calculate or predict the next address based on the information that it
has collected from the current executed instruction and its address.
The processor supervises the memory’s address generation. If the
generated address by the memory is correct, the processor does not
send anything on the bus; this results in less traffic and lower
activity on the address bus. The BEAM technique uses a simple

decoder and encoder when compared to other bus encoding
techniques as will be illustrated in the subsequent sections.

The reminder of this paper is organized as follows.1 Section 2 gives
an overview of the BEAM technique. Section 3 describes the
BEAM technique in detail for instruction and data addresses. In
Section 4 we present a quantitative evaluation of BEAM when
different levels of prediction are progressively included into the
system. Section 5 includes our power saving results, whereas
Section 6 concludes the paper.

2 Basic Approach
Embedded processors dominate the total number of shipped
processors. Many of these processors are designed for applications
that do not require a very high performance when compared to the
state-of-the-art general-purpose processors. The clock frequency of
these processors is also much lower than their general-purpose
counterparts. Low power consumption is often a vital design
criterion for the embedded processors, especially when these
processors are designed for use in battery-powered systems. Tight
constraints on power consumption prevent the embedded
processors from having complex micro-architectural characteristics
such as memory management, branch prediction, and out-of-order
execution. Furthermore, many of the embedded processors do not
have on-chip caches.2

In this work we assume a processor without internal cache and out-
of-order execution, which is a good example of a low power
embedded processor. In such a system, the energy consumed on the
external memory bus of the processor can be a large portion of the
total power dissipation. Therefore, low power bus encoding
techniques can greatly reduce the overall power consumption of
such a system.

In a typical embedded system, to access an instruction or data,
addresses are generated in the processor and sent over an address
bus to the memory. In the BEAM technique, in most cases, the
address is generated inside the memory; consequently, there is no
need for the processor to send anything over the bus. The address is
either calculated or predicted in the memory. In the first case the
generated address in memory is always correct, whereas in the
second case it may not be correct. The processor uses the same
technique as the memory to calculate or predict the next address. If
it is possible to exactly calculate the address, the processor knows

1 This research was supported in part by NSF grant no. 9988441
and by a grant from Fujitsu Laboratories of America.
2 Some fast growing category of applications, in which on-chip
caches are not used, are the stream processing and network
processing. Using a cache does not help to increase the
performance for these applications.

that the memory will be able to calculate the next address correctly.
Otherwise, the processor checks the correctness of the address
predicted in the memory. If the predicted address is correct, the
processor does nothing. Otherwise, it intervenes by sending a signal
or the correct address to the memory. In the remainder of this paper
we use calculating and predicting interchangeably.

Predicting the address values leads to a reduction in the switched
capacitance of the bus; therefore, it reduces the power
consumption. Both instruction and data addresses can be predicted.
In this paper, we examine instruction and data addresses separately
and propose methods that are appropriate for each of them. The two
sets of methods can easily be integrated so as to predict both
instruction and data addresses on a multiplexed bus. For the
memory to predict the addresses, it should know format of the
instructions of the processor. Note that it is not necessary to design
a specific memory for each Instruction Set Architecture (ISA). The
Instruction formats of many RISC architectures are very similar.
Hence, a smart memory can have several registers, which can be
programmed by the processor during an initialization phase to
make it compatible with a target ISA.

Figure 1 shows a block diagram of the BEAM address
calculator/predictor unit in the memory. The current instruction is
analyzed in an ISA-aware unit. This module identifies the
instruction type. There is also a prediction/calculation module that
generates the next address. This module requires the following
inputs: current address, current instruction, the value on the bus,
and some information from the ISA-aware module. The ISA-aware
unit determines how to calculate the next address. The current
instruction is needed because it may have an immediate value,
which is the offset of the next address. In the next two sections, we
give details of the proposed prediction schemes for instruction and
data addresses.

3 Next-Address Prediction in BEAM
First we describe our encoding method for the instruction
addresses. Next we present our data address encoding technique.
We define the transition cost of an instruction/data address as the
number of bit-level transitions that occur on the memory bus when
the address of the next instruction/data is sent over the bus (with or
without encoding.)

3.1 Instruction Addresses

In a typical program, one out of every seven instructions is a
control flow instruction [1]. This implies that, most of the time,
instructions are fetched from consecutive memory locations. This
huge spatial correlation in the instruction addresses is the key factor

in many low power bus-encoding techniques such as T0 method
[2]. For example in the T0 method, if the new address is one (stride
value) larger than the previous address (i.e., the new address is
sequential), then the new address is not sent over the bus and the
bus is frozen. The new address will only be sent over the bus if it is
not sequential. T0 consists of one extra bit for informing the
memory whether or not the bus is frozen. We adopt the same
approach as T0 to predict all sequential addresses. Furthermore, we
add other prediction schemes to decrease the switching activity on
the bus.

To eliminate the transitions of non-control flow instructions in the
BEAM technique, memory should distinguish them from control
flow instructions and calculate the next address. The interesting
difference between T0 and BEAM is that the latter does not require
any redundant bit. Suppressing the redundant bit in T0 results in
ambiguity on the memory side every time the target of a control
flow instruction is equal to the value on the bus [7]. However, this
problem does not exist in BEAM because the memory looks at the
current instruction to find out whether the next address is sequential
or not.

For control flow instructions, the memory may be able to correctly
predict the next target address, thereby, eliminating the need for the
processor to send the target address on the bus. If the prediction is
not accurate, the processor has to send the address or a hint to help
the memory correct its prediction.

In the sequel, we use SimpleScalar processor architecture [17] to
describe our method. SimpleScalar is a MIPS-based processor,
which is a good representative of current commercial RISC
machines. SimpleScalar has two main types of control flow
instructions, jumps and branches. A branch is a conditional control
flow instruction that, based on the evaluation of a specific
condition, can either cause a forward/backward movement in the
execution flow or have no effect on the flow. The amount of
movement is determined by an immediate offset specified in the
branch instruction. Taking the branch can depend on a variety of
conditions such as the value of a register being equal to zero. The
jump instructions are similar to branches except that they do not
check any conditions. Jumps are deterministic and are classified
into four different types, namely J (jump), JAL (jump and link), JR
(jump register), and JALR (jump and link register). Although
jumps are deterministic, the target of a jump may not be known at
compile time. This category of jumps is usually called indirect
jumps. This means that the jump instruction itself does not include
the offset of the jump. In SimpleScalar, for J and JAL instructions,
the offset is specified as an immediate value in the instruction,
whereas for JR and JALR instructions, it is the value of a register
that determines the target of the jump; thus, it is not known
beforehand.

Going back to the BEAM technique, we start by reducing the
transitions for J and JAL. Note that J is used to implement
unconditional jumps in the program, whereas JAL is used to
implement function calls. When JAL is executed, it links the return
address to a special register, which will be used later when
returning from the function. If the memory recognizes J and JAL, it
can easily compute the address of the next instruction by adding the
offset embedded in the jump instruction to the current address. This
is exactly how the processor computes the next address. However,
in this case, the memory itself calculates the target address. On the
other hand, processor does not need to send any address for the
next instruction if the current instruction is J or JAL. This

ISA AWARE UNIT

Current Instruction Current Address

Next Address

Bus

Calculation/
Prediction unit

Figure 1- Block diagram of the calculation/prediction unit in
memory.

completely eliminates the switching activity on the memory
address bus for J and JAL instructions.

The next step is to tackle the branch instructions. A not-taken
branch behaves the same way as a non-control flow instruction
does. The target of a taken branch can be easily calculated by
extracting the offset from the instruction and adding it to the
current address exactly like J and JAL. The problem is that the
outcome of a branch is unknown in the memory and adding extra
hardware to compute it is impractical. Therefore, the only
possibility is to predict the outcome of branches in the memory.
The prediction scheme should be as simple as possible. Suppose
that memory predicts all branches as ‘taken’ and then calculates the
targets of those branches. When executing the branch in the
processor, if it is taken, the memory’s prediction is correct. Hence,
it is not necessary to send anything from the processor to the
memory. Otherwise, memory has failed in its prediction and the
processor sends a signal to the memory indicating that the branch is
not taken and memory fetches the next sequential address.
Therefore, memory locally predicts the branches and processor
sends a signal to the memory whenever memory’s prediction is not
correct. To decrease the power consumption, a single bit transition
on a specific line of the bus is used to signal the memory. As a
result each branch will cause at most one transition on the bus.
Since in a typical program about 70% of all branches are taken [1],
this scheme leads to elimination of a significant number of
transitions. To further improve the result, better prediction schemes
may be used for predicting branches. Modern branch prediction
schemes have up to 99% accuracy [1]. However, their hardware
overhead is not tolerable in our system.

The last category of instructions to be tackled is JR and JALR
instructions. JR is mostly used to implement function returns. To
do this, the program usually reads the return address from the stack
and writes it to a register. After that a jump to that address is
performed by executing a JR instruction. Another usage of JR is in
implementing case statements. However, it is important to note that
the majority of JR instructions are used to return from functions.
For the SPEC92 benchmark programs, according to [1], procedure
returns account for 85% of the indirect jumps on average. We,
therefore, propose a technique for predicting the target of JR
instructions whenever they are used to implement function returns.
JALR is mostly used to implement pointer to functions, i.e., a
pointer that can point to different functions and call them from a
specific place in the program. Because JALR is rarely used, it has a
minor impact on the total number of transitions. Therefore, in our
scheme processor sends the next address of a JALR instruction
without attempting any prediction.

Our technique to reduce the transition cost of JR is as follows. The
return address is saved whenever there is a function call. Later,
when there is a JR instruction, the saved addresses are used to
predict the target address. Therefore, a stack is used to save the
return addresses. Since this scheme will not work for all JR
instructions (because not all JR instructions are used to implement
function returns), the processor has to have a stack as well to find
out if the memory is able to correctly predict the address. Upon
encountering a JAL or JALR, the return address (the same address
that is linked during execution of these instructions) is pushed into
the stacks. Later, when a JR is executed, if it is a function return
instruction, its return address ought to be present in the stack. If the
JR is not a function return, then its target will not be in the stack
and cannot be predicted. This is confirmed in the processor by
comparing the value of the register to which JR is jumping with the
value stored on the top of the stack. If they match, then the

processor knows that memory correctly predicts the target and the
processor does not change the value on the bus. If the target of the
jump is not equal to the value stored on top of the stack, then the
memory prediction will be incorrect and the processor will simply
send the new address over the bus. Memory detects the activity on
the bus and concludes that its predicted value was incorrect.
Consequently, it uses the address received on the bus instead of the
address on top of the stack.

An essential question is how large the size of the stack should be.
For any stack with finite number of entries, there is always the
possibility of an overflow. Once the stack overflows, no JR will be
predicted correctly until enough function returns are executed so
that the number of nested function calls becomes less than the size
of the stack, which is not suitable because many nested functions
may not return until the very end of the program. However, if we
make the stack circular, this problem will be solved. Although there
is still the possibility of overflow for circular stacks, the most
recent return addresses will not be lost in the case of overflow and
the prediction scheme will perform better. In Section 4 we will
address the issue of the stack size quantitatively.

3.2 Data Addresses

In this subsection we describe how data addresses can be predicted.
Reading or writing to memory in SimpleScalar is done only with
load and store instructions. There are two different addressing
modes in this architecture. The first one is displaced addressing in
which the address to be accessed is calculated by adding a register
value to an offset embedded in the instruction,

Rd <= MEM(Rs + Offset).

The second type is indexed addressing in which the address is
calculated by adding the values of two registers,

Rd <= MEM(Rs + Rt).

If the memory wants to calculate the address accessed by these
instructions, it has to know the value of the registers. However, the
register file is in the processor and the memory does not have
access to it. The solution we adopt is to implement a shadow
register file in the memory. If the shadow register file is kept
completely coherent with the processor register file, then the
accessed addresses can be easily calculated in the memory.
However, making the two register files coherent is very expensive
in terms of the number of required bus transactions. Thus, the
values of the registers in the shadow register file are updated only
when there is a memory access instruction with displaced
addressing. Every time the processor sends the data address to the
memory, the memory subtracts the offset embedded in the
instruction (which is known to the memory) to calculate the value
of the register used in the instruction. Therefore, the register value
can be updated in the memory shadow register file without
additional overhead on the bus. Now this “semi-coherent” register
file in the memory can be used to predict data addresses. On the
other side, the processor can easily determine whether the value
that memory has for a register is valid. This is done by keeping
track of all registers that have been modified (i.e., have been the
destination of a move instruction) since the last time they were used
in memory access instructions as pointers. If a register has an
updated value when it is used in the memory access instruction, the
data address can be correctly calculated in the memory. When the
processor detects that the memory does not have the updated value
of the register, it sends the new address value on the bus. At the
same time memory knows when the register value is not valid and
will read the address from the bus instead of calculating it.

Additionally, memory uses this new value to update its register file.
On both sides, a valid flag corresponding to the register is set
indicating that the register value is again valid.

SimpleScalar has 32 general-purpose registers. Hence, the shadow
register file should have 32 registers, but this can be expensive for a
low power scheme. To reduce the number of registers, we consider
the fact that compilers usually use a small set of registers as
pointers in the memory access instructions. So it is possible to use a
small cache to hold the value of some of the registers. Whenever a
new register is used in a memory access instruction, that register
occupies one entry of the cache. Therefore, the address of the next
instruction using that register to access memory can be correctly
predicted. In fact we will show in the next section that using a 4-
entry cache instead of 32 registers will have a marginal effect on
the switching activity reduction while it reduces the hardware
overhead significantly. To avoid evicting registers that are more
frequently used, we use a saturating counter [1].

4 Experimental Results
In this section we examine the actual transition reduction obtained
by applying the BEAM technique. First we focus on instruction
addresses. Figure 2 gives the percentage of different types of
instructions used in SPEC2000 benchmark programs. Forward and
backward branches as well as ‘taken’ and ‘not-taken’ branches
have been reported separately. As we mentioned previously, JALR
is rarely used in the programs. Furthermore, the number of JAL and
JR instructions are almost the same in all programs, which shows
that most of JR instructions are function returns for the
corresponding function calls implemented by JAL instructions.

Next we compare the transition cost of different types of
instructions in the original instruction address trace. The results
have been reported in Table 1. By looking at this table, it is
possible to determine the transition saving of our method when
different instructions are handled. For example, according to the
table, if jump transitions are suppressed by predicting jump targets,
around 5% of the total transitions will be saved. This is not an exact
number, because when a new encoding is applied to cancel the

transition cost of jumps, other transition costs may also be affected.
This is because the transition cost of an instruction depends on the
current value on the bus and the next address. Notice that our
method is similar to T0 for predicting the sequential addresses.
However, because our method does not require an extra bit, it
performs better than T0. According to our experimental results, the
BEAM technique using sequential prediction only outperforms T0
by 5%.

Table 2 shows the savings achieved by the BEAM technique when
different levels of prediction are used. As one can see, adding the
branch prediction method to simple sequential prediction increases
the transition saving to 86.2% up from 65.0%. If the prediction of J
and JAL instructions is also included, the saving increases to
92.1%. Until this point, the required extra hardware is essentially
negligible; we only need to use an adder (in order to add the
extracted offset to the current address), several multiplexers and
some logic for detecting the instructions’ types. To predict the
target of JR instructions, we have to use two stacks to store return
addresses: one in the processor and the other in the memory. In
Table 2, it is assumed that a 10-entry circular stack is used for this
purpose.

Table 1- Percentage of transition costs for different types of instructions.

Jump Jump and
link

Jump register Jump and
link register

Forward taken
branch

Backward
taken branch

Not taken
branch

Non-control
flow

vpr 1742 5% 1716 5% 1584 5% 1 0% 2935 9% 879 3% 2021 6% 22789 68%
parser 2405 7% 1412 4% 1104 3% 0 0% 1696 5% 127 0% 2008 6% 23425 73%
equake 1400 4% 1775 5% 1955 6% 1 0% 2310 7% 532 2% 2029 6% 24274 71%
vortex 979 3% 1709 5% 1630 5% 35 0% 2206 7% 589 2% 1279 4% 25252 75%

gcc 2319 7% 1123 3% 1383 4% 12 0% 3081 9% 102 0% 1513 4% 24136 72%
art 1768 6% 253 1% 216 1% 1 0% 1001 3% 357 1% 569 2% 27151 87%

Average 5.3% 3.8% 4.0% 0.0% 6.7% 1.3% 4.6% 74.3%

Table 2- Transition saving for different stages of our proposed method
for instruction address bus.

Transition Saving

predict
seq. ins

+ predict
branches

+ predict J
and JAL

+ predict JR

vpr 58.2% 84.9% 90.6% 95.5%
parser 64.3% 85.2% 91.5% 97.1%
equake 59.3% 83.7% 89.4% 96.7%
vortex 65.1% 87.2% 92.7% 97.8%

gcc 60.6% 84.8% 91.8% 97.2%
art 82.1% 91.4% 96.6% 99.2%

Average 65.0% 86.2% 92.1% 97.3%

0

500000

1000000

1500000

2000000

2500000

5 10 15 20 25
vpr parser equake
vortex gcc art

Figure 3- JR transitions for different stack sizes.

0%

20%

40%

60%

80%

100%

vpr parser equake vortex gcc art

backward not
taken
forward not
taken
backward
branch
forward branch

jump and link
register
jump and link

jump register

jump

Figure 2- Number of different control flow instructions.

Figure 3 shows the effect of the size of the circular stack on
transition saving. Vertical axis shows the number of transitions
caused by JR instructions. According to the figure, a 10-entry stack
is sufficient.

By using our method, up to 97.3% of all transitions of instruction
addresses can be suppressed. The remaining 3% of the transitions
are dominated by transitions caused by the misprediction of the
branches. More saving can be achieved by using better branch
prediction schemes, but this would require more complex
hardware.

Next we quantitatively investigate the prediction of data addresses.
We have used the same set of benchmark programs and generated
the data address traces for them. A precise prediction represent a
case when the value of a register is valid in the memory shadow
register file and the memory can exactly predict the data address.
Table 3 shows the percentage of transition saving and the precise
predictions when we use a 32-entry shadow register file in the
memory. In Table 4 we have reported the results when using a 4-
entry cache (with direct mapping of registers into the cache entries)
instead of the full size shadow register file. The average saving in
transition count declines by only 6%.

Table 3 -Transition saving for data addresses and the percentage of
accesses precisely predicted for a full size shadow register file.

Transition saving Precise predictions

vpr 86.1% 74.7%
parser 80.5% 65.1%
equake 76.3% 82.1%
vortex 74.2% 74.3%

gcc 81.9% 71.1%
art 95.4% 85.6%

Average 82.4 % 75.4%

Table 4- Transition saving for data addresses, cache hit, and the
percentage of accesses precisely predicted for a 4-entry cache.

Transition
saving Cache hit Precise

predictions

vpr 80.3% 87.3% 68.3%
parser 74.6% 81.3% 60.6%
equake 70.7% 88.4% 74.8%
vortex 66.9% 87.0% 69.1%

gcc 77.3% 81.5% 61.0%
art 88.1% 88.1% 84.7%

Average 76.3% 85.6% 69.8%

5 Power Analysis
We report the actual power saving (i.e., one that accounts for the
power dissipation overhead of the codecs) achieved by the BEAM
technique. We do this evaluation separately for instruction and data
address traces. We do the power estimation for the blocks used in
the memory only, namely, memory codecs. This is because, on the
processor side, most of the required hardware is already in place or
there are similar logic blocks, into which the required codec
hardware can be integrated with a minor overhead. For example,
processor needs to identify the type of the instructions such as
branches and jumps. This task is already done in the instruction
decode unit. In fact in some cases, our technique even decreases the
burden on the processor. As an example, the processor no longer
has to calculate the target address for a jump or a branch since this
is always done in the memory. The outcome of the branches still
has to be determined, but the actual target calculation is no longer
needed. This is similar to moving the adder for calculating the

target of jumps and branches from the processor to the memory
chip. Notice that we consider a version of the BEAM technique that
does not employ the JR prediction. The reason is that the 5%
reduction in the transition activity that can be achieved by
implementing the JR prediction does not justify using two different
stacks in many cases.

Figure 4-1 shows the BEAM codec, which is used in memory for
predicting branches and direct jumps. The instruction-set aware
unit only determines whether the instruction is a JR/JALR, a branch
or a sequential instruction. If it is a branch, the leftmost multiplexer
selects the branch offset. Otherwise, the jump offset is selected.
Either this value or the instruction stride is added to the current
address. If the current instruction is not a JR or a JALR, this value
will be the next address. Otherwise, the value that is received from
the bus will determine the next address. The JR/JALR signal
generated by the Instruction-Set Aware Unit is used for controlling
the multiplexer that chooses between these two addresses.

Figure 4-2 shows the blocks required in the memory for calculating
data addresses. There is a cache with four entries that can hold the
values of four registers. The Rs field in the current instruction is
used to index into the register cache. The Rt field shows that a
register has been used as a target register and is used to invalidate a
cached register. The Instruction-Set Aware Unit sends two signals
to the cache, namely, invalidate and Mem-Access. Any access to
the cache may lead to a hit or a miss. Even if it hits, the register
value may be invalid meaning that the value of the register has
been modified by an instruction after the last memory access. Thus,
only if there is a valid hit, the value is used for calculating the
address by adding it to the offset embedded in the instruction. If
there is no valid hit, the value will be received on the bus from the
processor and the rightmost multiplexer will select this value as the
data address. At the same time the value is used to update one of
the entries in the cache using direct mapping.

Table 5- Results of hardware analysis and power estimation.
Instruction

codec
Data

codec
Num of Literals 686 720

Area (* 1000 λ2) 343 588
Num of Gates 311 528

Original Bus Power (uW) 5205 20050
Bus Power with BEAM (uW) 416 6055

Power of BEAM memory Codec (uW) 364 1144
Codec power + Bus Power with BEAM 780 7199

Power Saved with BEAM (uW) 4421 12851
Percentage Saving over bus 85 % 64%

To estimate the actual overhead of the above memory codecs, first,
we generated the netlist of each circuit in Berkeley Logic
Interchange Format (BLIF). The netlists were optimized using the
SIS script.rugged and mapped to a 1.5 Volt, 0.18µ CMOS library
using the SIS technology mapper. The I/O voltage was assumed to
be 3.3V. The number of literals, the area and the number of gates
have been reported for both the instruction and data codecs in Table
5. Next we calculated the power consumption of these circuits.
These values are needed to determine the actual power reduction of
the bus. Therefore, instruction and data address traces of the
benchmark programs were fed into the codecs and the power
consumption was estimated using sim-power [16], a gate-level
tool. The results for a 100 MHz system clock are reported in Table
5 as “power of BEAM memory codec.” Assuming bus capacitance
of 10pF/line, we have calculated the original bus power (i.e., when
no encoding is used) using the same address traces that we used for
the estimation of the power by sim-power. The total power saving

considering extra on chip codecs and the percentage of saving are
also reported in Table 5.

6 Conclusion
In this paper we described a new method for encoding instruction
and data address buses. Our method can achieve up to 97%
reduction in switching activity for an instruction address bus. For a
data address bus, the saving is approximately 64%. The small
hardware overhead makes our method practical. Our experiment
shows that the power consumption of memory instruction and data
codecs are 0.36mW and 1.15mW, respectively. In practice, when
using our method, several modules are moved from the processor to
the memory and some new blocks are added to the processor.
Therefore, the processor power consumption remains almost the
same or even decreases. Our techniques can be combined to predict
the address in a multiplexed address bus.

7 References
[1] Hennessy, Patterson, Computer Architecture, A Quantitative
Approach, Second Edition, Morgan Kaufmann Publishers, 1996.

[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
“Asymptotic Zero-Transition Activity Encoding for Address Buses in Low-
Power Microprocessor-Based Systems,” Proc. 7th Great Lakes Symposium
on VLSI, Urbana, IL, pp. 77-82, Mar. 1997.

[3] W. Fornaciari, M. Polentarutti, D.Sciuto, and C. Silvano, “Power
Optimization of System-Level Address Buses Based on Software
Profiling,” Proc. International Symposium on Hardware/Software
Codesign, pp. 29-33, Apr. 2000.

[4] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “A Coding Framework
for Low-Power Address and Data Buses,” IEEE Transactions on Very
Large Scale Integration Systems, Vol. 7, No. 2, pp. 212-221, Jun. 1999.

[5] S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “ Sigal Coding for Low
Power: Fundamental Limits and Practical Realizations”, IEEE Transactions
on Circuits and Systems, II, Vol. 46, No. 7, pp. 923-929, Jul. 1999.

[6] E. Musoll, T. Lang, J. Cortadella, “Exploiting the locality of memory
references to reduce the address bus energy,” Proc. International
Symposium on Low Power Electronics and Design, pp. 202-207, Aug. 1997.

[7] Y. Aghaghiri, F. Fallah, M. Pedram, “Irredundant Address Bus
Encoding for Low Power,” Proc. International Symposium on Low Power
Electronics and Design, pp. 182-187, Aug. 2001.

[8] Y. Shin, S. I. Chae, K. Choi, “Partial Bus-Invert Coding for Power
Optimization of System Level Bus,” Proc. International Symposium on Low
Power Electronics and Design, pp. 127-129, Aug. 1998.

[9] N. Chang, K. Kim, J. Cho, “Bus Encoding for Low-Power High-
Performance Memory Systems”, Proc. 37th Design Automation
Conference, Jun. 2000.

[10] L. Benini, G. De Michelli, E. Macii, M. Poncino, and S. Quer,
“System-Level Power Optimization of Special Purpose Applications: The
Beach Solution,” Proc. International Symposium on Low Power Electronics
and Design, pp. 24-29, Aug. 1997.

[11] M. Ikeda, K. Asada, “Bus Data Coding with Zero Suppression for
Low Power Chip Interfaces,” Notes of the International Workshop on Logic
and Architecture Synthesis, pp. 267-274, Dec. 1996.

[12] P. P. Sotiriadis, A. Chandrakasan, “ Bus Energy Minimization by
Transition Pattern Coding (TPC) in Deep Submicron Technologies,”, Proc.
International Conference on Computer Aided Design, pp. 317-321, Nov.
2000.

[13] L. Macchiarulo, E. Macii, M. Poncino, “Low-energy for Deep-
submicron Address Buses”, Proc. International Symposium on Low Power
Electronics and Design, pp.176-181, Aug. 2001.

[14] P. Chang, E. Hao, Y. N. Patt, “ Target prediction for indirect jumps”,
Proc. 24th International Symposium on Computer Architecture, pp. 274-
283, Jun. 1997.

[15] J.E. Smith, “ A Study of Branch Prediction Strategies”, Proc. 8th
International Symposium on Computer Architecture, pp. 135-148, May
1981.

[16] S. Iman, M. Pedram, “ POSE: Power Optimization and Synthesis
Enviroment,” Proc. 33rd Design Automation Conference, pp. 21-26, Jun.
1996.

[17] http://www.simplescalar.com.

Jump Offset
Branch Offset

Next Addres

Current AddressCurrent Instruction

Sign Extension

+1

Instruction-Set

Aware Unit

Branch

Sequential

Branch not taken
(From Processor)

Address received over the bus

JR/JALR

Adder

Figure 4-1 Hardware implemented in memory for predicting
instruction addresses (jump and links, jumps and branches).

Rs

Data Addres

Current Instruction

Sign
Extension

Register Cache

OffsetRt

Valid hit

Sub/Add

Address received over the bus

OpCode

Instruction-Set

Aware Unit
Mem

Access
Invalidate

Adder

Figure 4-2 Hardware implemented in memory for predicting data
addresses.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

