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Abstract

Advances in methods for solving Boolean satisfiability (SAT) for
large problems have motivated recent attempts to recast physical de-
sign problems as Boolean SAT problems. One persistent criticism of
these approaches is their inability to supply partial solutions, i.e, to
satisfy most but not all of the constraints cast in the SAT style. In this
paper we present a formulation for “subset satisfiable” Boolean SAT:
we transform a “strict” SAT problem with N constraints into a new,
“relaxed” SAT problem which is satisfiable just if not more than
k<<N of these constraints cannot be satisfied in the original problem.
We describe a transformation based on explicit thresholding and
counting for the necessary SAT relaxation. Examples from FPGA
routing show how we can determine efficiently when we can satisfy
“almost all” of our geometric constraints.
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1.  Introduction
The last decade has seen striking advances in our ability to pose and
solve large Boolean satisfiability (SAT) problems. Early work on
Binary Decision Diagrams [1] has led to a large set of decision di-
agram implementations and functional variants with different capa-
bilities [2]-[8]. BDDs allow us to represent and manipulate
arbitrary sets of Boolean equations; satisfiability comes as a by-
product of the BDD data structure. In those applications where we
only need to ascertain satisfiability and find—if available—a single
solution, direct SAT solvers have been developed to perform the
necessary search for a satisfying solution, or prove that no such so-
lution exists. Several such solvers exist today (e.g., [9]-[13]) with
the best of them capable of handling thousands of variables and mil-
lions of logical clauses (constraints). Though aimed at logic and
verification applications (see [14] for a recent survey), the existence
of these solvers makes it attractive to ask how well we might be able
to translate geometric design problems into Boolean problems.

There have been several attempts in this direction. Early attempts
used BDDs for representation and manipulation. Devadas showed
a formulation for simple 2-layer channel routing using a sequence
of BDDs [15]. Wood developed a more general routing formulation
based on BDDs, and also demonstrated how FPGAs were a natural
target for such an approach, given their discrete routing resources
[16]. The advantage of the BDD formulation is that all routing al-
ternatives for all nets are represented explicitly. A satisfying assign-
ment of the variables represents a solution for how to embed all nets
concurrently. This is also a disadvantage of BDDs: the number of
routing alternatives may be too large represent in its entirety. More
recently, Schmiedle et al. formulated gridded maze routing in an
entirely symbolic form, using BDDs to model maze wavefront ex-
pansion is a style similar to finite state machine symbolic reachabil-
ity analysis [17]. Sulimma showed a column-wise gridded channel
router, also representing all routing options symbolically, on a per
column basis [18]. The difficulty again is that BDDs limit these
tools to problems of very small size.

To get around these problems, Nam et al. introduced a more effi-
cient mapping from routing resources to Boolean variables
[19],[20], and abandoned BDDs in favor of a direct SAT solver
[11]. These made it possible to formulate routing for complete—
though small—FPGAs as a single, solvable SAT problem. Varia-
tions on this theme, such as ECO-style routing, were also demon-
strated [21]. Recent work [22] shows how carefully coupling a
conventional router with a SAT formulation can handle FPGA
problems of industrial scale, e.g., 10,000 nets.

However, even assuming that progress on SAT-solver engines con-
tinues apace, and that we can formulate large-scale geometric prob-
lems as solvable SAT problems, these approaches still suffer from
two fundamental problems:

� No quality metric: Boolean SAT formulations are intrinsically
binary. Boolean variables represent solution alternatives, Boolean
formulas represent constraints. All satisfying solutions are equiva-
lent—we have no cost mechanisms to favor one over another.

� No partial solutions: SAT formulations either satisfy, or not;
there is no middle ground. We might be happy with a solution
that routes 999 out of 1000 nets, but in a SAT formulation, the
unroutability of the entire problem means that a SAT solution
simply returns “no”, and not a useful 999-net partial solution.

In this paper, we attack the “no partial solutions” problem. Our
strategy is to transform the original problem into an augmented, re-
laxed SAT problem which is satisfiable just if some small, arbitrary
subset of the original constraints are violated, and all other con-
straints are met. We refer to this as subset-satisfiability, or sub-SAT
for short. The idea is to permit users of SAT-based tools to set
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thresholds that yield incomplete, but useful, SAT solutions. The
key is to create transformations that are general, yet yield SAT
problems that we can still solve with current SAT engines. 

The remainder of the paper is organized as follows: Sec. 2 briefly mo-
tivates our approach in more detail. Sec. 3 presents details of a SAT-
transformation based on explicit thresholding and counting of the re-
laxed constraints. Sec. 4 then shows experimental results from both
FPGA routing problems, and a more general set of common SAT
benchmark problems. Finally, Sec. 5 offers some concluding remarks.

2.  Motivation and Approach
The routing example of the previous section is worth revisiting,
since it provides a concise example of what we expect in a partial
solution. Let us assume that our 1000-net problem is intrinsically
unroutable, but that 999 of 1000 nets can be embedded. There are
circumstances where a strict SAT formulation is desirable for this
problem. For example, when we are analyzing an over-congested
routing region of moderate size, and asking the question “can we
ever route this completely?” On the other hand, there are two strong
arguments for why a partial solution is desirable:

� More consistent with traditional routers: If we actually seek
to use SAT for detailed routing, a partial solution is more con-
sistent with the behavior of traditional routers and flows.
Today, detailed routing often progresses through a sequence of
increasing levels of effort. If a few nets fail, there is always a
“next” effort-level that increases the aggressiveness of the
search process, at the cost of some CPU time. If we terminate
the router early, we always have some partial solution.

� SAT style more abstract than geometric style: the process of
mapping from geometric to Boolean constraints necessarily
abstracts the problem, and results in the loss of some fidelity to an
unconstrained geometric solution. The fact that 1 net out of 1000
cannot be routed really means that our SAT abstraction of the geo-
metric constraints cannot be solved. We might easily complete this
last net with a more conventional router, which is willing to
embed a more adventurous path than we would tolerate in the
SAT abstraction. By returning partial solutions, we hope to
encourage hybrid solutions that exploit the best characteristics of
SAT (concurrent embedding of all nets) with the best of traditional
routers (tenacious shape-level search for the last few paths). 

Our principal focus is on partial solutions that are “almost” satisfi-
able: all but a very few constraints are satisfied. We assume that the
user gives a threshold, k, for how many constraints may be violated,
and k is very small in relation to the total number of constraints. We
transform the initial SAT problem into a new SAT problem which,
if satisfiable, yields a suitably complete partial solution to the orig-
inal task.

3.  sub-SAT via Transformation and Counting

3.1 Basic Formulation

We assume our SAT problem is formulated in standard conjunctive
normal form (CNF), where each constraint is a disjunction of liter-
als (either true or complemented instances of Boolean variables). In
this form, the constraints are commonly referred to as clauses,
though we shall use the two terms interchangeably. A simple exam-
ple with 5 variables and 4 clauses is:

(1)

Assume a general CNF formula is written over M variables
, and has N total clauses. 

Fig. 1 illustrates our strategy for supporting partial solutions, and
makes precise our notion of a relaxed SAT problem. In a conven-
tional strict formulation, we must find an assignment of each vari-
able that renders each CNF clause identically 1. It is helpful to think
of the CNF formula in terms of digital logic: we must satisfy each
clause, and the “hardware” to check that all clauses are satisfied is
a single N-input AND gate. To relax this, we allow some arbitrary
subset of not more than k constraints to “opt out” of the conjunction.
In terms of logic, we replace the single AND with new logic that al-
lows us to mask a subset of the constraints, rendering the final con-
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junction insensitive to whether these masked constraints are met or
not. 

As shown in Fig. 1b, we can override a single constraint by ORing
in the masking bit for that constraint. Setting this bit automatically
forces the clause to be satisfied, and creates a value we can later
count. We refer to these as masked constraints. A separate piece of
logic determines if the number of masked constraints is not more
than an arbitrary threshold k. The new relaxed problem is satisfied
just if the non-masked constraints are all satisfied, and the number
of masked (potentially unsatisfied) constraints is not more than k.

Fig. 2 shows the logic to handle the counting task. Since we are as-
suming k<<N opt-out clauses, we do not need a large adder struc-
ture. We adopt a variant of the “within-k” linear counter circuit from

[1]. Each  block is essentially an incrementer circuit, operating

on a -bit value . Each block tallies the next mask

bit. Some extra logic checks to ensure that we do not overflow our
small counter; this is the ci value that propagates stage to stage, and

ensures our final count is accurately less than or equal to k. Each
stage computes the following:

(2)

We implement each of these incrementer structures as additional
clauses in the CNF formula. These additional mask variables,
counter variables, and the clauses to make this logic, augment the
initial CNF representation. The original CNF formula is relaxed in
the sense that it may admit more solutions than the original strict
form, but the price is a larger transformed CNF formula. Let

; some careful accounting shows that our aug-

mentation adds the following to the CNF form in the general case:

� Variables: we add  new variables. For each of the N
clauses in the formula, we create one stage of our within-k
counter, with an s-bit sum, 1 mask bit, and 1 ci bit.

� Clauses: we add 
new clauses. The first term is for the first within-k block, the
second term accounts for the remaining N-1 counter blocks,
and the final term is the final comparator at the right of Fig. 2. 

Hence, we add  variables and  clauses in our
augmentation of the original M-variable, N-clause CNF formula.
Since our principal interest is in “almost” satisfiable problems, we
expect k <<N. Nevertheless, the relaxation threshold k still deter-
mines the size of the resulting augmented SAT formula.

The main advantage of a transformation of this type is that the relax-
ation is just another—bigger—SAT problem. Given progress on
Boolean SAT (CNF satisfiability), this is a significant advantage: we
can use the same SAT engine. Alternative formulations such as max-
imum satisfiability (MAX-SAT [23], and partial variants [24]), assign

weights to the constraints and seek the maximum-weight feasible sub-
set [25]. Unfortunately, progress in this area has yet to yield solvers
with the same maturity, generality and capacity as Boolean SAT.

3.2 A Simple Example

A small example helps clarify the details of our augmented CNF,
and illustrates some subtle details. Fig. 3 shows a trivial routing
problem that cannot be completed. Three nets contend for two
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tracks, and only two can embed. Variable A0 is set to assign net A
to track 0; A0 means this net is not in track 0, and so on. Let us set
a relaxation threshold k=1, and see if we can solve this problem
with only 1 unrouted net. Fig. 4 shows the augmented form of the
CNF formula that results from this relaxation, with new variables
and clauses highlighted, and a simple representation of the within-
k counter also shown. One critical point to note is that although in
the worst case a relaxation might add O(Nlog2k) variables, the num-

ber we really need is application dependent. It is not the case that all
clauses are equivalent, in the sense that any of them can be relaxed.
Complex problems generate a large, nonhomogeneous set of claus-
es; we may be able to relax some but not others, to obtain a usable
partial solution. This is shown above, where it is clear that we only
need to mask the 3 clauses that ensure that each net is assigned to
some track. (We can actually mask all of these clauses and obtain
the same result—but it is not necessary to do so.) Fig. 5 shows the
resulting of satisfying this relaxed problem: we find a solution with
exactly one unrouted net.

4.  sub-SAT: Experimental Results
We describe two sets of experiments. The first focuses on SAT-
based FPGA routing, which was the original motivation for this
work. The second looks at how our sub-SAT formulation applies to
a general set of SAT benchmark tasks. All of our results are based
on the Chaff SAT engine from Princeton [13]. Experiments were
run on a 750MHz Pentium III running LINUX.

4.1 FPGA Routing Results

Table 1 shows results from a set of standard FPGA layout bench-
marks from [26]. The CNF forms for the benchmarks represent two
different SAT routing formulations:

� 2-Pin: this is the original SAT formulation of [19]. Following
global routing, each multi-pin net is decomposed into a set of
2-pin nets for detailed routing. Each unique mapping of a 2-pin
net onto an atomic FPGA routing resource (e.g., a wire seg-
ment) is represented by a unique vector of Boolean variables.
Routing is formulated as a SAT problem that ensures (1) each

net is connected by some legal path through FPGA resources,
and (2) no routing resource is used by more than one net. These
constraints are called connectivity and exclusivity, respectively.
Multi-pin nets are embedded by relaxing the exclusivity con-
straint between pairs of 2-pin nets decomposed from the same
multi-pin source net. All nets are routed concurrently.

� RCS: this is the improved SAT formulation of [20]. Following
global routing, each multi-pin net is decomposed into a Steiner
tree of 2-pin connections. Then each 2-pin connection is routed
in several different ways, ignoring all other nets. This gener-
ates a portfolio of admissible path solutions for each connec-
tion. Each such path alternative is mapped to a unique vector of
Boolean variables. Routing is formulated as a SAT problem
that ensures (1) each 2-pin connection chooses one of its
admissible path alternatives, and (2) no pairs of electrically
distinct nets choose paths that overlap. These constraints are
called liveness and exclusivity, respectively.

The 2-Pin formulation yields a more fine-grain routing, in that any
net can choose any path through FPGA resources. However, the
corresponding CNF form is not only somewhat larger, but its asso-
ciated exclusivity constraints are much harder to satisfy, which lim-
its its scalability. The RCS formulation is geometrically less
flexible, but scales to larger routing problems; it has many fewer
hard exclusivity constraints. Together these are a good set of bench-
marks for testing a sub-SAT solution. 

The first column of Table 1 lists the benchmarks. The naming con-
vention encodes the formulation style (“gr” for global routing be-
fore detailed routing; “rcs” or “2pin” for formulation), and the
number of tracks per channel in the FPGA (e.g., “w7” means 7
tracks). Track count per channel is relevant here since the way we
make each of these benchmarks unroutable is to reduce the avail-
able wiring resources until the SAT detailed router fails. Columns
3,4 show the size of strict form of the problem, where we tolerate
no unrouted nets. In this form, an unroutable solution returns no
partial routing information at all. Columns 5,6 show the size of the
relaxed form of the problem, and column 7 shows the relaxation

FPGA Benchmark Nets

Strict CNF 
Formulation (k=0)

Relaxed CNF 
Formulation

Relaxation 
Threshold:

k=nets unrouted

SAT Time: (Sec)

Variables Clauses Variables Clauses Strict (k=0) Relaxed
9symml_gr_2pin_w5.cnf 79 2604 32450 2762 40262 1 0.55 1.3.

9symml_gr_rcs_w5.cnf 79 1295 24309 1453 28194 1 0.13 0.04

alu2_gr_2pin_w7.cnf 153 3882 84209 4188 95855 1 14.6 341.

alu2_gr_rcs_w7.cnf 153 3570 73478 3876 84188 1 24.3 0.1

apex7_gr_2pin_w4.cnf 126 1322 10940 1574 14906 2 0.1 0.4

apex7_gr_rcs_w4.cnf 126 1200 9416 1452 13016 2 0.03 0.18

C499_gr_2pin_w5.cnf 115 2070 19908 2300 26118 3 1.13 137.

C499_gr_rcs_w5.cnf 115 1560 15777 1790 20457 3 0.13 276.

C880_gr_2pin_w6.cnf* 234 4623 62711 5091 76580 5 81.4 >2000

C880_gr_rcs_w6.cnf* 234 3936 53018 4404 64826 4 368. 575

example2_gr_2pin_w5.cnf 205 3603 36334 4013 47153 2 2.06 17.9

example2_gr_rcs_w5.cnf 205 2220 23144 2630 29804 2 1.26 2.56

term1_gr_2pin_w3.cnf 88 746 3517 922 5755 7 0.01 1.71

term1_gr_rcs_w3.cnf 88 606 2518 782 4336 7 <0.01 0.44

too_large_gr_2pin_w6.cnf* 186 3972 52678 4344 64594 3 1.79 834

too_large_gr_rcs_w6.cnf* 186 3114 43251 3486 52593 3 4.36 204

vda_gr_rcs_w7.cnf* 225 5054 102047 5504 117209 15 169. 1147

k2fix_gr_rcs_w9.cnf* 404 13176 345426 13984 384954 20 1137. 1131

TABLE 1. sub-SAT results from two FPGA SAT-based routing formulations



threshold k, the number of unrouted nets we are willing to tolerate.
For each benchmark, this column gives the smallest number of un-
routed nets that produces a relaxed SAT problem that we can solve
in not more than 2000 seconds. Better solutions, with fewer unrout-
ed nets may be possible here, but we terminated search before either
finding them, or proving that there is no such less-relaxed solution.
We label this in the table: for rows tagged with a “*” in column 1,
better solutions may be possible if we run longer; for rows without
the “*”, we have proved there is no less-relaxed solution. Finally,
columns 8,9 show CPU times for the strict and relaxed forms of the
problem. 

Sometimes strict unsatisfiability is easy to prove, and sometimes
not. In either extreme, an unsatisfiable problem generates no partial
routing solution. Our relaxed problems show the same wide vari-
ance in runtimes as the strict forms. Sometimes the relaxation
solves quickly: this means its is easy to find and omit a few nets and
embed the rest. Sometimes the relaxation is much more time-con-
suming: the base problem was so significantly over-constrained
that it was easy to prove the lack of any solution. But, the problem
of routing with all but a handful of nets is actually a hard problem,
with few viable solutions; it just takes longer to find such a solution.
All these relaxations yield useful, almost-routed partial solutions. 

As with other experiences attacking SAT problems, the CNF prob-
lem size (variables, clauses) is a weak predictor of the overall diffi-
culty in satisfying the problem. In our sub-SAT formulation, we
increase the size in proportion to the total number of nets (which is
much less than the number of variables or clauses, as shown in
Fig. 4), and our total tolerance for unrouted nets (the threshold k).
The augmented CNF forms are larger, but they are not always cor-
respondingly harder to solve. This is consistent with the qualitative
discussion of difficulty in the previous paragraph. We think this
bodes well for the ultimate practicality of our approach.

4.2 sub-SAT Results for Other Standard Benchmarks

There is a large and vigorous SAT community today, pursuing a va-
riety of solution strategies and applications. The DIMACS bench-
mark suite at Rutgers is the central repository for interesting/
difficult SAT benchmarks [27]. For completeness, we show just a
few examples of applying our sub-SAT formulation to some of
these benchmarks.

To relax these test cases, we have assumed that all clauses are equal
targets for being masked. These is likely too optimistic, but lacking

additional domain-specific information, this is the best assumption
we can make. Note that for our routing benchmarks, knowledge of
the clause structure of the CNF allows us to mask only those con-
straints that we know may be omitted, and still yield a usable partial
solution. Our interest in attempting these test cases is to offer some
insight into how “near” these various problems are to being satisfi-
able —what is the smallest perturbation (number of clauses opted
out) that renders them satisfiable?

Table 2 shows a set of small DIMACS benchmarks that are each
unsatisfiable in their original form. Benchmarks labeled “*4” are
actually a family of 4 same-sized test cases; we show the longest
time to solve any of these. However, relaxing just a single con-
straint (i.e., allowing the sub-SAT formulation to opt-out one arbi-
trary clause in the CNF form) renders all of these quickly
satisfiable. The fourth column shows the input specification for
how much to try to relax the problem—just one constraint in all
these cases. 

Table 3 shows a larger set of DIMACS benchmarks that are each
synthetically constructed to be unsatisfiable. Unlike many SAT
problems, these are all fairly easy to prove unsatisfiability for. What
is interesting to us is that they are also fairly easy to relax, and small
relaxations render most of them solvable. Benchmarks with multi-
ple result rows illustrate how we discover the smallest clause-mask-
ing perturbation that renders the problem satisfiable. We increase
the threshold k until we find a satisfiable relaxation (or if we simply
run over our 2000 second time limit, as in jnh302). For example,
jnh304 from Table 3 is unsolvable in strict form (k=0), and also by
relaxing only 1 or 2 clauses. But it solves in roughly one minute if
we can tolerate 3 clauses being masked. 

5.  Conclusions
Recent progress on solvers for Boolean SAT motivates interest in
casting geometric problems as Boolean problems. Several efforts
have appeared to date, but a legitimate criticism of these approaches
is the lack of any partial solution whenever an intrinsically unsatis-
fiable problem is encountered. We value the SAT solution style in
large part because it allows us to express and solve a very large
number of concurrent constraints. Returning to our opening exam-
ple, when our goal is to route 1000 nets, it is frustrating if 999 are
routable, but a SAT formulation returns “no” as its entire answer. In
this paper we showed how to transform the CNF description of an
arbitrary SAT problem into a new, relaxed SAT problem that is sat-
isfiable just if some number k of the clauses in the formulation are
ignored. Although the transformed problem is relaxed (it admits
more solutions), the CNF form of the problem is larger; our con-
struction augments the CNF with new variables and clauses repre-
senting those parts of the problem that we may allow to “opt out”
of the solution. The technique is general, but aimed at cases where
the relaxation threshold k is much smaller than the total number of
constraint clauses in the problem.

For SAT-based routing, this lets us for the first time pose and an-
swer questions of the form “...can we route this layout with not
more than k nets unconnected?” Our transformation strategy has
the virtue that it creates a new problem that can be solved with the
same SAT engines used for the original problem. Ongoing im-
provements in basic SAT engines will also improve our ability to
solve sub-SAT problems. 

DIMACS
Benchmark

Strict CNF Form Relaxation
Threshold

k

sub-SAT 
Result

CPU 
Time 
(Sec)Variables Clauses

aim-100-1_6 * 4 100 160 1 1 <0.01

aim-100-2_0 * 4 100 200 1 1 <0.01

aim-200-1_6 * 4 200 320 1 1 0.01

aim-200-2_0 *4 200 400 1 1 <0.01

aim-50-1_6 *4 50 80 1 1 <0.01

aim-50-2_0 *4 50 100 1 1 <0.01

bf0432-007 1040 3668 1 1 0.19

bf1355-075 2180 6778 1 1 0.29

bf1355-638 2177 6768 1 1 0.58

bf2670-001 1393 3434 1 1 0.13

duboise50 150 400 1 1 0.02

TABLE 2. sub-SAT results for small unsatisfiable DIMACS 
benchmarks; most solve easily by relaxing just 1 constraint



Acknowledgment
We thank Gi-Joon Nam of IBM for access to FPGA routing bench-
marks, and Sharad Malik of Princeton for access to the Chaff SAT
engine. This work was supported in part by the National Science
Foundation under contract CCR-9971142.

References
[1] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-

Decision Diagrams,” ACM Computing Surveys, Vol. 24, No. 3, Sep-
tember 1992, pp. 293-318.

[2] K. S. Brace, R. R. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” Proc. ACM/IEEE Design Automation Conference,
January 1990, pp. 40-45.

[3] R. Rudell, “Dynamic Variable Ordering for Binary Decision Dia-
grams,” Proc. ACM/IEEE Intl. Conf. on Computer-Aided Design, Nov.
1993, pp. 42-47.

[4] S.-I. Minato. “Zero-Suppressed BDDs for Set Manipulation in Combi-
natorial Problems.” Proc. 30th ACM/IEEE Design Automation Confer-
ence, June 1993, pp. 272-277. 

[5] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,
F. Somenzi, “Algebraic Decision Diagrams and their Applications,”
Proc. ACM/IEEE International Conference on CAD, November 1993.

[6] A. Anuchitanukul, Z. Manna and T.E. Uribe, “Differential BDDs,” In J.
van Leeuwen, ed, Computer Science Today, Lecture Notes in Computer
Science, Vol. 1000, pp. 218-233, Springer-Verlag, Sep. 1995. 

[7] R.E. Bryant, “Binary decision diagrams and beyond: Enabling technol-
ogies for formal verification,” Proc. ACM/IEEE International Conf. on
Computer-Aided Design (ICCAD), November 1995. 

[8] B. Yang, R.E. Bryant, D.R. O’Hallaron, A. Biere, O. Coudert, G. Jans-
sen, R.K. Ranjan and F. Somenzi, “A performance study of BDD-based
model checking,” in Proc. Second International Conference on Formal
Methods in Computer-Aided Design (FMCAD'98), Palo Alto, CA,
November 1998, pp. 255-289.

[9] B. Selman, H. Kautz, B. Cohen, “Local Search Strategies for Satisfi-
ability Testing,” DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, Vol. 26, 1996, pp. 521-532.

[10] H. Zhang, “SATO: An Efficient Propositional Prover,” International
Conference on Automated Deduction (CADE’97), LNAI 1249,
Springer-Verlag, 1997, pp. 272-275.

[11] J.P. Marques-Silva, and K.A. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability,” IEEE Transactions on Computers, Vol.
48, No. 5, May 1999, pp. 506-521.

[12] J.P. Marques-Silva, and L.G. e Silva, “Algorithms for Satisfiability in
Combinational Circuits Based on Backtrack Search and Recursive
Learning,” Proc. 12th Symposium on Integrated Circuits and Systems
Design (SBCCI ‘99),September – October 1999, pp. 192-195.

[13] Y. Zhao, L. Zhang, S. Malik, “Chaff: Engineering an Efficient SAT
Solver”, Proc ACM/IEEE 39th Design Automation Conference, Las
Vegas, June 2001. 

[14] M. Velev and R.E. Bryant, “Effective Use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIW Micro-
processors,” Proc. ACM/IEEE Design Automation Conf., June 2001.

[15] S. Devadas, “Optimal Layout Via Boolean Satisfiability,” Proc. ACM/
IEEE Int’l Conference on CAD, Nov. 1989, pp. 294-297.

[16] R. G. Wood and R. A. Rutenbar, “FPGA Routing and Routability Esti-
mation Via Boolean Satisfiability,” IEEE Transactions on VLSI Sys-
tems, June 1998, pp. 222 - 231.

[17] F.Schmiedle, D. Unruh and B. Becker: “Exact Switchbox Routing with
Search Space Reduction,” Proc. ACM International Symposium on
Physical Design, April 2000, pp. 26-32.

[18] K. Sulimma and W. Kunz, “An Exact Algorithm for Difficult Detailed
Routing Problems,” Proc. ACM Int’l Symposium on Physical Design
(ISPD’01), April 2001.

[19] G.-J. Nam, K. Sakallah, and R.A. Rutenbar, “Satisfiability-Based Lay-
out Revisited: Routing Complex FPGAs Via Search-Based Boolean
SAT,” Proc. ACM Int’l Symposium on FPGAs, Feb. 1999.

[20] G.-J. Nam, F. Aloul, K. Sakallah, and R.A. Rutenbar, “A Comparative
Study of Two Boolean Formulations of FPGA Detailed Routing Con-
straints,” Proc. ACM Int’l Symposium on Physical Design (ISPD’01),
April 2001.

[21] G.-J. Nam, K. Sakallah, and R.A. Rutenbar, “A Boolean Satisfiability-
Based Incremental Rerouting Approach with Application to FPGAs,
Proc. Design Automation & Test Europe (DATE’01), March 2001.

[22] G.-J. Nam, A Boolean Based Layout Approach and its Application to
FPGA Routing, Ph.D. Thesis, Dept. of EECS, the University of Michi-
gan, 2001.

[23] P. Hansen and B. Jaumard, “Algorithms for the maximum satisfiability
problem,” Computing, Vol. 44, 1990, pp. 279-303.

[24] B. Cha, K. Iwama, Y. Kambayashi and S. Miyazaki, “Local search
algorithms for partial MAXSAT,” Proc. AAAI, 1997, pp. 263-268.

[25] J. N. Hooker, “Resolution and the integrality of satisfiability prob-
lems,” Mathematical Programming, Vol. 74, 1996, pp. 1-10. 

[26] http://www.eecg.toronto.edu/~lemieux/sega/sega.html
[27] http://dimacs.rutgers.edu/Challenges/

DIMACS 
Bench-
mark

Strict 
(Original) 
CNF Form

Relaxed 
(Augmented) 
CNF Form

Relaxation 
Threshold 

k

sub-SAT 
Result

CPU 
Time 
(Sec)

Vars Clauses Vars Clauses
jnh2 100 850 2650 7647 1 1 1.46

jnh3 100 850
2650 7647 1 unsat 92.9

3500 13592 2 2 10.8

jnh4 100 850 2650 7647 1 1 9.56

jnh5 100 850 2650 7647 1 1 15.2

jnh6 100 850 2650 7647 1 1 9.05

jnh8 100 850
2650 7647 1 1 9.36

3500 13592 2 2 43.9

jnh9 100 850
2650 7647 1 1 26.1

3500 13592 2 2 17.6

jnh10 100 850 2650 7647 1 1 0.31

jnh11 100 850 2650 7647 1 1 2.41

jnh13 100 850
2650 7647 1 1 8.8

3500 13592 2 2 9.71

jnh14 100 850
2650 7647 1 1 11.5

3500 13592 2 2 10.1

jnh15 100 850
2650 7647 1 1 16.5

3500 13592 2 2 19.6

jnh16 100 850 2650 7647 1 1 2.52

jnh18 100 850 2650 7647 1 1 5.98

jnh19 100 850
2650 7647 1 unsat 42.0

3500 13592 2 2 18.0

jnh20 100 850
2650 7647 1 unsat 14.0

3500 13592 2 2 50.8

jnh202 100 800 2500 7197 1 1 2.99

jnh203 100 800 2500 7197 1 1 33.3

jnh206 100 800 2500 7197 1 1 1.76

jnh208 100 800 2500 7197 1 1 14.3

jnh211 100 800
2500 7197 1 unsat 11.8

3000 12792 2 2 11.9

jnh214 100 800 2500 7197 1 1 0.32

jnh215 100 800 2500 7197 1 1 5.82

jnh216 100 800 2500 7197 1 1 2.17

jnh219 100 800 2500 7197 1 1 21.2

jnh302 100 900

2800 8097 1 unsat 6.24

3700 14392 2 unsat 54.6

3700 14392 3 - >2000

4600 22485 4 4 75.8

jnh303 100 900 4600 22485 4 4 75.8

jnh304 100 900
3700 14392 2 unsat 65.1

3700 14392 3 3 35.8

jnh305 100 900

2800 8097 1 unsat 17.6

3700 14392 2 unsat 234.

3700 14392 3 3 369.

TABLE 3. sub-SAT results for a larger DIMACS benchmark 
series. These are again all unsatisfiable in their original form, 

but relax easily by masking only a few clauses.
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