Global Clustering-Based Performance-Driven Circuit
Partiti oning

Jason Cong
University of California at Los Angeles
Los Angeles, CA 90095
cong@cs.ucla.edu

Abstract

In this paper, we propose a new global clustering based
multi-level partitioning algorithm for performance optimiza-
tion. Our algorithm computes a delay minimal K-way par-
tition first, then gradually reduces the cutsize while keeping
the circuit delay by de-clustering and refinement. Our test
results on a set of MCNC sequential examples show that we
can reduce the delay by 30%, while increasing the cutsize
by 28% on average, when compared with hMetis [5]. Our
algorithm also consistently outperforms other state-of-the-
art partitioning algorithms [2, 5, 3] on circuit delay with
reasonable cost on the cutsize.

1. INTRODUCTION

Recent trend in deep submicron VLSI technology indi-
cates that circuit delay is increasingly dominated by the in-
terconnect delay. National Technology Roadmap for Semi-
conductor predicts that 80% or more circuit delay will be
directly linked to interconnect in deep submicron designs
[1]. Furthermore, as the feature size (minimum wire width)
continus to shrink, the circuit size becomes larger and larger
and increasingly difficult to handle by most current synthe-
sis and layout tools. Sylvester and Keutzer [13] proposed
to partition a large circuit into small blocks so that the lo-
cal intra-block delay can be small compared to global inter-
block delay. In general, circuit partitioning can be used
for either global planning or divide-and-conquer purposes as
pointed out in [2, 3]. For high performance designs, circuit
partitioning with consideration of performance optimization
becomes indispensable.

In this paper, we study the circuit partitioning for per-
formance optimization problem with consideration of retim-
ing. Retiming is a sequential optimization technique, usually
performed at logic domain. By combining partitioning and
retiming, we can make a better plan for large designs with
the mutual benefit of both logic and physical optimization
capabilities.

There are a number of works on performance-driven par-

Permissionto make digital or hard copies of all or part of this work for
personaor classroomuseis grantd without fee provided that copies are
not madeor distributed for profit or commercid advantageandthat copies
bea this notice andthefull citation on thefirst page.To copy othemise,to
repubish, to poston senersor to redistibuteto lists, requiresprior specific
permissim andbr afee.

1SPD’ 02 April 7-10,2002,SanDiego, California, USA.

Copyright 2002ACM 1-58113460-6/020004...$5.00.

Chang Wu
Aplus Design Technologies, Inc.
Los Angeles, CA 90024
changwu@aplus-dt.com

titioning or clustering [9, 8, 6, 10, 14, 11, 2, 3]. The par-
titioning based approaches can have better control on the
cutsize, but no guarantee on the performance. The min-
delay clustering based approaches have stronger capability
in optimizing the performance, but tend to increase cutsize
significantly. Furthermore, node duplication is assumed for
those clustering based algorithms to guarantee the best per-
formance, which in practice may significantly increase the
circuit size.

For cutsize minimization, hMetis [5] significantly improves
the solution quality based on a very efficient multi-level op-
timization method. It performs a sequence of coarsening
and uncoarsening steps followed by FM [4] based refinement.
Compared with other algorithms, this algorithm can consis-
tently achieve a much smaller cutsize. However, its coarsen-
ing step only explores very local connectivity information.
Thus, it cannot guarantee to produce small delay in general.
Recently, Cong et al. [2] proposed a performance-driven
clustering /partitioning with retiming algorithm. Given an
area bound for each cluster, PRIME can compute a quasi-
optimal solution if node duplication is allowed. For circuit
partitioning without node duplication, a heuristic version of
PRIME can still achieve the smallest delay compared with
other partitioning algorithms followed by separate retim-
ing [2]. But PRIME suffers a serious problem of produc-
ing huge cutsize. Later on, Cong et al. [3] proposed to
combine PRIME and the multi-level cutsize minimization
technique together for both performance and cutsize opti-
mization. Their algorithm, named HPM [3], first performs
PRIME to form small clusters for delay minimization, then a
multi-level edge-separability based clustering algorithm and
a multi-way partitioning algorithm for cutsize minimization.
Their results show that HPM [3] can achieve a reasonable
balance in performance and cutsize compared with hMethis
[5] and PRIME [2]. However, in HPM [3], the performance-
driven clustering and the multi-way partitioning are sepa-
rated into two steps. To achieve a balance on performance
and cutsize, HPM [3] must sacrifice the full performance op-
timization capability of PRIME by giving a very small area
bound ! to PRIME for larger freedom on cutsize reduction
in later steps. As a result, HPM only has limited perfor-
mance optimization capability, and in some cases can even
produce results with larger delay than that by hMetis.

The multi-level optimization scheme of hMetis [5] can be

nstead of setting the area bound to be the full block size
for best possible delay, the authors of [3] chose a constant
area bound of 10 for running PRIME [3] for best area delay
tradeoff based on their experimental results.

depicted in Figure 1. It performs gradual coarsening fol-
lowed by uncoarsening and refinement. For cutsize mini-
mization, the hyperedge based coarsening with considera-
tion of local connectivity may be good enough. For per-
formance optimization or other objectives needing the in-
formation of the entire circuit, gradual coarsening is hard
to predicting the impact to the final circuit performance.
Most of all, any errors made at lower levels will propagate
to the top level and be very difficult to correct until the
uncoarsening gets back to the bottom levels. As a result,
any bad coarsening at lower levels will very likely entrap the
algorithm to a local optimal solution with inferior quality.

bottom | evel

00
. @©®£©
i
@@;0@
juauau 181 pue Bu 1I191sn |28p

top | evel

Figure 1: The V-Cycle Multi-Level Partitioning
Method in hMetis.

bottom | evel

juauau | Ja 1 pue bBu 13 1sn |28p

top | evel

Figure 2:
Method.

Top-Down Multi-Level Partitioning

In this paper, we propose a new multi-level optimization
scheme for performance-driven circuit partitioning based on
global clustering. We overcome the problem on gradual
coarsening by directly starting from the top level partition-
ing as shown in Figure 2. We perform the global clustering
PRIME algorithm [2] to get an initial partitioning solution
with minimal circuit delay. Then, we perform multi-level
de-clustering and refinement to gradually reduce the cut-
size while preserving the minimal circuit delay. The objec-
tive of the refinement is changed to cutsize minimization,
rather than the more difficult delay minimization. The cut-

size minimization problem can be handled easily by many
existing partitioning algorithms like FM [4]. Our main con-
tribution is a new global clustering based multi-level opti-
mization scheme starting directly from the top level. For
performance optimization, we think our new multi-level op-
timization scheme is more suitable than the coarsening and
uncoarsening method in [5]. We believe our new scheme can
be applied for performance optimization at various stages of
logic synthesis and physical design.

We have tested our algorithm on a set of MCNC exam-
ples. Our results show that our algorithm consistently out-
performs other state-of-the-art partitioning algorithms with
15% to 30% smaller delay for either 16-way partitioning or
bi-partitioning. Our cutsize is similar to that by HPM [3],
but 28% larger than that by hMetis [5].

The remainder of the paper is organized as follows. Sec-
tion 2 presents the problem formulation and preliminaries.
Section 3 presents the details of our algorithm. The exper-
imental results are presented in Section 4. Discussions and
conclusions are given in Section 5.

2. PROBLEM FORMULATION AND PRE-
LIMIN ARIES

The partitioning problem is to decompose a given circuit
into K blocks for a given K with balanced area. Retim-
ing is a well-known sequential circuit optimization technique
for delay optimization by moving flipflops without changing
the circuit behavior. Retiming is optimally solved first by
Leiserson and Saxe [7]. For performance-driven circuit parti-
tioning and retiming, we represent a sequential circuit by the
retiming hypergraph which is a modification of the retiming
graph defined in [7]. A retiming hypergraph is a directed
graph G(V, E, W, H), where V is the set of nodes represent-
ing gates in the circuits, E is the set of edges representing
connections between nodes, W = {w(e) | Ve € E} is the
set of edge weights representing the numbers of flipflops on
the edges, and H is the set of hyperedges. A hyperedge is a
set of edges driven by the same node. PI and PO denote the
sets of primary inputs and primary outputs of the circuit. A
retiming solution is denoted as R(V) = {r(v) |[Vv € V},
where r(v) is an integer representing the number of flipflops
moved from v’s output edges to input edges.

PROBLEM 1. For a sequential circuit G(V, E, W, H), a bal-
anced duplication-free K-way partitioning and retiming so-
lution is represented as P = {P1,Ps,..,Px} and R(V) =
{r(v) |Yv € V} satisfying the following conditions:

1.P, N Pi=0fori#£jand PAU..UPxk =V,
2. a; <| P; |< Bi for given a; and B;, 1 <i< K,
3. w"(e(u,v)) = wle(u,v)) +r() —r(u) >0,

4. r(v) =0 for all PI, PO nodes v.

The cutsize of a partitioning solution is the number of
hyperedges spanning more than one block. As in [2, 3], the
general delay model is used in this paper, which assumes that
each gate v has a delay of d, intra-block delay (local inter-
connect delay within each block) of d and inter-block delay
(interconnect delay between blocks) of D, where d < D.
The size of each gate v is a,. We ignore the setup and hold
times, as well as the size of flipflops (FFs) as assumed in

previous works on retiming [7, 2, 3].2

The circuit delay is measured as the longest combinational
path delay from a PI or an FF output to a PO or an FF
input. Our objective is to perform a K-way balanced parti-
tioning with retiming for the minimum delay, while reducing
the cutsize as much as possible. In the remainder of the pa-
per, we use both circuit delay and clock period interchange-
ably for the same meaning without further notice.

3. THE MULTI-LEVE L PERFORMANCE-
DRIVEN PARTITIONIN GWITH RETIM-
ING ALGORITHM

3.1 Overview

In this section, we present the details of our algorithm
named MLPR. For a circuit with total area of A and a
given constant K for K-way partitioning, we first perform
a performance-driven clustering with area bound of % to
achieve the minimal possible clock period for K-way par-
titioning and retiming using the PRIME algorithm [2] as
described in Section 3.2. Then, we partition those clus-
ters into K blocks to get the top level partitioning solu-
tion. The performance-driven clustering problem can be
solved by PRIME [2], while the cutsize-driven partitioning
problem can be solved with hMetis [5] or FM [4]. Since
the cutsize of this partitioning solution is still quite large,
we perform subsequent steps of de-clustering and refine-
ment for cutsize minimization, while preserving the circuit
delay. In the following, we first review the performance-
driven clustering with retiming algorithm in [2]. Then, we
present details on initial partition generation at the top level,
performance-driven de-clustering and performance-bounded
cutsize driven refinement.

3.2 Review of the Performance-Driven Clus-
tering

The performance-driven clustering is to form a number of
clusters for a circuit under a given area bound. Under the
general delay model with node delay d,, intra-block delay
d and inter-block delay D, our objective is to minimize the
circuit delay after optimal retiming. To achieve the minimal
clock period, PRIME [2] performs a binary search in the
range [lb, ub], where Ib is a lower-bound on the clock period
computed by assuming that every edge has delay d and ub is
an upper-bound on the clock period computed by assuming
that every edge has delay D. For a retiming hypergraph
G(V,E,W, H) of a circuit and a target clock period ¢, the
edge length, denoted length(e), of an edge e(u,v) is defined
to be —¢ - w(e) + d(e) + dv, where w(e) is the edge weight
and d(e) is the edge delay. For a given clustering solution,
each edge has a well-defined edge length. The Il-value I(v)
of a node v is defined to be the maximum path length from
PlIs tov.

It was proven in [11] that:

2We ignore the size of FFs is because it is difficult to predict
which partition an FF will be in before retiming. For FPGA,
in general this will not cause a problem because they are
register-rich. For example, both Xilinx Virtex and Altera
Flex FPGAs has one FF to use for each 4-LUT. For ASIC,
if retiming causes area unbalance problem, a postprocessing
of rebalancing area is needed, or we can disable retiming and
consider FF area during partitioning.

THEOREM 1. In a clustered circuit C of a sequential cir-
cuit with a target clock period ¢, if there is a PO whose
l-value is greater than ¢, the clustered circuit cannot be re-
timed to clock period of ¢ or less. If, on the other hand, the
l-values of all POs are less than or equal to ¢, the clustered
circust can be retimed to a clock period less than ¢ + D.

Accordingly, let I°°*(v) be the minimum I(v) among all
possible clustering solutions, one can check if there exists
one clustering solution with a retimed clock period of no
more than ¢ by computing I°7*(v) for all PO nodes v. Since
our problem is circuit partitioning without node duplication,
we refer PRIME to the duplication-free heuristic proposed
in [2] in the remainder of this paper.

3.3 Top Level Clustering and Partitioning

For a circuit with an area of A and K-way partition-
ing, we perform the performance-driven clustering algorithm
PRIME [2] with an area bound of %. Since PRIME only
groups critical nodes together, i.e., groups nodes if separat-
ing them will increase the final delay, PRIME will generate
more than K clusters. In practice, most have an area far
less than %, while only a few have an area closing to %.
We further pack those clusters into K partitions with area
bounded by %. Since packing will only reduce edge delay,
the minimum clock period computed by PRIME can be pre-
served in any K-way partitioning solution of those clusters.

It is not difficult to prove that:

THEOREM 2. For a given general delay model with given
node delay, intra-block delay, inter-block delay, and a given
clustering solution of a circuit, let ¢ be the circuit delay. For
any partitioning solution of the clusters, its circuit delay will
be less than or equal to ¢.

Clearly, with a delay optimal clustering solution, we can
focus on cutsize minimization only when computing a K-
way partitioning solution of the clusters.

In MLPR, we use hMetis [5] to pack those clusters gen-
erated by PRIME [2] into K area-balanced partitions for
smaller cutsize of the initial partitioning at the top level.

3.4 Performance-DrivenDe-clusteringandRe-
finement

The initial partitioning solution generated by PRIME [2]
and hMetis [5] at the top level defines the best delay we can
achieve. However, the cutsize is usually much larger than
what is achievable by hMetis [5]. This is because some of
the large clusters generated by PRIME limit the solution
space for cutsize reduction. To further reduce the cutsize
without increasing the circuit delay, we perform gradual de-
clustering and refinement until we reach the bottom level,
where each cluster is a single node.

De-clustering will form smaller clusters so that refinement
can have greater freedom in moving clusters (or nodes) for
cutsize reduction. De-clustering in MLPR is actually a clus-
tering process with a smaller area bound on each cluster.
The objective is performance optimization, i.e., it tries to
group together nodes in critical paths to reduce the cir-
cuit delay. According to Theorem 2, any partitioning so-
lution of the de-clustered netlist will only have the same
or smaller delay. Our performance-driven de-clustering pro-
vides a guarantee on the circuit delay so that the follow-on
step of refinement can be simplified to consider cutsize only.

A big difference between our de-clustering procedure and
the uncoarsening procedure in hMetis [5] is that our de-
clustering is based on the current partitioning solution, while
the uncoarsening solution is determined a priori in the coars-
ening stage. The major drawback of the uncoarsening ap-
proach is that it does not use any information in the current
partitioning solution and does not know where the critical
paths are.

In MLPR, we perform a partition-bounded clustering for
de-clustering. For the partitioning solution defined at a
higher level, a partition-bounded clustering solution is a
clustering solution in which two nodes are in one cluster
only if they are in the same partition. In other words, any
cluster will not be moved across the partition boundary. The
reason is that by preserving the higher level partition bound-
ary, we guarantee that the higher level partitioning solution
is also a partitioning solution of the de-clustered netlist at
the current level. In theory, we can guarantee the optimal
solution at the current level is always better than the higher
level solution. Notice that the refinement procedure can still
move clusters across the partition boundary.

Our partition-bounded performance-driven de-clustering
is performed as follows. We first mark all cut edges across
different partitions. Then, we compute an area bound which
is smaller than the area bound used at the higher level. (At
the top-most level, the area bound of clusters is the max-
imum size of each partition.) We then call PRIME to do
performance-driven clustering with the following modifica-
tion. When PRIME wants to pack a fanin node u of node v
into the cluster of v based on the performance requirement,
we check if the edge from w to v is cut. If the edge is cut,
we do not allow u to be packed into the cluster of v even
though the delay will increase. We call this algorithm the
modified PRIME algorithm.

In the refinement step, we perform FM algorithm [4] for
cutsize reduction. At the end of refinement, we perform
timing analysis to compare the current solution with the
previous solution at a higher level and decide whether to
keep the refined solution or roll back to the solution before
refinement. For better control on delay, we use the mul-
tiple rollback point method proposed in [3]. This method
saves several local optimal solutions in one pass of refine-
ment, evaluates the delay of the partition corresponding to
each saved solutions and chooses one with the smallest cut-
size while preserving the delay of the higher level partition.
Because only a few points are considered, we can do timing
analysis on the entire circuit without increasing the runtime
too much. If none of the points we computed can preserve
the delay of the higher level partition, we can pick a solution
based on a tradeoff on delay and cutsize.

When we reach the bottom level, every cluster is just a
single node. We perform one more refinement on the flat
netlist without any clustering constraints. Finally, we per-
form an optimal retiming on the partitioning solution to get
the minimum clock period. Notice that during the entire
partitioning, de-clustering and refinement stage, our timing
analysis always considers retiming by computing the node
labels 1°7*(v) as defined in Section 3.2. As a result, our par-
titioning solution already determines the retiming solution
which can be computed directly from node labels as [2].

The pseudo code of our MLPR algorithm is shown in Fig-
ure 3.

MLPR(G(V,E,W,H),K)
1 compute the area A of the entire circuit
compute the upper and lower bounds on each block

2 for area bound of %, compute the minimal clock period ¢

with the PRIME algorithm [2]
3 for ¢, construct a (duplication-free) clustering

solution with PRIME |[2]
4 initial partitioning Py: merge those clusters into K blocks
5 for level ¢ from 1 to h
6 A
7

set area bound A; to be

call modified PRIME with A; under P;_; to
get a clustering solution Cj

refining P;_1 to get P; by moving clusters in C;

9 stop if A; =1

10 return the final solution

[e 2]

Figure 3: Multi-level Performance-Driven K-way
Partitioning. G(V,E, W, H) is the retiming graph of
the original circuit, where V is the node set, E is
the edge set, W is the edge weight set and H is the
hyperedge set. K is a given constant for K-way par-
titioning.

4. EXPERIMENT AL RESULTS

We have implemented our algorithm, named MLPR, in C
language and incorporated into the SIS [12] package. The
experiments were run on a dual Intel PentiumIIT 400Mhz PC
with 1GB memory. We obtained hMetis V1.5.3, PRIME and
HPM from their authors for evaluation. We used 12 MCNC
benchmarks. Tech_decomp is performed to decompose the
original circuits into 2-bounded circuits, i.e., each gate has
only two inputs. The size of the circuits ranges from 500 to
30,000 2-input gates.

In our test, we assume each two-input gate has an area
of 1 and a delay of 1. The local interconnect delay within
a partition is 0 and the inter-partition delay is 5 as is the
one used in [3]. We compared our algorithm with the other
algorithms for both 16-way partitioning (as tested in [3]) and
bi-partitioning. Since the HPM binary code we obtained
can only run for 16-way partitioning, we could not compare
with HPM for bi-partitioning. For PRIME, we used the
duplication-free heuristic in [2]. For both 16-way and bi-
partitioning test, we set the area skew to be 5%. For bi-
partitioning, the partition size can be 45% to 55% of the
circuit size. For 16-way partitioning, the area bound on each
partition is within the range of 95% to 105% of %, where
A is the circuit size. The 16-way partitioning results are
shown in Table 1 and the bi-partitioning results are shown
in Table 2. For 16-way and bi-partitioning, we run K-way
hMetis, denoted khMetis, and hMetis, respectively. In either
case, we perform 20 runs with the VCycle option turned on.
We then read back the partitioning solutions and perform
an optimal retiming. For PRIME, HPM and our MLPR,
retiming capability is included in the package.

In Table 1, we can see that MLPR consistently outper-
forms all other algorithms in terms of the clock period. We
can get even smaller clock periods than the (duplication-free
heuristic) PRIME algorithm. Our results show that com-
pared with MLPR, PRIME generates results with 3 times
larger cutsize and 15% larger clock period. The khMetis
algorithm can generate results with 28% smaller cutsize,
but a 30% larger clock period on average. The HPM al-
gorithm can generate results with a 1% smaller cutsize and

16-way Partitioning Result

PRIME [2] | khMetis [5] MLPR HPM [3]
circuit | #nodes | ¢ | cutsize | ¢ | cutsize | ¢ |[cutsize | 4 | cutsize | ¢
s1423 530 57 162 67 61 120 144 68 88 104
s838.1 376 19 97 29 61 43 85 28 7 40
s5378 1578 13 354 27 157 35 171 25 222 31
§9234.1 1368 21 248 30 110 30 175 29 187 31
s1196 509 24 158 43 96 53 138 43
s13207.1 3376 32 408 45 126 55 306 41 251 51
$15850.1 4016 37 709 65 218 57 405 51 296 67
s38417 9897 27 1129 39 171 38 186 30 243 38
$38584.1 13551 29 1874 34 278 39 396 29
sbc 754 16 217 32 128 40 163 28 171 35
bigkey 9058 7 773 17 41 14 49 12 46 11
clma 31020 57 3660 97 388 76 366 76 415 80
average 28.3 815.8 43.8 152.9 50.0 215.3 38.3

299% 15% -28% 30% 1 1 1% 23%

1 66% 88% 44% 78%

Table 1: Comparison of MLPR with PRIME, khMetis and HPM on 16-way partitioning. Area skew is 5%,
node delay is 1, intra-block delay is 0, inter-block delay is 5. #nodes is the number of nodes in each circuit.
¢ is a lower bound on the clock period for each example computed by PRIME by allowing node duplication.
Empty entry means that HPM could not generate a solution for that example. The comparison is based on
the average improvement of each example when compared with MLPR or ¢;.

2-way Partitioning Result
PRIME [2] | hMetis [5] MLPR
circuit | #nodes | ¢ | cutsize | ¢ | cutsize | ¢ | cutsize | ¢
s1423 530 50 90 61 12 55 12 55
s838.1 376 15 86 20 5 20 37 20
$6378 1578 11 234 20 42 20 48 17
§9234.1 1368 20 112 22 41 30 34 20
s1196 509 19 114 29 32 38 84 27
s13207.1 3376 30 173 30 33 36 38 30
s15850.1 4016 34 369 38 40 41 51 34
s38417 9897 27 156 27 27 27 27 27
s38584.1 13551 29 694 34 33 32 34 29
sbc 754 14 142 29 24 24 35 18
bigkey 9058 7 657 19 8 12 8 12
clma 31020 52 2648 78 39 54 39 54
average 23.5 489.5 31.5 29.5 304 39.5 26.2
1662% 20% -17% 16% 1 1
1 46% 39% 20%

Table 2: Comparison of MLPR with PRIME and hMetis

on bi-partitioning. Area skew is 5%, node delay

is 1, intra-block delay is 0, inter-block delay is 5. #nodes is the number of nodes in each circuit. ¢ is a
lower bound on the clock period for each example computed by PRIME by allowing node duplication. The
comparison is based on the average improvement for each example when compared with MLPR or ¢;.

23% larger clock period. As to the runtime, khMetis consis-
tently outperforms other algorithms significantly because it
does not consider any timing issues. For the largest design
clma, khMetis needs only 113 seconds, while PRIME takes
1044 seconds and MLPR takes 4808 seconds. We did not
measure HPM’s runtime as it was run on a Sun Solaris ma-
chine.® Since HPM uses a fixed and very small cluster size
for its clustering step, its runtime is usually much shorter

than PRIME and MLPR which use % as the area bound

3The binary code we obtained could only run on Solaris
machine.

for clustering. For fixed K, performance-driven clustering
algorithm PRIME|2] works in quadratic order of the circuit
size. MLPR’s runtime will be even longer. Currently, we are
looking for faster clustering algorithms to speed up MLPR.
Nevertheless, MLPR demonstrates the significant advantage
on performance optimization with consideration of cutsize
over the state-of-the-art algorithms.

To demonstrate how far away our delays are from the op-
timal ones, we compare the delay of each algorithm with the
lower bound on the minimum clock period by the labeling

procedure of the PRIME algorithm,* our MLPR, algorithm
can produce results with delay of 44% larger than the lower-
bounds. Notice that the lower-bounds are computed under
the assumption that node duplication is allowed. If we com-
pare our results with the optimal duplication-free partition-
ing solutions, the delay increase is most likely to be even
smaller.

Similar results hold for bi-partitioning as shown in Table
2.

5. DISCUSSIONSAND FUTURE WORK

In this paper, we present a performance-driven circuit
partitioning with retiming algorithm. Our main contribu-
tion is a new global clustering-based multi-level optimization
scheme. Our results show that our algorithm consistently
outperforms other state-of-the-art partitioning algorithms
for circuit delay minimization. Retiming is considered seam-
lessly during partitioning to achieve the best performance.
We believe our new multi-level optimization scheme can be
adapted to other problems in various stages in logic synthe-
sis and physical delay for performance optimization.

A key step in our algorithm is the performance-driven
global clustering. In MLPR, we use the PRIME algorithm to
compute clustering and de-clustering solutions in each level.
The PRIME algorithm runs in the order of O(A-n-log? D) for
a given area bound A, circuit size n and inter-block delay D
[2]. In MLPR, we need to set A = which makes PRIME
too slow for large designs and small K. To reduce the run-
time, we may need to either reduce the area bound or speed
up the PRIME algorithm. Reducing the area bound may
increase the clock period of the initial partitioning solution
at the top level, which may propagate to the final solution.
We think speeding up PRIME is a better approach.

In the future, we also want to extend our algorithm to
performance-driven floorplan or placement problems to con-
sider node locations.

6. ACKNOWLEDGEMENTS

The authors want to thank Prof. S. Lim for providing the
HPM binary code for the test.

7. REFERENCES

[1] Semiconductor Industry Association, National
Technology Roadmap for Semiconductors, 1997.

[2] J. Cong, H. Li, and C. Wu, Simultaneous Circuit
Partitioning/Clustering with Retiming for
Performance Optimization, In Proc. ACM/IEEE
Design Automation Conference, pages 460-465, 1999.

[3] J. Cong, S. Lim, and C. Wu, Performance Driven
Multi-level and Multiway Partitioning with Retiming,
In ACM/IEEE Design Automation Conference, pages
274-279, 2000.

[4] C. Fiduccia and R. Matheyses, A Linear-Time
Heuristic for Improving Network Partitions, In
ACM/IEEE Design Automation Conference, pages
175-181, 1982.

[5] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
Multilevel Hypergraph Partitioning: Application in

“The lower bound computed by PRIME is the minimum
clock period under node duplication. We refer readers to
[11, 2] for the details.

[10]

[11]

[12]

[13]

[14]

VLSI Domain, In ACM/IEEE Design Automation
Conference, pages 526-529, 1997.

E. L. Lawler, K. N. Levitt, and J. Turner, Module
Clustering to Minimize Delay in Digital Networks,
IEEE Trans. on Computers, 18:47-57, 1969.

C. E. Leiserson and J. B. Saxe, Retiming Synchronous
Circuitry, Algorithmica, 6:5-35, 1991.

L. Liu, M. Kuo, C. K. Cheng, and T. C. Hu,
Performance-Driven Partitioning using a Replication
Graph Approach, In Prod. 82th ACM/IEEE Design
Automation Conference, pages 206-210, 1995.

L. Liu, M. Shih, N. Chou, C. K. Cheng, and W. Ku,
Performance-Driven Partitioning Using Retiming and
Replication, In IEEE International Conference on
CAD, pages 296-299, 1993.

R. Murgai, R. K. Brayton, and

A. Sangiovanni-Vincentelli, On Clustering for
Minimum Delay/Area, In IEEFE International
Conference on CAD, pages 6-9, 1991.

P. Pan, A. K. Karandikar, and C. L. Liu, Optimal
Clock Period Clustering for Sequential Circuits with
Retiming, IEEE Trans. on Computer-Aided Design of
Integrated Circuits And Systems, 17(6):489-498, 1998.
E. Sentovich, K. Singh, L. Lavagno, C. Moon,

R. Murgai, A. Saldanha, H. Savoj, P. Stephan,

R. Brayton, and A. Sangiovanni-Vincentelli, SIS: A
System for Sequential Circuit Synthesis, Electronics
Research Laboratory, Memorandum No. UCB/ERL
M92/41, 1992.

D. Sylvester and K. Keutzer, Getting to the Bottom
of Deep Submicrion, In IEEFE International
Conference on CAD, pages 203-211, 1998.

H. Yang and D. F. Wong, Circuit Clustering for Delay
Minimization under Area and Pin Constraints, In
ED&TC, pages 65-70, 1995.

	Main Page
	ISPD'02
	Front Matter
	Table of Contents
	Author Index

