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ABSTRACT
At the 250nm technology node, interconnect delays account for over
40% of worst delays [12]. Transition to 130nm and below increases
this figure, and hence the relative importance of timing-driven place-
ment for VLSI. Our work introduces a novel minimization of maxi-
mal path delay that improves upon previously known algorithms for
timing-driven placement. Our placement algorithms have provable
properties and are fast in practice. Empirical validation is based on
extending a scalable min-cut placer with proven quality in wirelength-
and congestion-driven placement [4]. The CPU overhead of the timing-
driven capability is within 50%. We placed industrial circuits and
evaluated the resulting layouts with a commercial static timing ana-
lyzer.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits ]: Design Aids – Layout, Place and Route

General Terms
Algorithms, Design

1. INTRODUCTION
Timing-driven layout has recently emerged as a major design bot-

tleneck, highlighting the difficulty of finding a feasible layout of a cir-
cuit with prescribed cycle time and logic function. The significance of
timing-driven layout increases with that of interconnect delays relative
to device delays. While commercial placement engines can evaluate
increasingly accurate measures of path timing, simple models often
lead to more efficient minimization. To first order, total (average) net
length objectives correlate with congestion- and delay-related objec-
tives (since wirelength creates capacitative load andRC delay). To
bring the topology of timing constraints closer to placement, some
works [17, 6, 14] minimize delays alongexplicitly enumerated paths,
which becomes impractical when the number of signal paths under-
goes combinatorial explosion in large circuits.1

Combinatorial explosion is not a problem for static timing anal-
ysis methods [16, 1] which can quickly determine whether delays
along implicitly defined paths satisfy given timing constraints. The
key challenge in timing-driven global placement is to optimize large

1E.g., the authors of [5] estimated that explicitly storing all 245K
paths in their 5K-cell design requires 163Mb of disk space. An equiv-
alent compact representation took only 1.8Mb in human-readable
ASCII format.
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sets of path delays without explicitly enumerating them. This is typi-
cally done by interleaving weighted wirelength-driven placement with
timing analysis that annotates individual cells, nets and timing edges
with timing information [5]. Such annotations are translated intoedge
or net weights[21, 1, 25] for weighted wirelength-driven placement,
or into additional constraints for such placement, e.g., per-net delay
bounds in “delay budgeting” approaches [15, 23, 28, 20, 11]. Itera-
tions are repeated until they bring no improvement.2 As noted in [11,
26], “net re-weighting” algorithms are oftenad hoc3 and have poor
convergence theory, i.e., if delays along critical nets decrease, other
nets may become critical.4 On the other hand, “delay budgeting” may
overconstrain the placement problem and prevent good solutions from
being found. A unification of budgeting and placement is proposed in
[26], but finding scalable algorithms for such a unification remains an
open problem.

While many published works focus on timing optimization alone,
placement instances arising in the design of state-of-the-art electron-
ics today are often difficult from the wirelength/congestion stand-
point alone. Therefore, a robust placement algorithm must have a
proven record in wirelength- and congestion-driven context without
timing. Motivated by this circumstance, recent works [13, 24] ad-
vocate the use of top-down partitioning-driven placement with an-
alytical elements for timing optimization. This provides a generic
framework for large-scale placement with near-linear runtime, based
on the strong empirical record of min-cut algorithms in wirelength-
/congestion-driven placement [4].

The variability of results produced by commercial placers and the
attention given to timing-driven placement by industry leaders (e.g.,
Aart de Geus at ISPD 2000), suggest that the timing-driven placement
problem is far from solved. The problem becomesmore difficultwith
more objects to place, andmore critical in the overall design flow,
with each successive technology node. Therefore, industrial and aca-
demic researchers seek new and more effective approaches.

The contributions of this work are

� a generic continuous path-timing optimization that is the first to
avoidheuristicbudgeting and re-weighting;

� combining path-timing optimization with top-down placement;

� a competitive implementation of a timing-driven placement based
on our earlier work on wirelength- and congestion-driven place-
ment[4]; and

2Combinations of net re-weighting and delay budgeting have also
been proposed (e.g, in [27]).
3E.g., at each stage of recursive min-cut in [21], non-critical nets get
weights inversely proportional to their slacks, and critical connection
get slightly higher weights.
4A reasonable mathematical framework for net re-weighting is avail-
able via Lagrangian relaxation, but such formulations are vulnerable
to combinatorial explosion and implylinear convergence of numeri-
cal methods versus quadratic convergence of more efficient Newton-
based methods.



� an evaluation flow for large-scale timing-driven placement with
a major commercial timing analyzer.

The remainder of this paper is organized as follows. Background
is covered in Section 2, including top-down placement, signal delay
modeling and static timing analysis. Section 3 covers our new con-
tinuous path-delay minimization, which is embedded into a top-down
placement framework in Section 4. The empirical validation is given
in Section 5, and Section 6 concludes the paper.

2. BACKGROUND
Timing-driven placement draws upon the two more intuitive ele-

ments of wirelength-driven placement and timing analysis. Delays in
large-scale layouts must be accurately yet quickly computed. Such a
tradeoff is provided by static timing analysis (STA) tuned to err on
the pessimistic side. STA relies on (i) models of signal delays in indi-
vidual gates and wires, and (ii) (function-aware) path timing analysis
based on gate/wire delays.

2.1 Top-down Placement
Top-down algorithms seek to decompose a given placement in-

stance into smaller instances by subdividing the placement region,
assigning modules to subregions, reformulating constraints, and cut-
ting the netlist — such that good solutions to smaller instances (sub-
problems) combine into good solutions of the original problem. In
practice, such a decomposition is accomplished by multilevel min-cut
hypergraph partitioning that attempts to minimize the number of nets
incident to nodes in multiple partitions. Each hypergraph partitioning
instance is induced from a rectangular region, orblock, in the lay-
out. Conceptually, a block corresponds to (i) a placement region with
allowed locations, (ii) a collection of modules to be placed in this re-
gion, (iii) all nets incident to the contained modules, and (iv) locations
of all modules beyond the given region that are adjacent to some mod-
ules in the region (considered asterminalswith fixed locations). Cells
inside the block are represented as hypergraph nodes, and hyperedges
are induced by nets incident to cells in the blocks. Node weights rep-
resent cell areas. Partitioning solutions must approximately equalize
total weight in partitions to prevent more cells being assigned to a
block than can be placed inside without overlaps.

The top-down placement process can be viewed as a sequence of
passes where each pass refines every existing block into smaller blocks.5

These smaller blocks will collectively contain all the layout area and
cells that the original block did. Some of the cells in a given block
may be tightly connected to external cells (terminals) located close to
the smaller blocks to be created. Ignoring such connections implies
a bigger discrepancy between goodmin-cutpartitioning solutions and
solutions that result in better placements. Yet, external terminals are
irrelevant to the classic partitioning formulation as they cannot be
freely assigned to partitions due to their fixed status. A compromise
is achieved by an extended formulation for “partitioning with fixed
terminals”, where the terminals are “propagated to” (fixed in) one or
more partitions and assigned zero areas [9]. Terminal propagation is
typically driven by the relative geometric proximity of terminals to
subregions/partitions [3] and is essential to the success of min-cut re-
cursive bisection.

2.2 Static Timing Analysis
A standard-cell circuit has cellsC= fckg and signal netsN= fnlg.

Nets are connected to cells withpins, each of which can be either an
IN-pin or an OUT-pin (directionality).6 The full timing graph[16] is

5When recursive bisection is applied, careful choice of vertical versus
horizontal cut direction is important, — one rule of thumb is to keep
the aspect ratios of the blocks as close to a given constant (typically
1.0) as possible, for as long as possible.
6Bidirectional pins can be captured using pairs of unidirectional pins
and constrained timing graph traversals.

built using the pins of the circuit as its verticesV = fvig. Timing edges
E = fei j g that connect pins are constructed in two ways. Each signal
net is converted into a set of orientedinterconnectedges that connect
each OUT-pin of the net to all IN-pins of the net. Each standard cell
or macro is represented by a set of orientedintracellular edges deter-
mined by the contents of the cell, with the exception that intracellular
edges of latches and flip-flops (storage elements) are ignored. We as-
sume acyclic timing graphs and in practice break cycles by removing
back-edges discovered during DFS traversals. The delay attributed to
a given timing edge is a function of vertex locations, including those
of the edge source and sink. In our work on large-scale placement we
use areduced timing graphwhere all pins on every placeable object
are clustered into a single vertex so that every vertex can be placed
independently. Thus, intracellular arcs are removed; gate delays are
computed per driver pin and added to wire delays on the respective
outgoing edges.

The primary objective of timing-driven layout,cycle time, is mod-
eled by the maximal delay along a directed path between particular
source and sink pairs (primary I/Os and I/Os of store elements). The
delay tπ along a pathπ = (ei1 j1;ei2; j2; : : :) is a sum of edge delays
( j1 = i2; j2 = i3; : : : ). More generally, every path may come with a
timing constraintcπ, which is satisfied if and only iftπ � cπ, corre-
sponding to “max-delay”setupconstraints.7 Those timing constraints
cπ (i.e., upper bounds on path delays) are not given explicitly, but
rather defined viaactual arrival times(AAT) and required arrival
times (RAT) for every driver-pin and primary output. The timing
constraint for a pathπ is then the difference betweenRAT@sink�
AAT@source. We do nota priori restrict how the set of eligible paths
is defined; rather, this is relegated to (i) generic static timing analysis
based on path tracing [16] described below, plus (ii) extensions to han-
dle false paths, multi-cycle paths, and variabilities (dynamic and sta-
tistical) that lead to such phenomena as crosstalk- or supply-induced
delay uncertainty. Our own STA implementation has only the generic
capability, but we also evaluate placements with an industry STA tool.

Given delays of timing edges (e.g., computed from a placement),
static timing analysis (STA) determines (i) whether all timing con-
straints are satisfied, and (ii) which directed paths violate their con-
straints. The key to computational efficiency of STA is the notion of
slack, which allows us to avoid enumerating all paths [16].

Definition 1: The slack of a pathπ is sπ = cπ � tπ. The slack
of a timing edge (vertex) is the smallest path slack among the paths
containing this edge (vertex).

Lemma-Definition 2: In a given timing graph, the minimal vertex
slack, minimal edge slack and minimal path slack are equal. This
value is calledcircuit slackand is a convex function of edge delays,
which are functions of cell locations.

Negative slack is indicative of violated timing constraints. There-
fore, timing-driven layout aims to maximizefminimal slack over all
pathsg, computed by STA, to improve cycle time. To compute min-
slack in linear time, two topological traversals propagateRAT and
AAT from sources and sinks to all vertices. Namely, one traversal
computes theAAT at a vertexv when, for every directed edgeuv
ending atv, theAAT at u and the delay ofuv are known. We write
AATv =maxuvfdelay(uv)+AATug. Similarly,RATv can be computed
when, for every directed edgevwbeginning atv, delay(vw) andRATw
is known. ThenRATv = minvwfRATw�delay(vw)g. With AAT and
RAT available at all vertices, slacks at individual vertices are com-
puted asRAT�AAT, and similarly for edges [16]. If the minimum
slack is negative, some paths must violate their constraints and have
negative slacks on all of their edges.

7As in [28, 11], we leave “min-delay”hold constraints to clock-tree
tunings and local optimizations, e.g., buffer padding, sizing, snaking,
etc.



2.3 Gate and Wire Delay Modeling
When calculating the gate/edge delays on eachcontinuous place-

ment iteration(see Section 5.1), we use four different delay models:
(i) linear, (ii) quadratic, (iii) Elmore MST, and (iv)Elmore star. In the
linear model, the delay between a source pin and a sink pin is calcu-
lated by the Manhattan distance between them. The quadratic model
uses the square of the Manhattan distance. Both the linear model and
the quadratic model combine the gate delay and the edge delay into
one model which is based on the length. The Elmore MST model uses
a lumped-distributed RC gate and wire delay model that is calculated
based on the MST for a given net.8 The Elmore star model uses the
same calculation with a star tree (instead of the MST tree) where each
sink pin has a direct edge from the source pin. Thus, the load of a
given sink pin only affects the interconnect delay of that particular
edge.

The Elmore delay calculation uses cell locations and the following
parameters (cf. [12]):

� r andc are per-unit resistance and capacitance of interconnect;
when routing assignments are unknown, statistical averages from
typical placements are used;

� Ri is the resistance of a given driver pini andCj is the capaci-
tance of a given sink pinj .

Load-dependent gate delay at output pini is computed asRi(Cint +
Σ jCj ) where the summation is over sinksj andCint is the total in-
terconnect capacitance on the driven net.Cint = cW, whereW is an
estimate of the total net length, e.g., the length of a Rectilinear Min-
imum Spanning Tree (RMST) or the total length of the edges in the
star tree.9 Interconnect delays are computed asrcL2 whereL is the
length of a timing edge. The delay calculation in the Elmore MST is
more expensive because it includes the construction and the traversal
of the tree.

3. MIN-MAX PLACEMENT
Our continuous optimization assumes that some vertices of the tim-

ing graph are restricted to fixed locations or rectangles; thus, it can
be used in top-down placement. Theminimizationof the path-delay
functionΦ below, over all pathsπ, includes optimization of the worst
slack as a special case:

Φ =max
π

tπ
cπ

= max
π

∑e2π de

cπ
(1)

Here de denotes the signal delay along edgee of the timing graph
and can also be written asde = di j (xi ;yi ;xj ;yj ), makingΦ a function
of vertex locations via convex delay models for individual edges.10

Common edge delay models can be based on linear or quadratic
(squared) edge wirelength, or on Elmore delay (see Section 2.3).

Observation 3. A placement satisfies all timing constraints if and
only if Φ� 1:0.

Φ is amultiplicativegeneralization of the common (additive) slack
objectiveS, sinceΦ� 1:0, S� 0:0.

When cπ are identical, minΦ is equivalent to the minimization
of maximal path delay, and thus to maxS (see Section 2.2). The
general maxS problem with arbitrary path delayscπ determined by
AATsandRATscan be reduced to the case of identicalcπ by adding
a super-source and a super-sink connected respectively by constant-
delay edges to all timing sources and sinks. Therefore, the ordinary

8This is generally selected for simplicity and speed. With a generic
STA implementation, more accurate models or black-box delay cal-
culators can be used when affordable in terms of runtime.
9In addition, several other interconnect length estimations can be
used, such as a weighted half-perimeter wirelength [2], the length of
a minimum single-trunk Steiner tree or the length of a heuristic Rec-
tilinear Steiner Minimum Tree (RSMT).

10To better model delays, the functionsdi j () could also depend on lo-
cations of cells (topologically) adjacent toi and j [18].

slack maximization is a special case of minΦ. Our generic placement
algorithm for minΦ is a reduction to a simpler objective function.

3.1 Minimization of Φ by re-weighting
Givenedge weights wi j � 0 on the timing graph, weminimizethe

following MAX-based objective function11

δ = max
i j

wi j di j (xi ;xj ;yi ;yj) (2)

Defineδi j = wi j di j (xi ;xj ;yi ;yj ) so thatδ =maxi j δi j .
Our placement optimization ofΦ starts from an initial solution.12

Then we compute edge delays and perform Static Timing Analysis.
Based on slacks/criticalities and edge delays, we computewi j as out-
lined below. After that, the current placement is changed tominimize
the function given by Equation (2). The values ofδ andδi j after place-

ment at iterationk are denoted byδ(k), δ(k)i j andd(k)i j resp. We prove
that in this processΦ cannot increase, implying monotonic conver-
gence.

Lemma 4 Given (i) an arbitrary setwi j � 0 with at least one non-
zero, and (ii) any minimum of the respective MAX-based objective,
all edge delays cannot be improved simultaneously by another place-
ment. I.e., there is noε > 0 and new placement for which the delay of
every edgeei j is d0i j � di j � ε.

Proof by contradiction. Suppose we have foundε > 0 and a new
placement withε-smaller edge delays. Then defineC= maxi j d0i j =di j

and note thatC�maxi j (di j � ε)=di j < 1. Since every edge delayd0i j
in the new placement will be no longer thanCdi j , the value of the
objective function for the new placement will beC < 1 times of the
value for the original placement. However, this is impossible, since
the original placement minimized the objective function.

Definition 5 Givenk > 1 and a placement for which the objective
function (2) has valueδ(k), we call an iteration offre-weighting and
placementg successfuliff a placement is found for whichδ(k+1) �

δ(k). Otherwise we say that the iteration has failed. Finding a true
minimal value of the function (2) is not required. An iteration istriv-
ially successfulif the re-weighted objective function has value� δ(k)
with respect to the previous placement.

Lemma 6 All timing constraints are satisfied if

d(k+1)
i j � d(k)i j =

�
max
π03ei j

t(k)π0 =cπ0

�

Proof
h
maxπ03ei j t

(k)
π0 =cπ0

i
is the worst ratio between the delay of a

path passing throughei j and its constraint. Therefore by reducing
every edge delay on pathπ by the resp. ratio, we will ensure that path
delaytπ is within its constraintcπ

t(k+1)
π = Σei j2πd(k+1)

i j � cπ(Σei j2πd(k)i j )=t(k)π = cπ

We now determine multiplicative factors for re-weighting such that
after a successful iteration all timing constraints are satisfied accord-
ing to Lemma 6. Namely, for any pathπ and any edgeei j 2 π we seek
to ensure the left-most inequality in the following chain (the remain-
ing equality and inequality holda priori)

d(k+1)
i j � d(k)i j =

�
max
π03ei j

t(k)π0 =cπ0

�
(3)

= d(k)i j

�
min

π03ei j

cπ0=t(k)π0

�
� d(k)i j cπ=t

(k)
π (4)

11The main difference from more commontotal (equiv. average) wire-
lengthobjective is the use of max instead ofΣ.

12Quadratic placements work well in practice and can be produced
very quickly; faster/better approaches are possible.



To ensure inequality (4), we note thatd(k+1)
i j � δ(k+1)=w(k+1)

i j by

definition ofδ(k+1) andδ(k+1)� δ(k) by definition of a successful iter-

ation. Therefore, our goal will be reached once we haveδ(k)=w(k+1)
i j =

d(k)i j =
h
maxπ03ei j t(k)π0 =cπ0

i
which can be accomplished by re-weighting:

w(k+1)
i j = (δ(k)=d(k)i j )

�
max
π03ei j

t(k)π0 =cπ0

�
(5)

The max-terms in this formula are called “criticalities” and can be
computed using static timing analysis, which is especially efficient
when the main global objective is slack maximization.

Theorem ITC (Immediate Timing Convergence) All timing
constraints are satisfied after onesuccessfuliteration if re-weighting
is performed according to Equation (5).

Now we show that small placement changes caused by the proposed
iteration of re-weighting and placement also minimizeΦ. When the
current placement is perturbed only slightly,δ(k) is approximately
constant, and so are the valuesdk

i j . We can now rewrite the MAX-
based objective function as

max
i j

wi j di j = max
ei j

δ(k)

d(k)i j

"
max
π03ei j

t(k)π0

cπ0

#
di j (6)

� δ(k) max
π03ei j

t(k)π0

cπ0

= δ(k)max
π0

t(k)π0

cπ0

(7)

3.2 Interpretations of re-weighting and compar-
isons to known results

Define thetiming criticality of an edge to be the timing criticality
of the most critical path passing through the edge, measured by its

contribution toΦ, i.e., κ(k)i j = maxπ03ei j t
(k)
π0 =cπ0 . This can be viewed

as the multiplicative version of the traditional negative slack [16]. We

also definerelative edge delayρ(k)i j = δ(k)=δ(k)i j . Now Equation (5) can

be interpreted as multiplying each weightw(k)
i j by aweight adjustment

factor α(k)
i j = ρ(k)i j κ(k)i j which can be greater than, less than or equal to

1:0. The main idea here is to force critical edges to shorten (decrease
their delays)by only as much as they needto cease being critical and
allow non-critical edges to elongate (increase their delays) only byas
much as they canwithout becoming critical.

Intuitively, the re-weighting can be decomposed into two steps. At
the first step every edge weight is multiplied by relative edge delay,
which does not change the value of the objective function on the cur-

rent placement, but makes all edge terms equal (ρ(k)i j w(k)
i j d(k)i j = δ(k) for

any i; j). Following that, new edge weights are multiplied by timing
criticalities which will increase the objective thanks to timing-critical
edges (thus the iteration will never betrivially successful). Improving
the re-weighted objective improves critical edges and thus improves
Φ.

Multiplication by relative edge delays is somewhat counter-intuitive
becauseshorter edgeson critical paths receiveheavier weights than
longer edgeson the same paths. However, the useful effect of multi-
plication by relative edge delays is that all edge terms attain the max-
imum and the current placement becomes unimprovable (cf. Lemma
4). Loosely speaking, the work in [28] mentions theκ term, but com-
putes it for vertices rather than edges. However, neither [28], nor
[11] have theρ term, which makes their delay re-budgeting algorithms
heuristic.

3.3 Lower-level minimization
The minimization of the MAX-based objective can be performed

by linear or non-linear programming [19] depending on specific delay
models. In fact, for the linear-wirelength delay objectives, the LP
formulation is solvable in linear time using Bellman-Ford [8, Exercise

24.4-5]. We implemented a simpler algorithm that is extremely fast in
practice and easy to perform on the original circuit representation.
It traverses vertices in an arbitrary order and places them in locally-
optimal locations. Such a pass cannot increase the objective, implying
monotonic convergence. Given that most vertices are adjacent to very
few other vertices (netlist are sparse due to technology and library
constraints), every pass has linear runtime. We continue the passes
until the objective improves by� 0:1%. Few passes are required in
practice because critical paths have few stages of logic.

3.4 Extensions
Since more accurate delay objectives do not fit into the linear min-

imization model described above, we extended the overall placement
algorithm to accommodate more general delay objectives. The main
idea is to perform numerical differentiation and locally minimize lin-
ear approximations of given objective functions. This can also be seen
as a variant of gradient minimization (in a multi-dimensional space).
For this, we first find the smallest height/width over all standard cells.
Then we choose anε > 0 by taking 1=10 of that number and con-
sider a vector that is applied to the current location of a given cell
and has lengthε > 0. We then restrict the movements of each cell to
a direction that sensitizes the delay function. The tangent line to the
graph of the delay function, with respect to that direction, is approx-
imated as the unique straight line passing through the following two
points. The coordinates of the first point are the current placement and
the delay value, and the coordinates of the second point, are the cur-
rent placement shifted by theε-vector and the delay computed for that
placement. This construction is applied to each movable object inde-
pendently; it is straightforward to account for details such as constant
pin offsets. The linear approximation can be solved as described ear-
lier. Of course, the MST and SMT length are not smooth and are not
convex functions. Currently, we do not know how to achieve global
minima for such tree-based objectives through differencing schemes.

4. MIN-MAX PLACEMENT IN A TOP-DOWN
PLACEMENT FLOW

Figure 1 extends the basic top-down placement framework described
in Section 3. This combined algorithm attempts to improve cycle-time
and HPWL simultaneously. It starts by a call to min-max placement
that returns cell locations optimizing worst-slack, as well as actual
cell slacks in that placement. This information is translated into pre-
assignments for the subsequent partitioning runs. Intuitively, the cells
with worst slacks should be selected and pre-assigned to the partitions
where they were placed by the continuous formulation. Min-max
placement optimizes slack, thus slack cannot improve during further
top-down placement as region constraints are added. Therefore, the
cells with worst slacks can only become more critical in the future
and should be pre-assigned to partitions in such a way that the worst
slack does not worsen.

Selection of cells to be pre-assigned, based on locations and slacks,
is performed in two stages. In the first stage, a “goodness” score is
computed for each cell as a linear combination of cell slack and a
delay equivalent of the cell’s distance to the cut-line in its block. Sub-
tracting a weighted delay-equivalent from slack captures the deterio-
ration of slack in case the cell is assigned into a “wrong” partition.
The lower (worse) the score, the more important it is to pre-assign
the cell into the partition containing its continuous location. Cells are
sorted in increasing order of scores, and those with positive scores are
considered “good enough” to not be pre-assigned before a partitioner
is called.

We try not to pre-assign too many cells before calling a partitioner;
otherwise, half-perimeter wirelength and congestion of resulting place-
ment can increase. To this end, we introduce two parameters that fur-
ther limit the number of cells selected to be assigned at any given
level. Both limits are in terms of movable cells; one applies to the
whole layout, and the other to individual blocks.

Once all movable cells in the layout are sorted by their scores, those



Top-Down Timing-Driven Placement Flow
Variables:

B;B1;B2 — placement blocks (aka “bins”)
A1 andA2 — stacks of placement blocks
P — cell locations (placement)
N — the circuit netlist
α, % — trades off timing- and wirelength

Initialization: single block inA1 representing
the original placement instance

A2 — empty;P — arbitrary
α — from 0% (WL-driven) to 50% (t-driven)

Output: P — global placement
Algorithm:

while ( A1 not empty )
f - find continuous locationsP that minimize

signal delay inN subject to block constraints
- find critical paths
- mark cells that lie on critical paths
- while ( A1 not empty )
f pop B from A1

if ( B small enough )f process end-case; continueg
prepare to partitionB into B1 andB2

(terminal propagation, etc.)
assign marked cells inB to B1 andB2

according toP and fix them
call hypergraph partitioner
finalizeB1 andB2; pushB1 andB2 ontoA2

g
- copyA2 to A1; clear A2

g

Figure 1: Pseudocode of proposed timing-
driven placement framework.

cells are traversed in the order of increasing goodness and marked (as
pre- assigned), with their areas accumulated.13 This traversal goes on
until the total area of marked cells reaches a global area limit (% of
the total area of all movable cells). Later, when a block is about to
be partitioned, its cells marked for pre-assignment are traversed again
in order of increasing scores and pre-assigned to partitions based on
their continuous locations. This traversal continues until the total area
of pre-assigned cells reaches the area limit for the block.

We also reuse the continuous cell locations for more accurate ter-
minal propagation. In many cases, this improves both half-perimeter
wirelength and cycle time.

5. EMPIRICAL VALIDATION
Our implementation CapoT is based on the Capo placer [4].

The general architecture
is similar to the “slack-
graph” technique [5], with
its separation of concerns
between delay calculation,
STA and placement. We

Name # Cells # Nets Clk Period
DesignA 6390 8033 12.3 ns
DesignB 20449 21230 11.1 ns
DesignC 40349 42487 16.6 ns
DesignD 58987 59922 68.0 ns

Table 1: Test case parameters.

additionally separate continuous min-max placement from top-down
placement.

5.1 Our Placer Implementation
In the timing-driven regime, CapoT calls our min-max placer TD-

place, which interfaces with our Static Timing Analyzer (STA). (Re-
call from above that STA is a generic path-tracer.) Thus, TDplace in-
fluences the construction of partitioning instances in CapoT (see Sec-
tion 4). TDplace and STA are instantiated at the beginning of the top-
down placement and construct a timing graph from the netlist, such
that vertices correspond to movable objects. Timing edges are created
from every source in a given hyperedge to every sink on that same hy-
peredge. All information necessary to compute gate and edge delays

13This O(N log(N)) sorting-based computation can be sped up by a
linear-time weighted-median computation, but its share in total run-
time is already negligible, and therefore we simply callsort() from
the Standard Template Library.

as functions of placement is made available. Fixed-delay edges (e.g.,
between fixed cells/pads) and storage elements are marked in the tim-
ing graph. The directed graph is traversed by a depth-first search, and
back-edges that cause purely combinational cycles are removed. STA
performs classical static analysis with two topological traversals and
slack computations, as described in Subsection 2.2. It also computes
criticalities from slacks, assuming that all AATs are the same and all
RATs are the same (we also implemented the general case, but have
not used it in this work).

After STA is constructed, TDplace is instantiated, using the loca-
tions of fixed vertices and optional initial locations of movable ver-
tices. There is an optional array of bounding boxes, one per vertex,
that constrain the possible locations of respective vertices. The first
continuous placement is performed subject to every movable object
being inside the layout bounding box, with initial location at the ge-
ometric center. Then, CapoT reads placement solutions and vertex
slacks, as well as various status information such as the worst slack.
The cell locations and slacks reported by TDplace are used by CapoT
to pre-assign hypergraph nodes before multi-level partitioning, as ex-
plained below. After every round of min-cut partitioning, the array
of bounding boxes in TDplace is changed by CapoT according to
the partitioning results. Subsequently TDplace is called to perform
a continuous-variable placement subject to new bounding-box con-
straints. The cell locations and slacks are used at the next round
of partitioning, and this top-down placement process continues until
reaching end-cases (see Figure 1).

While performing continuous placement, TDplaceiteratesgate and
edge delay calculations along the lines of Subsection 2.3, calls to STA,
and min-max-weighted-delay placement until a convergence criterion
is met. The min-max-weighted-delay placement is performed by a
nested iteration. This iteration attempts to improve a previously ex-
isting solution by linear passes in which every vertex is placed opti-
mally. Due to the proven monotonic convergence, termination criteria
are fairly straightforward — each iteration is stopped when its objec-
tive function changes by less than 0.1%.

We validate our placer by checking the “sanity” of its behavior with
respect to the internal optimization objective. For each industry test
case (see Table 1) we drive the placer with four edge delay models
(linear, quadratic, Elmore MST and Elmore star), and both the stan-
dard delay objective and the extended delay objective described above
(denoted by-td and-td1 respectively). Thus, for every test case eight
separate placements are obtained (and for each delay model as well,
eight separate placements are obtained). All placement results are
evaluated by our STA timing evaluator, with respect to all four de-
lay models. According to each delay model, we rank the placements
from one to eight in order of decreasing slack. We then find the rank
achieved when the placer was actually driven by this specific delay
model.14 Table 2 reports these ranks, averaged over all four test cases.
The ranks for the combination of-td and-td1 can range between 1.5
and 7.5; the ranks for either objective alone can range between 1 and
4. The results indicate that our algorithm is better able to optimize
with respect to the linear delay model than with respect to Elmore-
based delay models. This may partly explain why timing optimization
can return worse results than timing-oblivious wirelength minimiza-
tion: our algorithm targets simpler delay models and does not take
into account the subtleties of non-linear and topology-sensitive delay
models.

5.2 Experimental Results
We report half-perimeter WL (HPWL) and timing slack results for

global timing-driven placement based on the linear, the quadratic and

14If the placer “behaves perfectly” then the, e.g., quadratic-driven
placements would have ranks 1 and 2 among all eight placements eval-
uated by the quadratic delay model. On the other hand, if these ranks
are around 4.5 (or higher), then driving the placer with the given de-
lay model achieves no better (or, worse) results than driving it with a
random other delay model.



Option Linear Quadratic Elmore MST Elmore Star
-td and -td1 2.375 2.875 4.5 3.375

-td 1.75 1.25 2.5 2.5
-td1 1 1.75 2.75 2.25

Table 2: Evaluation of placer’s behavior on its internal objective.

the Elmore MST delay models. Both the linear model and the quadratic
model are technology-blind (results are independent of interconnect
parasitics). The MST model is used with technology parameters (cal-
ibration and correlation of our internal STA, library and tech file mod-
eling, timing constraints definition, etc. required significant effort but
details are beyond space limitations). We applied the two options
for timing-driven placement described earlier in the text (-td and -
td1). Table 3 compares CapoT with an industrial placer in a flow with
black-box industry STA timing analysis. Non-timing-driven results
are marked withntd. We used the industry placer in both timing-
driven (industry-td) and non-timing-driven (industry-ntd) configura-
tions. CapoT was called by a “meta-placer” that applied branch-and-
bound placement improvement in sliding windows and removed cell
occasional cell overlaps by a naive greedy heuristic. The meta-placer
also greedily optimized cell orientations within the constraints given
by the input LEF/DEF files. Note that we do not have a detailed
timing-driven placement capability, while the industry placer does.

Placer/Config HPWL slack HPWL slack
Design A Design B

industry-ntd 6.74e5 0.44 2.73e6 0.49
industry-td 6.58e5 0.06 2.59e6 0.55
mp-ntd 8.89e5 -0.01 2.49e6 0.66
mp-td-lin 9.40e5 0.08 2.73e6 0.28
mp-td-mst 8.93e5 -0.14 2.78e6 0.42
mp-td-quad 9.19e5 -0.09 2.69e6 0.48
mp-td1-lin 9.07e5 0.08 2.68e6 0.62
mp-td1-mst 9.16e5 -0.38 2.81e6 0.64
mp-td1-quad 8.94e5 0.15 2.80e6 0.62

DesignC DesignD
industry-ntd 3.56e6 -5.70 2.39e7 -3.47
industry-td 3.41e6 -5.66 2.20e7 -4.98
mp-ntd 3.20e6 -5.62 1.97e7 0.65
mp-td-lin 3.41e6 -5.64 2.14e7 -3.36
mp-td-mst 3.30e6 -5.74 2.17e7 -14.57
mp-td-quad 3.34e6 -5.69 2.21e7 -4.43
mp-td1-lin 3.40e6 -5.88 2.12e7 1.30
mp-td1-mst 3.34e6 -5.75 2.09e7 -0.55
mp-td1-quad 3.34e6 -5.75 2.08e7 -1.37

Table 3: Timing-driven placement results.

The experimental results (test case C is essentially non-probative)
show that our implementation performs competitively. Currently, the
linear star delay model outperforms Elmore type models. Also, in
several cases, WL-driven versions of both our implementation and the
industry tool outperformed td versions. We stress that the evaluations
were performed by an industrial static timing analyzer, independent of
the placer implementations. Thus, our conclusions may have depen-
dencies on instance size, technology scaling, library characterization
(since our delay modeling and calculation is abstracted from standard
.lib models), and mis-correlations between the industry STA and our
STA capability (we drive our placer with internal STA calculations).
We conclude that formulating a more precise delay objective and min-
imizing it by a reasonable algorithm does not necessarily yield better
results.

6. CONCLUSIONS
We have proposed a new global timing-driven placement algorithm

and evaluated it on a set of recent industrial circuit benchmarks. Cir-
cuit delay was evaluated by a commercial static timing analyzer (i) af-
ter placement by our placer, and (ii) after placement by a commercial
placer. The main contribution of this paper is to global timing-driven

placement; without a detailed placer, we were able to demonstrate
competitive results on several industrial benchmarks. The proposed
algorithms are flexible and can be adapted to many placement frame-
works, especially those based on quadratic placement.

Our empirical results justify the pursuit of simple global objectives
for timing-driven placement and show that minimizing a simple ob-
jective well may be more useful than minimizing a very accurate ob-
jective poorly. We believe that the utility of our approaches should
increase with future scaling of VLSI technologies.
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