Buffer Tree Synthesis With Consideration of Temporal
Locality, Sink Polarity Requirements, Solution Cost and
Blockages

Milos Hrkic
mhrkic@cs.uic.edu

John Lillis
jlilis@cs.uic.edu

University of lllinois at Chicago, CS Dept., Chicago, IL 60607

ABSTRACT

We give an overview of a buffer tree synthesis package which
pays particular attention to the following issues: routing and
buffer blockages, minimization of interconnect and buffer
costs, exploitation of temporal locality among the sinks and
addressing sink polarity requirements. Experimental results
demonstrate the effectiveness of the tool in comparison with
previously proposed techniques.

Categoriesand Subject Descriptors
B.7.2 [Hardware|: Integrated Circuits—Design Aids

General Terms
Algorithms

1. INTRODUCTION

In the deep submicron era effective performance driven in-
terconnect synthesis has become crucial for achieving chip-
level timing closure. When synthesizing an interconnect
structure for a timing critical net, there are a number of
degrees of freedom which may be exploited including buffer
insertion, wire tapering, topology and topology embedding.
The past ten years has seen the growth of a substantial
body of work in the area. Many of the practical buffer in-
sertion techniques in use today can be traced to the seminal
work of van Ginneken [12] which proposed a dynamic pro-
gramming algorithm for inserting buffers into a given rooted
topology. In addition, buffer insertion techniques for two-
pin nets have received some attention ([13], [7]). In the area
of routing topology construction, there are several works of
particular relevance to this paper. These include the P-Tree
based methods [10], methods for timing driven routing of
two-pin nets (including blockages) [6], [13], methods which
combine buffer insertion and topology construction ([9], [11],
[3]) and a recently proposed S-Tree method [4] which explic-
itly incorporates a notion of temporal locality among sinks.

This work was supportedn partby NSF CAREER Award CCR-9875945
andin partby SRCundercontract2001-TJ-914.

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor pro£tor commercialadwantageandthatcopies
bearthis noticeandthefull citationonthe£rstpage.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specifc
permissiorand/orafee.

1SPD’ 02, April 7-10,2002,SanDiego, California,USA.

Copyright 2002ACM 1-58113-460-6/02/0004.$5.00.

In this paper we introduce the SP-Tree algorithm with a
number of practical criteria and objectives. An overview of
the issues emphasized is as follows.

Simultaneous Buffer Insertion and Tree Construction
We believe that overall improvements in solution quality
can be achieved by not viewing the interconnect synthesis as
a two phase process (routing construction followed by buffer
insertion) but as a simultaneous approach. While some past
works have attempted such a unification ([9], [3]), it now
appears that substantial improvements are possible.

Handling Routing and Buffer Blockages

In real designs there are often limitations on where wires
can be routed and where buffers can be inserted. We ad-
dress these issues explicitly in the proposed algorithms by
adopting a general graph model as our routing target.

Temporal Locality and Sink Polarity Requirements

A potential weakness of some topology constructions is
that they are oblivious to sink criticality. For example in
the P-Tree method [10], a sink permutation is formed where
consecutive subsequences of sinks are candidates for sub-
trees. Since the sink permutation is determined by the rel-
ative physical locality of the sinks and is oblivious of sink
criticality (temporal locality), some very high performance
and/or cost effective solutions may fall outside the solu-
tion space. It is instructive to consider the case in which
buffers are used to decouple a non-critical group of sinks. In
such a case (in order to conserve scarce buffering resources)
it may be preferable to allow some additional wire-length
so that they may be “tapped-off” with a single buffer. A
similar phenomenon occurs when sinks have specified sig-
nal polarity requirements (some sinks expecting an inverted
signal). Two recent papers have addressed one or both of
these issues. In [1], notions of temporal locality and po-
larity requirements were incorporated into a sink clustering
algorithm (using a heuristic “similarity metric”) as part of
a topology construction procedure; the resulting topology
was handed to a fixed-topology buffer insertion tool. In [4],
it was argued that notions of temporal and physical locality
should be separated if robust and predictable behavior is to
be expected; the result was the S-Tree algorithm which cap-
tured physical locality through a given topology and tem-
poral locality through a sink partitioning. Together these
two items created a generalized topology space capturing
both requirements. Additionally simultaneous exploration
of topology, embedding and buffering was performed.

[

L

Figure 1: A topology for a 3-sink net and two physi-
cal embeddings of that topology. Pin s is the driver.

Cost/Performance Tradeoffs

We recognize that while our algorithms focus on the one-
net problem, a real CAD system’s objective is to drive an
entire design to timing closure. Thus, multiple nets must
compete for wiring and buffering resources and it is clearly
not sufficient to, for example, maximize the performance of
a particular net without paying attention to some measure
of cost incurred. Further, when one considers that recent
estimates indicate that, in the near future, perhaps more
than 700K buffers will be required simply to buffer global or
near-global interconnects [2], it becomes clear that the over-
use of buffering resources will have dramatic consequences.

With these issues in mind we have developed an algo-
rithm called SP-Tree. The tool adopts the P-Tree idea of
using a sink permutation to capture physical locality and
the sink partitioning idea (or stitching) of the S-Tree. There
are three degrees of freedom exploited by SP-Tree: Topology,
Embedding (placement of Steiner nodes in a target graph)
and Buffer placement. We first focus primarily on the solu-
tion space covered by the algorithm and then sketch some
of the implementation details.

2. SOLUTION SPACE DESCRIPTION

To understand the SP-Tree topology space, it is instruc-
tive to examine the S-Tree and P-Tree spaces individually.

2.1 The S-TreeSpace

The S-Tree algorithm uses a given topology to capture
physical locality of sinks. Ignoring temporal locality for the
moment, Fig. 1 illustrates the embedding space for a given
topology where we show two possible embeddings. Even
though the topology is fixed, there is clearly some flexibility
in the embedding which may be useful particularly in timing
driven applications. This flexibility however is limited and
precludes certain potentially useful solutions (e.g. it may be
useful depending on timing requirements to isolate sink a
completely with its own path from the driver s; this is not
possible for this topology).

In the S-Tree algorithm, besides a topology 7T, we are also
given a partitioning of the sinks into two disjoint sets S
and S>. Now consider a subtree in 1" rooted at vertex w and
with left and right subtrees I(u) and r(u). Some sinks in the
subtree belong to S; and others to Sa. If we have two sets
of topologies L and R, then L X R is the set of all topologies
where a root has a member of L as its left subtree and a
member of R as its right subtree (basically a cross-product;
if one of the sets is empty, the output is the other set).

Given these notions, let Pi2(u) be the set of topologies in
the S-Tree space for the subtree rooted at u and covering
all sinks in the subtree. Let Pj(u) be the set of topologies

Sink Partition: {a, c}, {b,d}

S

Figure 2: S-Tree topology solution space example.

for the subtree rooted at u and covering only those sinks
in the subtree which are in partition Si. Similarly P»(u) is
the set of topologies rooted at u and covering sinks from Sa.
Since v must be either in S; or Sz, the base case is trivial:
If w € S; and u is a sink then Pia(u) = Pi(u) = {u} and
P(u) = . Case where u is a sink in S3 is handled similarly.
The following recurrence relations establish these sets:

Pi(u) = {P1(l(u)) x Pi(r(u)}
Ps(u) = {P>(l(u)) X Pa(r(u))}
Pra(u) = {Pr2(l(w)) x Pr2(r(u))} U {P1(u) X Pa(u)}.

The expansion in solution space comes from Pi2(u). It al-
lows us to “promote” one of the subsets and stitch it to the
root (giving rise to the S-Tree name).

Fig. 2 illustrates the solution space for a 4-sink topology
with a given sink partitioning. Naturally, the given topology
is included in the space in addition to the other two shown.
Note that while the left topology is isomorphic to the given
topology, some of the sinks have been re-labeled (b now being
closer to the root and c farther).

Two notions motivate this idea. First, in a dynamic pro-
gramming framework, the optimal solution in the expanded
solution space can be found with only a small amount of
additional work vs. the totally fixed topology case. Second,
it is well-suited to timing related issues where it is often de-
sirable for groups of critical or non-critical sinks to be in the
same subtree. If S; and S2 are critical and non-critical sinks,
then the stitching operation enables this quite naturally.

To illustrate the second point, consider Fig. 3. Topology
and a sink partition is given and sink b is critical. It is likely
that we desire a direct path from s to b which decouples
all off-path capacitance. For the given topology, the best we
can do is illustrated on the lower-left. In S-Tree, the solution
on the lower-right becomes possible. Besides having lower
delay to sink b, it also uses just one buffer.

Given this notion of the S-Tree space, the algorithm opti-
mally solves the following problem: Given technology pa-
rameters, timing requirements, a buffer library, a target
routing graph, a topology and a sink partition (S, S2), find
a topology in the corresponding space, its embedding and
buffer assignments which minimizes cost (e.g., some function
of buffers, area, wire length) subject to timing constraints
being met.

2.2 TheP-TreeSpace

The P-Tree algorithm [10] achieves a high degree of flex-
ibility (enabling an exponential number of topologies) by
constraining the topology to be induced by a sink permu-
tation. This sink permutation is constructed in a way that
captures physical locality between sinks; thus consecutive

S
Sink Partition: {a, c}, {b}
S
[]
c
b b
o L |
v a b Y
a a

[
Fixed Topology

PO —

c c
S-Tree Solution

Figure 3: Illustration of critical sink isolation and
buffer savings in S-Tree.

'y
o,

'
'R

Figure 4: P-Tree’s inability to capture solution of
smaller cost. Critical sinks are b and d. Sink permu-
tation is {a,b,c,d, e}, sink partition is {a,c, e}, {b,d};
proposed approach captures solution on bottom.

subsequences in the permutation are likely to make good
candidate subtrees.

Since the permutation is determined solely by physical
locality, we observe similar phenomenon as in the case of
fixed topology embedding: the ability to effectively isolate
critical /non-critical groups of sinks is limited (similarly, the
ability to separate sets of sinks with differing polarity re-
quirements) is poor. For example, consider Fig 4. We see
that the critical sinks are “pinched” by the given sink per-
mutation and it requires three buffers to de-couple the non-
critical sinks. On the other hand a different topology outside
the P-Tree space would enable a single buffer to give equal
or better performance as shown in the lower solution.

At first glance, it is appealing to adopt a different simi-
larity metric (as in [1]) as a guide for constructing the sink
permutation to alleviate this problem. However, our ex-
perience indicates that the heuristic measures one might
attempt lack the predictability necessary for a robust ap-
proach. Instead, we have adopted the stitching idea of
S-Tree whereby sink criticality (and now polarity require-
ments) are captured through the orthogonal notion of sink
partitions, while the sink permutation continues to capture
the physical sink locality. The resulting generalization of
P-Tree has been dubbed SP-Tree.

Our current framework is more general than that of S-Tree
in that we enable the partitioning of sinks into four sets (if
appropriate) to consider sink polarity requirements: criti-
cal/positive, critical/negative, non-critical /positive,
non-critical/negative. This generalization has been ap-
plied to the S-Tree framework as well.

Before discussing algorithmic details, we clarify the objec-
tives of SP-Tree vs. those of S-Tree. The main advantage
S-Tree has is scalability while the main advantage of SP-

Tree is solution space coverage. The goal then of SP-Tree
is to provide excellent solution quality for modest sized nets
which represent a large percentage of those in practice (e.g.,
up to 10 or 12 sinks). On the other hand, S-Tree (or some
hybrid approach) may be used for larger fanout nets.

3. ALGORITHMIC OVERVIEW

We first discuss the construction of the target routing
graphs to capture blockages; for clarity we then present the
algorithms in the absence of the stitching operation (“with-
out sets”); an overview of a generalization of Dijkstra’s al-
gorithm is discussed (this enables the natural handling of
general graph); finally we discuss how the stitching idea can
be incorporated into this framework. For details see [5].

3.1 TargetGraph Construction

As a preprocessing step we construct a graph on which
topology will be embedded. We extend grid lines from the
driver and every sink in all directions (4 in single layer, 3-6
in multilayer environment). Grid line intersections become
candidates for branch points. In the similar way we intro-
duce grid lines that follow the contours of routing and buffer
blockages. Then we remove vertices and edges covered by
routing blockages and mark vertices covered by buffer block-
ages as infeasible for buffer insertion.

3.2 Solutionsfor the Non-Stitching Cases

For ease of presentation, we first describe the dynamic
programming decomposition used in S-Tree and P-Tree with-
out stitching which is similar in flavor to several past works
(8], [10]). A candidate solution for a buffered subtree rooted
at some vertex in the target routing graph will be repre-
sented by its signature (p, ¢, q) indicating that this candidate
subsolution incurs cost p, has upward capacitance ¢ and has
required arrival time ¢ at its root. Given this notion of a
signature, a subsolution is non-dominated if no other so-
lution is superior in all three dimensions. Any dominated
solution may be discarded. Note that while only ¢ and ¢ are
necessary to assure a maximum ¢ solution ([3]), all three
parameters appear necessary if we want to avoid excessive
cost overhead. This increases run-time complexity, but we
believe it is truly necessary for practical solutions; experi-
mental evidence supports this belief.

In S-Tree we define A(u, v) to be the set of non-dominated
solutions for subtree rooted at w in given topology T', with
root placed at v in GG, connecting all sinks in that subtree.
In P-Tree we define A(4, j,v) to be the set of non-dominated
solutions over all permutation induced routing topologies
driving sinks ¢ through j and rooted at v.

We apply dynamic programming techniques to compute
these sets in bottom-up fashion (an overview of the algo-
rithm for the more complex P-Tree case appears in Fig. 5).

When all sets are established, the candidate solutions in
A(us,vs) for the S-Tree case and A(1l,n,vs) in the P-Tree
case are augmented to consider the effect of the driver (addi-
tional load-dependent delay) which then results in the over-
all set of non-dominated solutions with respect to cost p and
required-time ¢q. These form a tradeoff curve from which a
solution can be selected.

In order to compute these sets it is useful to define a re-
lated group of intermediate sets in which the vertex v in the
target graph is constrained to be a branching point (basi-
cally, a Steiner). Let these sets be A”(u,v) in S-Tree vari-

Subroutine: JoinPTree(s, j, G)
i,7: Subsolution covering sinks from i to j
G: Target routing graph

1. oAb 9

f2 for each vertex v € G

3 for k = i to j-1

f4 A[][5][v] — AP[i][5][v] U Join(A[i][k][v], A[k + 1](5][v])
5 endfor

f6 endfor

7 Ali][j] — GenDijkstra(A[i][j], G)

f8 return A

Algorithm: P-Tree(P, G, s, n)
P: Sink permutation; G: Target routing graph
s: source node; n: number of sinks

el fori=1 ton do A[i][i] «+ Initial(P, G,1)

e2 for gap = 1 to n-1

e3 for i = 1 to n-gap
ed Ali][i + gap] < JoinPTree(i,i + gap, G)
eb endfor

e6 endfor
e7 Final «— AugmentForDriver(A[1][n], s)
e8 return Final

Figure 5: Basic P-Tree Algorithm.

ant and A®(i,j,v) in P-Tree variant. Subsequently we will
refer to these sets simply as A(-) and A°(-) when the dis-
cussion applies to both the S-Tree and P-Tree cases. These
branching solutions A®(-) are computed from the appropri-
ate previously computed single-stem solutions (A(-)) via a
Join operation as illustrated in the figure for the P-Tree.

It is worth mentioning that in Join step (line f4 in Fig. 5)
to guarantee optimality we have to construct a cross product
of all costs p and join sets in respect of that cross product.

3.3 GeneralizedDijkstra’ s Algorithm

In the previous P-Tree work, the fact that the target graph
did not contain blockages was exploited and the single-stem
solutions (A(+)) could be computed in a sequence of four
sweeps of the grid to augment the branching solutions.

In the presence of blockages, the problem becomes more
difficult. We propose that it can be solved efficiently through
what can be viewed as a generalized version of Dijkstra’s
algorithm. We let the branching point solutions form the
initial wavefront (note that the wavefront entries are triples
(p, ¢, q) not scalars as in traditional shortest paths) and ex-
pand in a manner similar to [13] and [6]. To do that we in-
troduce a virtual vertex x in target graph and add directed
edges from x to every other vertex labeling them with ap-
propriate A®(-) solutions. Starting from vertex z we update
labels on all other vertices, insert them into priority queue,
expand them in best cost first order and continue to update
neighboring vertices until the queue becomes empty. Instead
of a single label we maintain a list of non-dominated labels.

3.4 Incorporating “Stitching”

As stated earlier, in addition to the ability to deal with
blockages, one of the contributions of this work is the notion
of using sink partitions to capture temporal and/or polarity
locality and expand the solution space accordingly.

Suppose we have two sink partitions. We then define the
following generalizations of the A(-) sets. We state the sets
for the SP-Tree case; the S-Tree sets are analogous.

A1(i, j,v): the set of non-dominated solutions with root
embedded at v in G and connecting only sinks in the inter-
section of S; and sinks i..j.

As(%, j,v): Similarly defined except limited to sinks in S>.

Ai2(%, j,v): Similarly defined, but topologies must con-

Subroutine: JoinSPTree(s, j, G)
i,j: sinks i to j to be connected by subsolution
G: Target routing graph

1. AP —9p

f2 for each vertex v € G

3 for k =i to j-1

f4 AYl[5][v] — A3 [4)[5][v] U Join(Ar [i][k][v], A [k + 1](5])[v])
f5 Agl][4][v] — AS[4)[5][v] U Join(As [i][k][0], Az[k + 1][5][0])
f6 endfor

f7 endfor

f8 A4[i][j] «— GenDijkstra(A[i][j], G)

f9 As[i][j] « GenDijkstra(A}[i][j], G)

f10 for each vertex v € G

f11 for k =i to j-1

f12 tmp — Join(Ai2[i][k][v], A12[k + 1][j][v])

f13 AL [[7][v] — Ab[i][5][v]) U tmp

f14 endfor

15 AY, [i][5][0] — A%, [4][5][e] U Join(Ai[d][j][v], A2 [i][5][0])
f16 endfor

f17 A;2[i][j] « GenDijkstra(A%,[4][j], G)

f18 return A

Figure 6: SP-Tree Join with two sink partitions

nect sinks in S; U S2 contained in 4..j which in this case
represent all sinks in the ...

To compute these sets we also define respective branching
solutions A%(-), A8(-) and A% (-). Proceeding bottom-up we
compute sets A;(-), Aa(-), and Aj2(-) in the same way as
explained previously with one difference in computing sets
A12(i, j,v) (this is where the stitching comes in). Solutions
in A%, (4, j,v) may be constructed first by joining A1z (i, k,v)
with A12(k 4+ 1, j,v) for some k or from joining A, (%, j,v)
with As(%,j,v) (these are the “stitched” solutions). The
non-dominated solutions in the resulting union are retained.
In this way we separate critical/non-critical sub-trees (and
similarly when considering sink polarities). Pseudocode for
modified JoinSPTree subroutine is given in Fig. 6.

3.4.1 Generalizations

We have presented algorithms where there are two sets
of sinks. However there is no reason (except computational
complexity as there is a run-time term which is exponential
in the number of sets) that we cannot use three or more
sets. In fact, in the limit where we have n singleton sets, the
permutation becomes irrelevant and we obtain optimality.

We found two more set partitioning schemes to be of par-
ticular interest. We can partition sinks as non-critical, “not
sure” if critical, and highly critical. We then define the fol-
lowing sets: Aj, Aa, Az, A12, A2z, A123. Observe that we do
not join solutions that spawn highly critical and non-critical
sinks (A13) for obvious reasons.

The other case of practical interest is with 4 partitions:
(S1) positive polarity constraints and critical, (S2) posi-
tive and non-critical, (S3) negative and non-critical, (Ss)
negative and critical. Here we define following nine sets:
Al, AQ, A3, A4, Alg, A23, A34, A14, A1234 in the similar way.
Observe that in “intermediate” sets we join all critical sets,
all non-critical sets, all positive polarity sets, and all nega-
tive polarity sets. In this way we are able to simultaneously
capture physical, temporal and polarity locality.

4. DISCUSSION

Implementation Issues

Some important implementation details have not been
mentioned in the interest of space. Efficient determination of
the dominance property can be non-trivial and the method

and data-structures of [8] have been employed. Sometimes
a subtree’s sinks are from only one set. Careful bookkeeping
can exploit this and avoid redundant computations.

Sink Partitioning

Currently we use simple heuristics to partition critical
from non-critical sinks. We compute estimated delays from
the source to each sink, adjust the given required time by

these estimates and then rank the estimated achievable slacks.

Partitioning with respect to sink polarity is trivial.

Modifications

There are a number of trivial modifications to the algo-
rithm which are important in practice. Inverter handling
is done through previously studied techniques. Buffer in-
sertion step is done in generalized Dijkstra’s algorithm in a
way similar to [7], implicitly allowing buffer cascading.

5. EXPERIMENTS

We have implemented the SP-Tree algorithm and per-
formed some initial experiments in Solaris environment on
a Sun Ultra 1 workstation with a 200MHz CPU and 384MB
of RAM!. The main criteria of interest are solution quality
in terms of both slack and cost (wire length and buffer us-
age) and run-time. Our experiments are compared with a
P-Tree based approach [9] which is known to produce high
quality solutions particularly for uniform required times, S-
Tree [4] and RMP [3]. For RMP we also reported results
for “Quick” running mode where heuristics are used to re-
duce CPU time. Wire length is reported in microns, slack in
pico seconds, and execution time in seconds of CPU time.
Technology parameters are representative of 0.25um tech-
nology. For each net three solutions are shown: minimum
cost solution, minimum cost feasible solution (cheapest with
positive slack), and maximum slack solution. Runs that
failed to report result in 30 minutes were terminated. Max-
imum amount of memory used by S/P-Tree algorithms was
83MB. Solution cost in S-Tree, P-Tree and SP-Tree algo-
rithms is defined as a function of wire capacitance (which is
proportional to wire length) and input buffer capacitance (in
absence of actual buffer cost) (WireCap + - InBufCap).
This enables arbitrary kind of cost normalization (e.g., bias
toward minimizing buffers or wire length).

In first set of experiments we used randomly generated
nets with small variations in sink required arrival time (Tab.
1). Also we used small value for 8 (3 = 2), what means that
buffers are relatively inexpensive. This experimental setup
shows that when there are no variations in temporal or po-
larity locality between sinks, algorithm that considers only
physical locality (P-Tree) is sufficient if the goal is to achieve
high quality solution (i.e. good slack and small cost). If
the goal is to achieve good solution quickly then S-Tree is a
good choice, since its smaller solutions space is compensated
by “stitching” to fix initial topology “bad” decisions if any.
Also it is clear that in any complex design, algorithm that
tries to maximize slack without paying any attention to so-
lution cost is not of much use for interconnect construction.

In second set of experiments we allowed large variations
in sink required arrival times (Tab. 2). We made buffers
very expensive (8 = 200). This allows more wire detours

'For reference, an 800MHz Celeron is roughly 3.5 times
faster than this machine which was used for compatibility
with the RMP executable

1000 , Slack[ps]

500 J

50000 100000 150000 200000 250000

Cost
-500 |

-1000 J
-1500 J
+2000 4 SP-Tree

-2500 4
P-Tree

-3000 J

Figure 7: Cost/performance trade-off curve for P-
Tree and SP-Tree on net3-10.

in searching for better solution. Algorithms that consider
both temporal and spatial locality give cheaper solutions of
the same slack. Although S-Tree is significantly faster, SP-
Tree’s larger solution space makes it more robust. Again,
algorithms that do not consider solution cost produce solu-
tions that are not very likely to be used in practice.

To demonstrate the full power of SP-Tree, in third set
of experiments we included sink input polarity constraints
(Tab. 3). Buffer library now contains buffers and inverters.
Data for RMP is not included since the implementation we
were able to obtain does not support inverters and vary-
ing sink polarity constraints. Benefits of stitching idea are
even larger for those “difficult” nets. On cost/performance
trade-off curve (Fig. 7) it could be seen that SP-Tree gives
much cheaper solutions than P-Tree for fixed slack, although
solutions do converge to the same max slack solution.

6. CONCLUSIONS

We have presented the SP-Tree algorithm for synthesis of
buffered interconnects. The approach incorporates a unique
combination real-world issues (routing and buffer blockages,
cost minimization, critical sink isolation, sink polarities),
while appearing to provide predictably good solutions.

The ability to handle blockages in a uniform way and the
ability to meet timing and polarity requirements while con-
serving buffering and wiring resources are the most impor-
tant contributions of the work. Its effectiveness vs. previous
approaches has been experimentally verified.

7. ACKNOWLEDGMENTS

The authors wish to thank X. Yuan and J. Cong for pro-
viding the RMP executable.

8. REFERENCES

[1] C. Alpert, et. al. “Buffered Steiner Trees for Difficult
Instances,” ISPD-01, pp. 4-9.

[2] J. Cong, “Challenges and Opportunities for Design
Innovations in Nanometer Technologies,” Frontiers in
Semiconductor Research: A Collection of SRC
Working Papers. SRC, 1997.

[3] J. Cong, X. Yuan, “Routing Tree Construction Under
Fixed Buffer Locations,” DAC-2000, pp. 368-373.

[4] M. Hrki¢, J. Lillis, “S-Tree: A Technique for Buffered
Routing Tree Synthesis” SASIMI-2001, pp. 242-249.

Table 1: 6-12 pin nets, uniform required arrival time

Net Alg. min cost min cost feasible max slack cpu
wl slk buf cost wl slk buf cost wl slk buf cost
RMP Quick | 20766 12 9 23160 20766 12 9 23160 20766 12 9 23160 0.1
RMP 22067 97 10 24727 22067 97 10 24727 22067 97 10 24727 3.9
netl-06 | S-Tree 17991 | -2493 0 17991 17991 16 5 19321 24495 120 7 26357 0.3
P-Tree 17991 | -2493 0 17991 17991 16 5 19321 22128 123 7 23990 0.6
SP-Tree 17991 | -2493 0 17991 17991 16 5 19321 22128 123 7 23990 1.1
RMP Quick | 30054 483 17 34576 30054 483 17 34576 33244 510 17 37766 1.4
RMP 32183 573 18 36971 32183 537 18 36971 32183 537 18 36971 677
net1l-08 | S-Tree 22894 | -2551 0 22894 22894 67 4 23958 30276 537 12 33468 1.7
P-Tree 21956 | -4989 0 21956 22495 162 4 23559 29745 541 12 32937 7.1
SP-Tree 21956 | -4989 0 21956 22495 162 4 23559 29745 541 12 32937 16.9
RMP Quick | 33448 353 23 39566 33448 353 23 39566 33448 353 23 39566 104
RMP - - - - - - - - - - - - -
netl-10 [S-Tree 25691 | -4314 0 25691 25911 2 5 27241 26860 418 15 30850 5.7
P-Tree 25340 | -4090 0 25340 25340 47 5 26670 27415 426 14 31139 40
SP-Tree 25340 | -4090 0 25340 25340 47 5 26670 27415 426 14 31139 109
RMP Quick | 50741 555 32 59253 50741 555 32 59253 50741 555 32 59253 1096
RMP - - - - - - - - - - - - -
netl-12 [S-Tree 25739 | -5799 0 25739 25739 69 7 27601 37611 645 16 41867 24
P-Tree 24970 | -5650 0 24970 25445 118 5 26775 39870 648 20 45190 295
SP-Tree 24970 | -5650 0 24970 25445 118 5 26775 39870 648 20 45190 687
Table 2: 6-12 pin nets, non-uniform required arrival time, buffer-biased cost
Net Alg. min cost min cost feasible max slack cpu
wl slk buf cost wl slk buf cost wl slk buf cost
RMP Quick | 18288 -176 8 231088 - - - - 22664 | -148 10 288664 0.1
RMP 23001 -6 12 342201 - - - - 23001 -6 12 342201 5.4
net2-06 | S-Tree 16177 | -2402 0 16177 22478 12 8 235278 | 22478 12 8 235278 0.3
P-Tree 16177 | -2402 0 16177 17867 11 7 204067 | 22478 19 8 235278 0.8
SP-Tree 16177 | -2402 0 16177 24168 3 6 183768 | 24168 19 7 210368 1.7
RMP Quick | 24459 825 13 370259 | 24459 825 13 370259 | 24938 838 14 397338 1.1
RMP 27328 907 15 426328 | 27328 907 15 426328 | 26808 925 16 452408 742
net2-08 [S-Tree 20857 | -1461 0 20857 25748 125 1 52348 29719 944 6 189319 2.7
P-Tree 20340 | -1413 0 20340 21617 13 1 48217 23279 944 7 209479 30
SP-Tree 20340 | -1413 0 20340 21617 13 1 48217 27884 944 6 187484 61
RMP Quick | 27840 307 19 533240 | 27840 307 19 533240 | 27840 307 19 533240 48
RMP - - - - - - - - - - - - -
net2-10 [S-Tree 18896 | -1490 0 18896 19738 156 2 72938 21523 376 7 207723 28
P-Tree 18428 | -2114 0 18428 18428 160 3 98228 20998 381 8 233798 145
SP-Tree 18428 | -2114 0 18428 19355 156 2 72555 20998 381 8 233798 297
RMP Quick | 35743 1630 23 647543 | 35743 1630 23 647543 | 36782 1636 25 701782 1801
RMP - - - - - - - - - - - - -
net2-12 [S-Tree 23213 | -1684 0 23213 23213 207 1 49813 33150 1704 11 325750 106
P-Tree 22585 | -1529 0 22585 22585 224 1 49185 32028 1711 11 324628 674
SP-Tree 22585 | -1529 0 22585 22585 224 1 49185 36149 1712 9 275549 1579
Table 3: 6-10 pin nets, non-uniform required arrival time, polarity and buffer-biased cost
Net Alg. min cost min cost feasible max slack cpu
wl slk buf cost wl slk buf cost wl slk buf cost
S-Tree 24289 | -1037 1 50899 18047 160 3 97847 18127 650 9 257537 0.5
net3-06 | P-Tree 16253 | -1059 2 69453 22026 13 3 101826 | 20082 660 8 232882 2.4
SP-Tree 24289 | -1037 1 50889 25855 11 2 80485 20082 660 8 232882 4.1
S-Tree 31864 -590 1 58464 31864 469 2 85064 32743 1419 14 405143 3.3
net3-08 | P-Tree 26953 -791 2 80153 22962 382 3 102762 | 31474 | 1422 14 403874 23
SP-Tree 31864 -590 1 58464 31864 469 2 85064 31474 | 1422 14 403874 62
S-Tree 35030 | -1935 1 61630 35030 126 2 88230 35030 553 5 168030 24
net3-10 | P-Tree 30701 | -2455 3 110501 | 26099 123 4 132499 | 26099 552 7 212299 147
SP-Tree 35030 | -1935 1 61630 35030 126 2 88230 35030 553 5 168030 322

[5] M. Hrkié¢, J. Lillis, TR# UIC-CS-02-1,
http://www.cs.uic.edu/~jlillis/sptree_tech.pdf

[6] S.-W. Hur, A. Jagannathan, J. Lillis, “Timing-Driven

Maze Routing,” IFEE Transactions on Computer

Interconnect,” Proc. 6 IEEE Great Lakes Symposium
on VLSI, Ames, Towa, Mar. 1996, pp. 148-153.

J. Lillis, C.-K. Cheng, T.-T. Y Lin, “New Performance
Driven Routing Techniques With Explicit Area/Delay

Aided Design Feb. 2000, vol. 19, no. 2, pp. 234-241.

Routing and Buffer Insertion for High Performance

Tradeoff and Simultaneous Wire Sizing,” DAC-96.

[7] A. Jagannathan, S.-W. Hur, J. Lillis, “A Fast [11] T. Okamoto, J. Cong, “Buffered Steiner Tree
Algorithm for Context-Aware Buffer Insertion,” Construction with Wire Sizing for Interconnect
DAC-2000, pp. 368-373. Layout Optimization,” ICCAD-96, pp. 44-49, 1996.

[8] J. Lillis, C.-K. Cheng, T.-T. Y Lin, “Optimal Wire [12] L.P.P.P. van Ginneken, “Buffer Placement in
Sizing and Buffer insertion for Low Power and a Distributed RC-tree Networks for Minimal Elmore
Generalized Delay Model,” IEEE Journal of Solid Delay,” ISCAS-90, pp. 865-868, 1990.

State Circuits, 31 (3): pp. 437-447, March 1996. [13] H. Zhou, D.F. Wong, I.M. Liu, A. Aziz,
[9] J. Lillis, C.-K. Cheng, T.-T. Y. Lin, “Simultaneous “Simultaneous Routing and Buffer Insertion with

Restrictions on Buffer Locations,” DAC-99, pp. 96-99.

	Main Page
	ISPD'02
	Front Matter
	Table of Contents
	Author Index

