
Extended Quasi-Static Scheduling for Formal Synthesis
and Code Generation of Embedded Software

Feng-Shi Su and Pao-Ann Hsiung
Department of Computer Science and Information Engineering

National Chung Cheng University, Chiayi–621, Taiwan, ROC

hpa@computer.org

ABSTRACT
With the computerization of most daily-life amenities such as home
appliances, the software in a real-time embedded system now ac-
counts for as much as70%of a system design. On one hand, this
increase in software has made embedded systems more accessi-
ble and easy to use, while on the other hand, it has also necessi-
tated further research on how complex embedded software can be
designed automatically and correctly. Enhancing recent advances
in this research, we propose anExtended Quasi-Static Scheduling
(EQSS) method for formally synthesizing and automatically gener-
ating code for embedded software, using theComplex-Choice Petri
Nets(CCPN) model. Our method improves on previous work in
three ways: (1) by removing model restrictions to cover a much
wider range of applications, (2) by proposing an extended algo-
rithm to schedule the more unrestricted model, and (3) by imple-
menting a code generator that can produce multi-threaded embed-
ded software programs. The requirements of an embedded soft-
ware are specified by a set of CCPN, which is scheduled using
EQSS such that the schedules satisfy limited embedded memory
requirements and task precedence constraints. Finally, a POSIX-
based multi-threaded embedded software program is generated in
the C programming language. Through an example, we illustrate
the feasibility and advantages of the proposed EQSS method.

1. INTRODUCTION
From home appliances to office facilities and to public conveniences,
embedded systemsare now an intricate part of the human life. Flex-
ibility and complexity in such embedded systems are growing rapidly
with increasing needs of the human. The previously mainly hard-
ware ASIC-based embedded system has now evolved into a hardware-
software system, with a microprocessor that executes software ac-
counting for more than 70% of system functions. Software has
enhanced the accessibility, testability, and flexibility of embedded
systems, but along with these advantages the inherent complex-
ity of software often introduces design errors that increase main-
tenance costs. To ensure the correctness of software designs in an
embedded system, formal methods are being adopted successfully
for embedded software design [3, 6, 7, 9, 10, 11, 14]. Nevertheless,

the type of systems that can be modeled and synthesized was fairly
restricted in several previous works, thus the aim of this work is
to remove model restrictions such that a larger domain of applica-
tions can be modeled and synthesized. Having extended the model
coverage, we propose and implement a method for synthesizing
the modeled software applications. Finally, a code generator auto-
matically produces embedded software code in the C programming
language.

An embedded systemis a computation unit, installed in a larger en-
vironment system, such that it helps the environment accomplish
some dedicated set of tasks. Some examples include avionics flight
control, vehicle cruise control, washing machine fuzzy control, and
network-enabling devices in home appliances such as embedded
web servers. In general, an embedded system architecture has both
hardware and software parts. Hardware is fabricated as one or more
ASICs, ASIPs, or PLDs. Software is executed on one or more mi-
croprocessors, with or without an operating system.Embedded
software is a piece of program code that must satisfy memory-
size constraints and concurrent task requirements with precedence
constraints. Embedded software communicates with the embedded
hardware either through an interface or through direct connections
between a microprocessor and a hardware logic.

The functions that an embedded software is required to perform
are generally specified as a set of communicating concurrent tasks,
where each task is a sequential process. Since Petri nets (introduced
later in Section 3.1) are a semantically precise model for several de-
sirable common system properties such as concurrency, branching,
synchronization, and mutual exclusion, previous works on software
synthesis were mainly based on a subclass of the Petri net model.
We also adopt the Petri net model for software requirements spec-
ification, but we remove restrictions from previously used models.
As a motivating example, consider the Petri net model for part of
anAutonomous Cruise Controller(ACC) [4] depicted in Figure 1.
There are two sensors in ACC, one of which periodically senses
the distance between a preceding vehicle and the vehicle in which
ACC is installed, and another periodically senses the speed limit of
the road on which the vehicle is currently moving. Based on these
sense data, there is a choice of decision on whether to decelarate
or accelerate the vehicle with ACC. This choice is not afree one
(as in Free-Choice Petri Nets[14]), thus the software for such a
system cannot be modeled and synthesized by previous works [9,
14] which have theFree-Choicerestriction imposed on the system
model.

The above-described non-free choices appear often in many em-
bedded systems, thus removing the restriction significantly expands

speed
limit

sensor

preceding
vehicle
distance
sensor

current speed
< speed limit

distance >
threshold

yes

no

no

yes

decelerate

accelerate

no speed
limit?

yes

no

Figure 1: Complex-Choice Petri Net (CCPN) Model for Part of
an Automatic Cruise Controller

the domain of applications that can be modeled and synthesized.
However, with the enhancement in model expressiveness, synthesis
becomes more complicated. We propose anExtended Quasi-Static
Scheduling(EQSS) method for the synthesis of embedded software
that are modeled usingComplex-Choice Petri Nets(CCPN). Details
on the CCPN model, our target problem, and the proposed EQSS
method will be described in Sections 3.1, 3.2, and 3.3, respectively.

EQSS extends previously proposed quasi-static scheduling (QSS)
by handling non-free choices (or complex choices) that appear in
CCPN models. Further, EQSS ensures that limited embedded mem-
ory constraints are also satisfied. For feasible schedules, embed-
ded software code is generated as a set of communicating POSIX
threads, which may then be deployed for execution by aReal-
Time Operating System(RTOS). An application example on a mas-
ter/slave switch software driver forBluetoothwireless communica-
tion devices will illustrate the feasibility and benefits of our pro-
posed method.

The article is organized as follows. Section 2 gives some previous
work related to embedded software synthesis. Section 3 formulates,
models, and solves the embedded software synthesis problem. Sec-
tion 4 illustrates the proposed solution through an application ex-
ample. Section 5 concludes the article giving some future work.

2. PREVIOUS WORK
Due to the importance of ensuring the correctness of embedded
software,formal synthesishas emerged as a precise and efficient
method for designing software in control-dominated and real-time
embedded systems [9, 14]. In the past, a large number of efforts
was directed towards hardware synthesis and comparatively little
attention paid to software synthesis. Partial software synthesis was
mainly carried out for communication protocols [13], plant con-
trollers [12], and real-time schedulers [1] because they generally
exhibited regular behaviors. Only recently has there been some
work on automatically generating software code for embedded sys-
tems [11, 14], including commercial tools such as MetaH from
Honeywell. In the following, we will briefly survey the existing
works on the synthesis of embedded software, on which our work
is based.

Lin [11] proposed an algorithm that generates a software program
from a concurrent process specification through intermediate Petri-
Net representation. This approach is based on the assumption that

the Petri-Nets are safe,i.e., buffers can store at most one data unit,
which implies that it is always schedulable. The proposed method
appliesquasi-static schedulingto a set of safe Petri-Nets to pro-
duce a set of corresponding state machines, which are then mapped
syntactically to the final software code.

A software synthesis method was proposed for a more general Petri-
Net framework by Sgroi et al. [14]. A quasi-static scheduling al-
gorithm was proposed forFree-Choice Petri Nets(FCPN) [14].
A necessary and sufficient condition was given for a FCPN to be
schedulable. Schedulability was first tested for a FCPN and then
a valid schedule generated by decomposing a FCPN into a set of
Conflict-Free(CF) components which were then individually and
statically scheduled. Code was then generated from the schedules.

Besides synthesis of software, there are also some recent work on
the verification of software in an embedded system such as the
Schedule-Verify-Mapmethod [6], the linear hybrid automata tech-
niques [5, 7], and the mapping strategy [3]. Recently, system pa-
rameters have also been taken into consideration for real-time soft-
ware synthesis [8].

As introduced in Section 1, the current work mainly extends the
work of Sgroi et al [14] by removing thefree-choicerestriction on
the Petri model, by proposing an extended scheduling method for
the unrestricted model, and by implementing a code generator that
produces multithreaded embedded software code in the C program-
ming language.

3. EMBEDDED SOFTWARE SYNTHESIS
As illustrated by the motivatingAutonomous Cruise Controllerex-
ample (Fig. 1) introduced in Section 1 and the previous work de-
scribed in Section 2, theFree-Choice Petri Net(FCPN) [14] sys-
tem model and the correspondingQuasi-Static Scheduling(QSS)
method for the synthesis of embedded real-time software are al-
ready not adequate for real-world embedded software systems, be-
cause they either simply cannot be modeled by FCPN or require a
great deal of work-around efforts to model non-free choices.

In this work, we remove thefree-choicerestriction in the system
model by proposingComplex-Choice Petri Nets(CCPN) as our
system model. Using CCPN, software designers can model a larger
domain of embedded applications by allowingchoice(branching)
andconcurrencysynchronizing at the same transition. For exam-
ple, in Fig. 1 when the preceding vehicle’s distance is greater than a
given threshold (the “yes” arc) and the current speed of the vehicle
with ACC is less than a detected speed limit (the “yes” arc), then the
vehicle should accelerate (choice and concurrency synchronized at
the accelerate transition).

3.1 System Model
DEFINITION 1. Complex-Choice Petri Nets (CCPN)

A Complex-Choice Petri Netis a 4-tuple(P,T,F,M0), where:

• P is a finite set of places,

• T is a finite set of transitions,P∪T 6= /0, andP∩T = /0,

• F : (P×T)∪ (T ×P) → N is a weighted flow relation be-
tween places and transitions, represented by arcs, whereN
is the set of nonnegative integers. The flow relation has the
following characteristics.

– Synchronization at a transition is allowed between a
branch arc of a choice place and another independent
concurrent arc.

– Synchronization at a transition is not allowed between
two or more branch arcs of the same choice place.

– A self-loop from a place back to itself is allowed only if
there is an initial token in one of the places in the loop.

• M0 : P→ N is the initial marking (assignment of tokens to
places).

Graphically, a CCPN can be depicted as shown in Fig. 1, where cir-
cles represent places, vertical bars represent transitions, arrows rep-
resent arcs, black dots represent tokens, and integers labeled over
arcs represent the weights as defined byF . Here,F(x,y) > 0 im-
plies there is an arc fromx to y with a weight ofF(x,y), wherex and
y can be a place or a transition.Conflictsare allowed in a CCPN,
where a conflict occurs when there is a token in a place with more
than one outgoing arc such that only one enabled transition can
fire, thus consuming the token and disabling all other transitions.
The transitions are calledconflictingand the place with the token is
also called achoiceplace. For example, decelerate and accelerate
are conflicting transitions in Fig. 1.

Intuitions for the characteristics of the flow relation in a CCPN,
as given in Definition 1, are as follows. First, unlike FCPN,con-
fusionsare also allowed in CCPN, where a confusion is a result
of synchronization between an arc of a choice place and another
independently concurrent arc. For example, the accelerate transi-
tion in Fig. 1 is such a synchronization. Second, synchronization is
not allowed between two or more arcs of the same choice place be-
cause arcs from a choice place represent (un)conditional branching,
thus synchronizing them would amount to executing both branches,
which conflicts with the original definition of a choice place (only
one succeeding enabled transition is executed). Third, at least one
place occurring in a loop of a CCPN should have an initial token
because our EQSS scheduling method requires a CCPN to return
to its initial marking after a finite complete cycle of markings. This
is basically not a restriction as can be seen from most real-world
system models because a loop without an initial token would result
in either of two unrealistic situations: (1) loop triggered externally
resulting in accumulation of infinite number of tokens in the loop,
or (2) loop is never triggered.

Semantically, the behavior of a CCPN is given by a sequence of
markings, where a marking is an assignment of tokens to places.
Formally, a marking is a vectorM = 〈m1,m2, . . . ,m|P|〉, wheremi is
the non-negative number of tokens in placepi ∈P. Starting from an
initial markingM0, a CCPN may transit to another marking through
the firing of an enabled transition and re-assignment of tokens. A
transition is said to beenabledwhen all its input places have the
required number of tokens, where the required number of tokens
is the weight as defined by the flow relationF . An enabled transi-
tion need not necessarily fire. But upon firing, the required number
of tokens are removed from all the input places and the specified
number of tokens are placed in the output places, where the speci-
fied number of tokens is that specified by the flow relationF on the
connecting arcs.

Some properties of Petri Nets (PN) can be defined as follows.Reach-
ability: a markingM′ is reachable from a markingM if there ex-
ists a firing sequenceσ starting at markingM and finishing atM′.

Boundedness: a PN is said to bek-bounded if the number of tokens
in every place of a reachable marking does not exceed a finite num-
ber k. A safe PN is one that is 1-bounded.Deadlock-free: a PN
is deadlock-free if there is at least one enabled transition in every
reachable marking.Liveness: a PN is live if for every reachable
marking and every transitiont it is possible to reach a marking that
enablest.

3.2 Problem Formulation
A user specifies the requirements for an embedded software by a
set of CCPNs. The problem we are trying to solve here is to find a
construction method by which a set of CCPNs can be made feasible
to execute as a software code, running under given limited memory
space. The following is a formal definition of the embedded soft-
ware synthesis problem.

DEFINITION 2. Embedded Software Synthesis
Given a set of CCPNs and an upper-bound on memory use, a piece
of embedded software code is to be generated such that (1) it satis-
fies all the CCPN requirements, (2) it can be executed on a single
processor, and (3) it uses memory no more than the upper-bound.

There are mainly two issues in solving the above defined embedded
software synthesis problem as described in the following.

• CCPN Scheduling: The first issue is how to schedule all the
CCPN requirements onto a single processor. In the origi-
nal QSS method [14], due to the free-choice characteristic of
FCPN, net decomposition was straightforward, resulting in a
simpler scheduling strategy. But, now due to complex-choice
characteristic of CCPN, net decomposition and scheduling
are more intricate.

• Code Generation: The second issue is how to generate uni-
processor code so that the multi-tasking behavior of an em-
bedded software is stillvisible, thus increasing the ease of fu-
ture maintenance. Further, how can interrupt handling code
be generated?

3.3 Synthesis Algorithm
As formulated in Definition 2 and described in Section 2, there are
two objectives for solving the embedded software synthesis prob-
lem, namely scheduling of CCPN requirements on a single proces-
sor and embedded software code generation. For CCPN schedul-
ing, we propose anExtended Quasi-Static Scheduling(EQSS) al-
gorithm, which can handlecomplex-choicesin a CCPN. For code
generation, we propose aCode Generation with Multiple Threads
(CGMT) method, which can generate code such that the multi-
tasking behavior of an embedded software is still visible, thus in-
creasing the ease of future maintenance.

3.3.1 Extended Quasi-Static Scheduling
To handle complex choices that may occur in a CCPN, we propose
the Extended Quasi-Static Scheduling(EQSS) method. EQSS is
based on the previously proposed QSS method, which makes most
scheduling decisions statically, leaving only the data-dependent de-
cisions to run-time. Basically, QSS works as follows [14]. When-
ever a choice place is encountered, a T-allocation selects one of
the enabled conflicting transition for execution, thus disabling all
other conflicting transitions. The T-allocation is performed for each

Table 1: Extended Quasi Static Algorithm

EQSS Schedule(S,µ)
S= {Ai | Ai = (Pi ,Ti ,Fi ,Mi0), i = 1,2, . . . ,n};
µ: integer; // Maximum memory
{

while (C = Get CCS(S) 6= NULL) { (1)
// ConstructExclusion TableExTablefor CCSC
Initialize Table(ExTable); // Initialize table to False (2)
for each transitiont ∈C (3)

for each transitiont ′ ∈C (4)
if (M Exclusive(t, t ′)) ExTable[t, t ′] = True; (5)

// Decompose CCSC into conflict-free subsets
D = {C}; // D is a power-set ofC (6)
for each subsetH ∈ D (7)

for each transitiont ∈ H (8)
for each transitiont ′ ∈ H (9)

if (ExTable[t, t ′] = True){ (10)
H ′ = Copy Set(H); (11)
DeleteTrans(H, t ′); (12)
DeleteTrans(H ′, t); (13)
D = D∪H ′; } (14)

// Decompose a CCPN into subnets according toD
for each subsetH ∈ D (15)

DecomposeCCPN(S,H); (16)
}
// Schedule all CF components
for each CCPNAi ∈ S (17)

for each conflict-free subnetX of Ai { (18)
Xs = Schedule(X,µ); (19)
if (Xs = NULL) return ERROR; (20)
elseEQSSi = EQSSi ∪Xs; } (21)

GenerateCode(S,µ,EQSS1, . . . ,EQSSn); (22)
}

conflicting transition. Then, a T-reduction actually eliminates all
the disabled conflicting transition from a T-allocation, including all
successor places and transitions that are no longer triggerable. In-
tuitively, each T-reduction is a possible computation behavior of
the net, which is then scheduled independently from the other T-
reductions. If all T-reductions can be scheduled, then the system is
declared schedulable and valid schedules generated, which is used
for code generation. The generated code ensures that the number
of tasks is minimal, that is, it is the same as the number of source
transitions with independent firing rates, where a source transition
is one without any incoming place thus represents a system input
event. Two source transitions are said to haveindependentfiring
rates if the rates at which they fire are not related in any way.

As described above, QSS cannot handle non-free choices, which
we call complex choices, thus EQSS is proposed. The details of
our proposed EQSS algorithm are as shown in Table 1. Given a
set of CCPNsS= {Ai | Ai = (Pi ,Ti ,Fi ,Mi0), i = 1,2, . . . ,n} and a
maximum bound on memoryµ, the algorithm finds and processes
each set of complex choice transitions (Step (1)), which is simply
calledComplex Choice Set(CCS) and is defined as follows.

DEFINITION 3. Complex Choice Set (CCS)
Given a CCPNAi = (Pi ,Ti ,Fi ,Mi0), a subset of transitionsC⊆ Ti is
called acomplex choice setif they satisfy the following conditions.

• There exists a sequence of the transitions inC such that any
two adjacent transitions are always conflicting transitions
from the same choice place.

• There is no other transition inTi\C that conflicts with any
transition inC, which meansC is maximal.

From Definition 3, we can see that a free-choice is a special case
of CCS. Thus, QSS also becomes a part of EQSS. For each CCS,
EQSS analyzes the mutual exclusiveness of the transitions in that
CCS and then records their relations into anExclusion Table(Steps
(2)–(5)). Two complex-choice transitions are said to bemutually
exclusiveif the firing of any one of the two transitions disables the
other transition. When the (i, j) element of an exclusion table is
True, it means theith and thejth transitions are mutually exclusive,
otherwise it is False.

Based on the exclusion table, a CCS is decomposed into two or
moreconflict-free(CF) subsets, which are sets of transitions that
do not have any conflicts, neither free-choice nor complex-choice.
The decomposition is done as follows (Steps 6–14).

• For each pair of mutually exclusive transitionst, t ′, do as fol-
lows.

• Make a copyH ′ of the CCSH (Step (11)),

• Deletet ′ from H (Step (12)), and

• Deletet from H ′ (Step (13)).

Based on the CF subsets, a CCPN is decomposed into conflict-free
components (subnets) (Steps (15)–(16)). The CF components are
not distinct decompositions as a transition may occur in more than
one component. Starting from an initial marking for each compo-
nent, afinite complete cycleis constructed, where a finite complete
cycle is a sequence of transition firings that returns the net to its ini-
tial marking. A CF component is said to be schedulable (Step (19))
if a finite complete cycle can be found for it and it is deadlock-free.
Once all CF components of a CCPN are scheduled, a valid sched-
ule for the CCPN can be generated as a set of the finite complete
cycles. The reason why this set is a valid schedule is that since each
component always returns to its initial marking, no tokens can get
collected at any place. Satisfaction of memory bound is checked by
observing if the memory space represented by the maximum num-
ber of tokens in any marking does not exceed the bound. Here,
each token represents some amount of buffer space (i.e., memory)
required after a computation (transition firing). Hence, the total
amount of actual memory required is the memory space represented
by the maximum number of tokens that can get collected at all the
places in a marking during its transition from the initial marking
back to its initial marking. Finally, embedded software code is gen-
erated (Step (22)), which will be discussed in Section 3.3.2

3.3.2 Code Generation with Multiple Threads
In contrast to the conventional single-threaded embedded software,
we propose to generate embedded software with multiple threads,
which can be processed for dispatch by a real-time operating sys-
tem. Our rationalizations are as follows: (1) With advances in
technology, the computing power of microprocessors in an embed-
ded system has increased to a stage where fairly complex software
can be executed. (2) Due to the great variety of user needs such

Table 2: Code Generation Algorithm for EQSS

GenerateCode(S,µ,EQSS1,EQSS2, . . . ,EQSSn)
S= {Ai | Ai = (Pi ,Ti ,Fi ,Mi0), i = 1,2, . . . ,n};
µ: integer; // Maximum memory
EQSS1, . . . ,EQSSn: sets of schedules of conflict-free CCPNs
{

for each source transitiontk ∈
S

i Ti do{ (1)
Tk = CreateThread(tk); (2)
output(Tk, "call t k;"); (3)
for each successor placep of tk (4)

Visit Trans(EQSSk,Tk, tk, p); (5)
}
CreateMain(); (6)

}
Visit Trans(EQSSk,Tk, tk, p){

output(Tk, "mutexs lock(&mutex);"); (1)
output(Tk, "p.token num += weight[t k, p];"); (2)
output(Tk, "mutexs unlock(&mutex);"); (3)
Visit Place(EQSSk,Tk, p); (4)

}
Visit Place(EQSSk,Tk, p){

if(Visited(p) = True) return; (1)
if(Is ChoicePlace(p)=True) (2)

output(Tk, "switch (p) {"); (3)
for each successor transitiont ′ of p (4)

if(Enabled(EQSSk, t ′)) { (5)
output(Tk, "mutexs lock(&mutex);"); (6)
output(Tk,"p.token num-=weight[p,t’];"); (7)
output(Tk, "mutexs unlock(&mutex);"); (8)
output(Tk, "call t’;"); (9)
for each successor placep′ of t ′ { (10)

Visit Trans(EQSSk,Tk, t ′, p′); } (11)
output(Tk, "break;"); } (12)

output(Tk, " }"); (13)
}

as interactive interfacing, networking, and others, embedded soft-
ware needs some level of concurrency and low context-switching
overhead. (3) A multi-threaded software architecture preserves the
user-perceivable concurrencies among tasks, such that future main-
tenance becomes easier.

The procedure for code generation with multiple threads (CGMT)
is given in Table 2. Each source transition in a CCPN represents
an input event. Corresponding to each source transition, a P-thread
is generated (Steps (1), (2)). Thus, the thread is activated when-
ever there is an incoming event represented by that source transi-
tion. There are two sub-procedures in the code generator, namely
Visit Trans() and VisitPlace(), which call each other in a recur-
sive manner, thus visiting all transitions and places and generating
the corresponding code segments. A CCPN transition represents a
piece of user-given code, and is simply generated ascall t k;
as in Step (3). Code generation begins by visiting the source tran-
sition, once for each of its successor places (Steps (4), (5)).

In both the sub-procedures VisitTrans() (Steps (1)–(3)) and Visit
Place() (Steps (6–8)), a semaphoremutex is used for exclusive
access to thetoken num variable associated with a place. This

� � � � � �

� � � � � � � � 	
 � � � �

� � � � �
 � � � 	

� 	 � � � � � � � � � � � � � � � �
 � � � � � 	

� 	
 	 � � 	 � � � � � � � � � � � � � �
 � � � � �
 � � � � 	 � 	 � �

� 	
 	 � � 	 � � � � � � � � � � � � � 	 �
 �
 � � 	 � 	 � 	 � �

� � �

Figure 2: CCPN model of HostA in Bluetooth M/S switch

semaphore is required because two or more concurrent threads may
try to update the variable at the same time by producing or con-
suming tokens, which might result in inconsistencies. Based on the
firing semantics of a CCPN, tokens are either consumed from an
input place or produced into an output place, upon the firing of a
transition. When visiting a choice place, aswitch() construct is
generated as in Step (3).

After all the codes in threads are generated, a main procedure is
generated, which creates all the threads and passes control to the
executing threads.

4. APPLICATION EXAMPLE
We give an example to illustrate our proposed EQSS algorithm and
code generation procedures. It is an example on an embedded soft-
ware for the master-slave role switch between two wireless Blue-
tooth devices. In the Bluetooth wireless communication protocol
[2], a piconetis formed of one master device and seven active slave
devices. As described in the following, there are three situations
in which a master device and a slave device would attempt to per-
form a Master/Slave (M/S) role switch. First, a device may want to
join an existing piconet thus it will have to assume the master role,
requiring a role switch with the original master. Second, a slave
device sets up a new piconet with the original master as its slave.
Third, a slave device takes the role of master of the original pi-
conet. Due to wireless device mobility, M/S role switches are quite
frequent and are accomplished by exchanging some commands be-
tween the two devices at the host control and link manager layers
and a time-division duplex switch at the baseband layer.

In our CCPN model of an M/S switch between two devicesA and
B, there are totally four Petri nets as follows. Host of deviceA
as shown in Figure 2, Host Control / Link Manager (HC/LM) of
deviceA as shown in Figure 3, host of deviceB similar to that for
A, and HC/LM of deviceB similar to that forA.

The proposed EQSS algorithm (Table 1), was applied to the given
system of four CCPN. The results of scheduling are given in Ta-
ble 3. We observe that each of the two HC/LM models has a
CCS{t8, t9, t10}, which is decomposed by EQSS into three subsets:
{t8, t10}, {t9}, and{t10}, because{t8, t9} and{t9, t10} are mutually
exclusive pairs of transitions.

� � � � � � �

� � 	
 	 � � 	
 �

� � � � � � � � � �
 	 � �

� � �

� � � � 	 � �
� � � � � � � � � �

� � 	
 � � � � � � �
� � � � 	 � � � � � � � � � � � � � 	
 � � � � � �

� � � �
� � � � � � � � � � � � � � � � �

� �
 �
 � � � � � � �

� � � �
� � � � � � � � � � � �
 �

� � � � �
 � � ! �

� � � �
� � � � � � � � � � � 	
 � �

� � � "

� � � � 	 � � � � � � � � � � �
� � �
 � � � � � �
 � � ! #

� � � � $ 	 � � � �
 % � � $

� � � �
� � � � � � � �

� � � � � &
 � �

� � � �
� � � � � � � � �

� �
 � � � � � &
 � �

� � � � 	 � �
� � � � � � � � �

� � � � &
 � � � � � � 	 � �
� � � � � � � � � � �

� � � � � &
 � �

� � � �
' ((� � � 	

� � �

� � � � 	 � �
) � � � � �
' 	 � � *

 #
� � � � 	 � �

) � � � � � � � � � �
� � 	
 � � � �

� � � � � �

� � �
� � � �

� � � � � � � � � �
� � � � � � � � � � � �

� � � �

� � �

Figure 3: CCPN model of HC/LM A in Bluetooth M/S switch

There are totally six source transitions in the four CCPN models
of the M/S role switch. Thus, six threads were generated to handle
each of the six input events represented by the source transitions.
Due to page-limits, the generated code structure is omitted.

5. CONCLUSION
We have extended the expressiveness of previous system models by
allowing complex choices in the Petri net specifications. We also
extended the quasi-static scheduling algorithm to handle such com-
plex choices. Further, we proposed a multi-threaded code genera-
tion procedure for a scheduled system of embedded software spec-
ifications in Complex-Choice Petri Nets. Through a real-world ex-
ample on the master/slave role switch between two wireless Blue-
tooth devices, we have shown the feasibility of our approach and
the benefits obtained from broadening the possible class of systems
that could be modeled and scheduled for code generation.

6. REFERENCES
[1] K. Altisen, G. G̈ossler, A. Pneuli, J. Sifakis, S. Tripakis, and

S. Yovine. A framework for scheduler synthesis. In
Real-Time System Symposium (RTSS’99). IEEE Computer
Society Press, 1999.

[2] J. Bray and C. F. Sturman.Bluetooth: Connect Without
Cables. Prentice Hall, 2001.

[3] J.-M. Fu, T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen.
Hardware-software timing coverification of distributed
embedded systems.IEICE Trans. on Information and
Systems, E83-D(9):1731–1740, September 2000.

[4] H. A. Hansson, H. W. Lawson, M. Stromberg, and
S. Larsson. BASEMENT: A distributed real-time
architecture for vehicle applications.Real-Time Systems,
11(3):223–244, 1996.

[5] P.-A. Hsiung. Timing coverification of concurrent embedded
real-time systems. InProc. of the 7th IEEE/ACM
International Workshop on Hardware Software Codesign
(CODES’99), pages 110 – 114. ACM Press, May 1999.

[6] P.-A. Hsiung. Embedded software verification in
hardware-software codesign.Journal of Systems Architecture
— the Euromicro Journal, 46(15):1435–1450, December
2000.

Table 3: Scheduling Results for Bluetooth M/S Role Switch
CCPN # T # P # S Schedules
HostA 7 5 2 〈t0, t1, t2, t4, t5, t6〉, 〈t0, t1, t3, t5, t6〉
HC/LM A 21 15 6 〈t0, t1, t2, t4, t6, t7, t10, t11, t12, t14〉

〈t0, t1, t3, t5, t6, t8, t10, t14〉
〈t0, t1, t2, t4, t6, t7, t10, t11, t13, t15,
t16, t18〉
〈t0, t1, t2, t4, t7, t11, t13, t15, t16, t18〉
〈t0, t1, t2, t4, t6, t7, t10, t11, t13, t15,
t17, t19, t20〉
〈t0, t1, t3, t5, t6, t9, t15, t17, t19, t20〉

HostB 7 5 2 Same as for HostA
HC/LM B 21 15 6 Same as for HC/LMA

where # T: number of transitions, # P: number of places, # S: number

of schedules. for HostA, t0: Initialize, t1: ACL Connection, t2: Send

HA2LA HCI Switch Role, t3: t4, t4: Receive LA2HAHCI Commandstatusevent,

t5: Receive LA2HAHCI Role changeevent, t6: End. for HC/LM A, t0:

Initialize, t1: ACL Connection, t2: Receive HA2LAHCI Switch Role, t3: Re-

ceive N2LA LMP Switch reg, t4: Send LA2HAHCI CommandStatesevent,

t5: Receive N2LALMP Slot offset sub1, t6: Checking NetWork, t7:

Send LA2NLMP slot offset sub2, t8: Send LA2NLMP not accepted,

t9: Send LA2NLMP accepted, t10: End Checking Network, t11: Send

LA2N LMP Switch req, t12: Receive N2LALMP not accepted, t13: Re-

ceive N2LA LMP accepted,t14: End, t15: Send TDDSwitchA, t16: Receive

BA2LA TimeOut1,t17: Receive BA2LARole SwitchA Success,t18: End,t19: Send

LA2HA HCI Role Changeevent,t20: End

[7] P.-A. Hsiung. Hardware-software timing coverification of
concurrent embedded real-time systems.IEE Proceedings —
Computers and Digital Techniques, 147(2):81–90, March
2000.

[8] P.-A. Hsiung. Synthesis of parametric embedded real-time
systems. InProc. of the International Computer Symposium
(ICS’00), Workshop on Computer Architecture (ISBN
957-02-7308-9), pages 144–151, December 2000.

[9] P.-A. Hsiung. Formal synthesis and code generation of
embedded real-time software. InProc. of the 9th ACM/IEEE
International Symposium on Hardware Software Codesign
(CODES’01, Copenhagen, Denmark), pages 208 – 213.
ACM Press, April 2001.

[10] B. Lin. Efficient compilation of process-based concurrent
programs without run-time scheduling. InProc. of Design
Automation and Test Europe (DATE’98), pages 211 – 217.
ACM Press, February 1998.

[11] B. Lin. Software synthesis of process-based concurrent
programs. InProc. of Design Automation Conference
(DAC’98), pages 502 – 505. ACM Press, June 1998.

[12] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of
discrete controllers for timed systems. In12th Annual
Symposium on Theoretical Aspects of Computer Science
(STACS’95), volume 900, pages 229 – 242. Lecture Notes in
Computer Science, Springer Verlag, March 1995.

[13] P. Merlin and G. Bochman. On the construction of
submodule specifications and communication protocols.
ACM Trans. on Programming Languages and Systems,
5(1):1 – 25, January 1983.

[14] M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Synthesis of embedded software
using free-choice petri nets. InProc. Design Automation
Conference (DAC’99). ACM Press, June 1999.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

