Extended Quasi-Static Scheduling for Formal Synthesis
and Code Generation of Embedded Software

Feng-Shi Su and Pao-Ann Hsiung
Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi—621, Taiwan, ROC

hpa@computer.org

ABSTRACT the type of systems that can be modeled and synthesized was fairly
With the computerization of most daily-life amenities such as home restricted in several previous works, thus the aim of this work is
appliances, the software in a real-time embedded system now ac-to remove model restrictions such that a larger domain of applica-
counts for as much a&0% of a system design. On one hand, this tions can be modeled and synthesized. Having extended the model
increase in software has made embedded systems more accesséoverage, we propose and implement a method for synthesizing
ble and easy to use, while on the other hand, it has also necessithe modeled software applications. Finally, a code generator auto-
tated further research on how complex embedded software can bematically produces embedded software code in the C programming
designed automatically and correctly. Enhancing recent advanceslanguage.

in this research, we propose Bmtended Quasi-Static Scheduling

(EQSS) method for formally synthesizing and automatically gener- An embedded systeisia computation unit, installed in a larger en-
ating code for embedded software, using@wwnplex-Choice Petri vironment system, such that it helps the environment accomplish
Nets(CCPN) model. Our method improves on previous work in some dedicated set of tasks. Some examples include avionics flight
three ways: (1) by removing model restrictions to cover a much control, vehicle cruise control, washing machine fuzzy control, and
wider range of applications, (2) by proposing an extended algo- network-enabling devices in home appliances such as embedded
rithm to schedule the more unrestricted model, and (3) by imple- web servers. In general, an embedded system architecture has both
menting a code generator that can produce multi-threaded embed-hardware and software parts. Hardware is fabricated as one or more
ded software programs. The requirements of an embedded soft-ASICs, ASIPs, or PLDs. Software is executed on one or more mi-
ware are specified by a set of CCPN, which is scheduled using croprocessors, with or without an operating systeEmbedded
EQSS such that the schedules satisfy limited embedded memorysoftwareis a piece of program code that must satisfy memory-
requirements and task precedence constraints. Finally, a POSIX-size constraints and concurrent task requirements with precedence
based multi-threaded embedded software program is generated irconstraints. Embedded software communicates with the embedded
the C programming language. Through an example, we illustrate hardware either through an interface or through direct connections
the feasibility and advantages of the proposed EQSS method. between a microprocessor and a hardware logic.

The functions that an embedded software is required to perform
1. INTRODUCTION are generally specified as a set of communicating concurrent tasks,
From home appliances to office facilities and to public convenienceshere each task is a sequential process. Since Petri nets (introduced
embedded systerage now an intricate part of the human life. Flex- |ater in Section 3.1) are a semantically precise model for several de-
ibility and complexity in such embedded systems are growing rapidlysirable common system properties such as concurrency, branching,
with increasing needs of the human. The previously mainly hard- synchronization, and mutual exclusion, previous works on software
ware ASIC-based embedded system has now evolved into a hardwaggnthesis were mainly based on a subclass of the Petri net model.
software system, with a microprocessor that executes software ac-We also adopt the Petri net model for software requirements spec-
counting for more than 70% of system functions. Software has ification, but we remove restrictions from previously used models.
enhanced the accessibility, testability, and flexibility of embedded As a motivating example, consider the Petri net model for part of
systems, but along with these advantages the inherent complex-an Autonomous Cruise ControlléACC) [4] depicted in Figure 1.
ity of software often introduces design errors that increase main- There are two sensors in ACC, one of which periodically senses
tenance costs. To ensure the correctness of software designs in athe distance between a preceding vehicle and the vehicle in which
embedded system, formal methods are being adopted successfullaCC is installed, and another periodically senses the speed limit of
for embedded software design [3, 6, 7, 9, 10, 11, 14]. Nevertheless,the road on which the vehicle is currently moving. Based on these
sense data, there is a choice of decision on whether to decelarate
or accelerate the vehicle with ACC. This choice is nditez one
(as inFree-Choice Petri Net§l4]), thus the software for such a
system cannot be modeled and synthesized by previous works [9,
14] which have théree-Choicerestriction imposed on the system
model.

The above-described non-free choices appear often in many em-
bedded systems, thus removing the restriction significantly expands

"L:;?‘éizg the Petri-Nets are safee., buffers can store at most one data unit,

decelerate which implies that it is always schedulable. The proposed method
appliesquasi-static schedulingp a set of safe Petri-Nets to pro-
duce a set of corresponding state machines, which are then mapped
syntactically to the final software code.

distance
sensor - distance >
threshold no

¢

accelerate

.

A software synthesis method was proposed for a more general Petri-
Net framework by Sgroi et al. [14]. A quasi-static scheduling al-
gorithm was proposed fofree-Choice Petri Net§FCPN) [14].

speed 'i”;;i‘;f.‘.’;‘e‘.i e A necessary and sufficient condition was given for a FCPN to be

it "R es schedulable. Schedulability was first tested for a FCPN and then
no speed a valid schedule generated by decomposing a FCPN into a set of
limit? Conflict-Free(CF) components which were then individually and

statically scheduled. Code was then generated from the schedules.

Figure 1: Complex-Choice Petri Net (CCPN) Model for Part of

; : Besides synthesis of software, there are also some recent work on
an Automatic Cruise Controller

the verification of software in an embedded system such as the

Schedule-Verify-Mamethod [6], the linear hybrid automata tech-

niques [5, 7], and the mapping strategy [3]. Recently, system pa-

the domain of applications that can be modeled and synthesized.rameters have also been taken into consideration for real-time soft-

However, with the enhancement in model expressiveness, synthesigvare synthesis [8].

becomes more complicated. We proposé&atended Quasi-Static

SchedulindEQSS) method for the synthesis of embedded software As introduced in Section 1, the current work mainly extends the

that are modeled usirgomplex-Choice Petri Ne(€CPN). Details ~ work of Sgroi et al [14] by removing thizee-choicerestriction on

on the CCPN model, our target problem, and the proposed EQSSthe Petri model, by proposing an extended scheduling method for

method will be described in Sections 3.1, 3.2, and 3.3, respectively. the unrestricted model, and by implementing a code generator that
produces multithreaded embedded software code in the C program-

EQSS extends previously proposed quasi-static scheduling (QSS)ming language.

by handling non-free choices (or complex choices) that appear in

CCPN models. Further, EQSS ensures that limited embedded mem

ory constraints are also satisfied. For feasible schedules, embed-?" . EMBEDDED .SO.FTWARE SYNTHES|S

ded software code is generated as a set of communicating POSIX’L\S '”Us”ﬁ.“ed by the motwgtlng‘uto_nomous Cruise antrollezx-

threads, which may then be deployed for execution bipeal- ample (Fig. 1) introduced in Section 1 and the previous work de-

) : P ibed in Section 2, thEree-Choice Petri Ne(FCPN) [14] sys-
Time Operating Syste(RTOS). An application example on amas- >¢"!) . - -
ter/slave switch software driver f@luetoothwireless communica- temhm(cj)ciel arr:d the Eorr.eSp?nd'?gj"dStat'ﬁ S_chedullclt\rllv@SS) |
tion devices will illustrate the feasibility and benefits of our pro- M€thod for the synthesis of embedded real-time software are al-

posed method ready not adequate for real-world embedded software systems, be-
' cause they either simply cannot be modeled by FCPN or require a

The article is organized as follows. Section 2 gives some previous great deal of work-around efforts to model non-free choices.

work related to embedded software synthesis. Section 3 formulates, . . L
In this work, we remove th&ee-choicerestriction in the system

models, and solves the embedded software synthesis problem. Sec- . . .
tion 4 illustrates the proposed solution through an application ex- model by proposingcomplex-Choice Petri NefCCPN) as our

le. Section 5 ludes the article givi fut k. Systemmodel. Using CCPN, software designers can model a larger
ample. section > concludes the article giving some fLtre wor domain of embedded applications by allowicigoice(branching)

andconcurrencysynchronizing at the same transition. For exam-
2. PRE_VIOUS WORK . ple, in Fig. 1 when the preceding vehicle’s distance is greater than a
Due to the importance of ensuring the correctness of embeddedgiven threshold (the “yes” arc) and the current speed of the vehicle
software,formal synthesihias emerged as a precise and efficient yith ACC is less than a detected speed limit (the “yes” arc), then the

method for designing software in control-dominated and real-time ygpjcle should accelerate (choice and concurrency synchronized at
embedded systems [9, 14]. In the past, a large number of efforts ihe gecelerate transition).

was directed towards hardware synthesis and comparatively little

attention paid to software synthesis. Partial software synthesis was

mainly carried out for communication protocols [13], plant con- 3.1 System Model

trollers [12], and real-time schedulers [1] because they generally DeFINITION 1. Complex-Choice Petri Nets (CCPN)
exhibited regular behaviors. Only recently has there been someA Complex-Choice Petri Ne$ a 4-tuple(P, T,F,Mp), where:
work on automatically generating software code for embedded sys-

tems [11, 14], including commercial tools such as MetaH from

Honeywell. In the following, we will briefly survey the existing ¢ Pis afinite set of places,
\i/;/ObrI;:eodn the synthesis of embedded software, on which our work « T is afinite set of transition®UT 0, andPN T = 0,

e F:(PxT)U(T xP)— A is a weighted flow relation be-
Lin [11] proposed an algorithm that generates a software program tween places and transitions, represented by arcs, wiére
from a concurrent process specification through intermediate Petri- is the set of nonnegative integers. The flow relation has the

Net representation. This approach is based on the assumption that following characteristics.

— Synchronization at a transition is allowed between a Boundedness PN is said to b&bounded if the number of tokens
branch arc of a choice place and another independent in every place of a reachable marking does not exceed a finite num-
concurrent arc. berk. A safe PN is one that is 1-boundeBeadlock-free a PN

is deadlock-free if there is at least one enabled transition in every

reachable markingLiveness a PN is live if for every reachable

marking and every transitianit is possible to reach a marking that
enableg.

— Synchronization at a transition is not allowed between
two or more branch arcs of the same choice place.

— A self-loop from a place back to itself is allowed only if
there is an initial token in one of the places in the loop.

3.2 Problem Formulation

A user specifies the requirements for an embedded software by a
set of CCPNs. The problem we are trying to solve here is to find a
construction method by which a set of CCPNs can be made feasible
Grapbhically, a CCPN can be depicted as shown in Fig. 1, where cir- to execute as a software code, running under given limited memory
cles represent places, vertical bars represent transitions, arrows repspace. The following is a formal definition of the embedded soft-
resent arcs, black dots represent tokens, and integers labeled oveware synthesis problem.

arcs represent the weights as definedrbyHere,F (x,y) > 0 im-

plies there is an arc fromto y with a weight ofF (x,y), wherexand

y can be a place or a transitio@onflictsare allowed in a CCPN, DEFINITION 2. Embedded Software Synthesis

where a conflict occurs when there is a token in a place with more Given a set of CCPNs and an upper-bound on memory use, a piece
than one outgoing arc such that only one enabled transition can0f embedded software code is to be generated such that (1) it satis-
fire, thus consuming the token and disabling all other transitions. fies all the CCPN requirements, (2) it can be executed on a single
The transitions are callezbnflictingand the place with the tokenis ~ processor, and (3) it uses memory no more than the upper-bound.
also called ahoiceplace. For example, decelerate and accelerate

are conflicting transitions in Fig. 1.

e Mp: P — N is the initial marking (assignment of tokens to
places).

There are mainly two issues in solving the above defined embedded

Intuitions for the characteristics of the flow relation in a CCPN, Software synthesis problem as described in the following.

as given in Definition 1, are as follows. First, unlike FCR¥N-
fusionsare also allowed in CCPN, where a confusion is a result
of synchronization between an arc of a choice place and another
independently concurrent arc. For example, the accelerate transi-
tion in Fig. 1 is such a synchronization. Second, synchronization is
not allowed between two or more arcs of the same choice place be-
cause arcs from a choice place represent (un)conditional branching,
thus synchronizing them would amount to executing both branches,
which conflicts with the original definition of a choice place (only
one succeeding enabled transition is executed). Third, at leastone o Code GenerationThe second issue is how to generate uni-
place OCCUrring in a |00p of a CCPN Should haVe an |n|t|a| tOken processor code so that the multi.tasking behavior of an em-
because our EQSS scheduling method requires a CCPN to return bedded software is stillisible thus increasing the ease of fu-

to its initial marking after a finite Complete CyCle of mal’kings. This ture maintenance. Further, how can interrupt hand“ng code
is basically not a restriction as can be seen from most real-world be generated?

system models because a loop without an initial token would result
in either of two unrealistic situations: (1) loop triggered externally
resulting in accumulation of infinite number of tokens in the loop,
or (2) loop is never triggered.

e CCPN SchedulingThe first issue is how to schedule all the
CCPN requirements onto a single processor. In the origi-
nal QSS method [14], due to the free-choice characteristic of
FCPN, net decomposition was straightforward, resulting in a
simpler scheduling strategy. But, now due to complex-choice
characteristic of CCPN, net decomposition and scheduling
are more intricate.

3.3 Synthesis Algorithm

As formulated in Definition 2 and described in Section 2, there are

two objectives for solving the embedded software synthesis prob-
f lem, namely scheduling of CCPN requirements on a single proces-

Semantically, the behavior of a CCPN is given by a sequence o .
4 g 4 g sor and embedded software code generation. For CCPN schedul-

markings where a marking is an assignment of tokens to places. ; . i .
Formally, a marking is a vectdl = (my,m, .., M), wherem is ing, we propose aExtended Quasi-Static Scheduli(gQSS) al-

the non-negative number of tokens in plage P. Starting from an gonthm,_ which can handleomplex-cho!cem a CCPN' For code

initial markingMp, a CCPN may transit to another marking through generation, we propo_se(éode Generation with Multiple Threads .

the firing of an enabled transition and re-assignment of tokens. A (CG.MT) meth_od, which can generate code_ suph Fh_at the mu_Itl-

transition is said to benabledwhen all its input places have the taskln_g behavior of an embedc_zled software is stll visible, thus in-

required number of tokens, where the required number of tokens creasing the ease of future maintenance.

is the weight as defined by the flow relatibn An enabled transi-

tion need not necessarily fire. But upon firing, the required number 3.3.1 Extended Quasi-Static Scheduling

of tokens are removed from all the input places and the specified To handle complex choices that may occur in a CCPN, we propose

number of tokens are placed in the output places, where the specithe Extended Quasi-Static Scheduli(QSS) method. EQSS is

fied number of tokens is that specified by the flow relafoon the based on the previously proposed QSS method, which makes most

connecting arcs. scheduling decisions statically, leaving only the data-dependent de-
cisions to run-time. Basically, QSS works as follows [14]. When-

Some properties of Petri Nets (PN) can be defined as follBeach-
ability: a markingM’ is reachable from a markingl if there ex-
ists a firing sequence starting at markingvl and finishing aM’.

ever a choice place is encountered, a T-allocation selects one of
the enabled conflicting transition for execution, thus disabling all
other conflicting transitions. The T-allocation is performed for each

e There exists a sequence of the transition€ isuch that any

Table 1: Extended Quasi Static Algorithm two adjacent transitions are always conflicting transitions

EQSSScheduldS, p) from the same choice place.
S:{Ai‘Ai:(PlvTithMiO)yi:1727~~~7n}; . . . i .
i integer: /I Maximum memory e There is no other transition iff;\C that conflicts with any
{ ' transition inC, which mean€ is maximal.

while (C = GetCCSS) # NULL) { @)

/I ConstructExclusion Tablé€ExTablefor CCSC F Definition 3 that a f hoice i ial
Initialize_TableExTablg; // Initialize table to False (2 rom Detinition 3, We can see that a Iree-choice 1s a Special case

for each transitiot € C ?) of CCS. Thus, QSS also becomes_a part of EQSS. Fo_r_each CCs,
i EQSS analyzes the mutual exclusiveness of the transitions in that
for each transition’ € C 4) . . - .
; ; ’ n= . CCS and then records their relations intoEclusion TabléSteps
if (M _Exclusivet,t’)) ExTablégt,t'] = True; (5 2(5) T | hoi . id I
/l Decompose CCS into conflict-free subsets @).)' _ Wo compiex-choice transitions are sal to metually
_ . : exclusivef the firing of any one of the two transitions disables the
D={C}; /IDisapower-setof (6) " . . -
other transition. When the,(j) element of an exclusion table is

~

for each subsetl € D (7 . th h " .
for each transition ¢ H ®) TtrrL]Je, |t_me_r:1r_15;ht|§ and thej'" transitions are mutually exclusive,
for each transition’ € H 9) otherwise Itis Faise.
if (ExTablét,t']=T 1
! (H)/(:agj;;ée(;;e){ El% Based on the exclusion table, a CCS is decomposed into two or
DeIeteTraﬁsH t,)f (12) more conflict-free(CF) subsets, which are sets of transitions that
DeIeteTrans(—l; t): (13) do not have any conflicts, neither free-choice nor complex-choice.
D—DUH" } e (14) The decomposition is done as follows (Steps 6-14).
/l Decompose a CCPN into subnets accordinB to
for each subset € D (15) e For each pair of mutually exclusive transitiant, do as fol-
DecomposeCCPNES H); (16) [OWS.
/I Schedule all CF components o Make a copyH’ of the CCSH (Step (11)),
for each CCPMy € S 17
for each conflict-free subnet of A { (18) o Deletet’ from H (Step (12)), and
if (Xs — NULL) return ERROR; 20) * Deletet from H' (Step (13)).
elseEQS$=EQSSUXs; } (21)
Generate Codg(S |, EQSS, ..., EQSS); (22) Based on the CF subsets, a CCPN is decomposed into conflict-free
} components (subnets) (Steps (15)—(16)). The CF components are

not distinct decompositions as a transition may occur in more than
one component. Starting from an initial marking for each compo-
nent, afinite complete cycles constructed, where a finite complete
conflicting transition. Then, a T-reduction actually eliminates all cycle is a sequence of transition firings that returns the net to its ini-
the disabled conflicting transition from a T-allocation, including all tial marking. A CF component is said to be schedulable (Step (19))
successor places and transitions that are no longer triggerable. Inif a finite complete cycle can be found for it and it is deadlock-free.
tuitively, each T-reduction is a possible computation behavior of Once all CF components of a CCPN are scheduled, a valid sched-
the net, which is then scheduled independently from the other T- ule for the CCPN can be generated as a set of the finite complete
reductions. If all T-reductions can be scheduled, then the system iscycles. The reason why this set is a valid schedule is that since each
declared schedulable and valid schedules generated, which is use§omponent always returns to its initial marking, no tokens can get
for code generation. The generated code ensures that the numbegollected at any place. Satisfaction of memory bound is checked by
of tasks is minimal, that is, it is the same as the number of source observing if the memory space represented by the maximum num-
transitions with independent firing rates, where a source transition ber of tokens in any marking does not exceed the bound. Here,
is one without any incoming place thus represents a system inputeach token represents some amount of buffer space (i.e., memory)
event. Two source transitions are said to himdependenfiring required after a computation (transition firing). Hence, the total
rates if the rates at which they fire are not related in any way. amount of actual memory required is the memory space represented
by the maximum number of tokens that can get collected at all the
As described above, QSS cannot handle non-free choices, whichplaces in a marking during its transition from the initial marking
we call complex choicesthus EQSS is proposed. The details of back to its initial marking. Finally, embedded software code is gen-
our proposed EQSS algorithm are as shown in Table 1. Given a erated (Step (22)), which will be discussed in Section 3.3.2
set of CCPNsS= {A | A = (R, Ti,F,Mio),i =1,2,...,n} and a
maximum bound on memony, the algorithm finds and processes 3.3.2 Code Generation with Multiple Threads
each set of complex choice transitions (Step (1)), which is simply |n contrast to the conventional single-threaded embedded software,
calledComplex Choice S¢CCS) and is defined as follows. we propose to generate embedded software with multiple threads,
which can be processed for dispatch by a real-time operating sys-
tem. Our rationalizations are as follows: (1) With advances in
DEeFINITION 3. Complex Choice Set (CCS) technology, the computing power of microprocessors in an embed-
Givena CCPNA = (R, Ti, K, Mip), a subset of transition8 C T; is ded system has increased to a stage where fairly complex software
called acomplex choice séf they satisfy the following conditions. can be executed. (2) Due to the great variety of user needs such

Table 2: Code Generation Algorithm for EQSS

Generate Code(S |, EQSS,EQSS,...,EQS])
S={A |A =(P,Ti,K,Mjp),i =1,2,...,n};
W integer; /I Maximum memory
EQSS,...,EQS%: sets of schedules of conflict-free CCPNs
for each source transitidp € | J; Ti do { (1)
Tk = CreateThreadty); 2
output(Ty, "call t k;"); 3)
for each successor plapeof tg (4)
Visit_TransEQSS, Tk, tk, P); (5)
}
CreateMain(); (6)
}
Visit_Trans€ QS§, Tk, tk, P){
output{Ty, "mutexs _lock(&mutex);"); (1) Figure 2: CCPN model of HostA in Bluetooth M/S switch
output(Ty, "p.token _num += weightlt k, p];"); 2
output(Ty, "mutexs _unlock(&mutex);"); 3)
} Visit-PlaceEQS%, Ti. p): @ semaphore is required because two or more concurrent threads may
try to update the variable at the same time by producing or con-
Visit_PlaceEQSS, Tk, p){ suming tokens, which might result in inconsistencies. Based on the
if(Visited(p) = True) return; a firing semantics of a CCPN, tokens are either consumed from an
if(ls_ChoicePlacep)=True)) input place or produced into an output place, upon the firing of a
output(T, "switch (p) {") 3) transition. When visiting a choice placeswaitch() construct is
for each successor transititrof p (4) generated as in Step (3).
if(EnabledEQSS{,t")) { (5)
output(Ty, "mutexs _lock(&mutex);"); (6) After all the codes in threads are generated, a main procedure is
output(Ty,"p.token _num-=weight[p,t];" Y, (7) generated, which creates all the threads and passes control to the
output(Ty, "mutexs _unlock(&mutex);*); (8) executing threads.
output(Ty, "call t’;"); 9)
for each successor plageoft’ { (10)) 4. APPLICATION EXAMPLE
Visit_TransEQSR, Ti ', p); } (11) We give an example to illustrate our proposed EQSS algorithm and
output(T, "break;"); } (12) code generation procedures. It is an example on an embedded soft-
output(T, " }"); (13) ware for the master-slave role switch between two wireless Blue-
} tooth devices. In the Bluetooth wireless communication protocol

[2], apiconetis formed of one master device and seven active slave
devices. As described in the following, there are three situations
in which a master device and a slave device would attempt to per-
as interactive interfacing, networking, and others, embedded soft- form a Master/Slave (M/S) role switch. First, a device may want to
ware needs some level of concurrency and low context-switching join an existing piconet thus it will have to assume the master role,
overhead. (3) A multi-threaded software architecture preserves therequiring a role switch with the original master. Second, a slave
user-perceivable concurrencies among tasks, such that future maindevice sets up a new piconet with the original master as its slave.
tenance becomes easier. Third, a slave device takes the role of master of the original pi-
conet. Due to wireless device mobility, M/S role switches are quite
The procedure for code generation with multiple threads (CGMT) frequent and are accomplished by exchanging some commands be-
is given in Table 2. Each source transition in a CCPN represents tween the two devices at the host control and link manager layers
an input event. Corresponding to each source transition, a P-threadand a time-division duplex switch at the baseband layer.
is generated (Steps (1), (2)). Thus, the thread is activated when-
ever there is an incoming event represented by that source transidn our CCPN model of an M/S switch between two deviéesnd
tion. There are two sub-procedures in the code generator, namelyB, there are totally four Petri nets as follows. Host of device
Visit_Trans() and VisitPlace(), which call each other in a recur- as shown in Figure 2, Host Control / Link Manager (HC/LM) of
sive manner, thus visiting all transitions and places and generatingdeviceA as shown in Figure 3, host of deviBesimilar to that for
the corresponding code segments. A CCPN transition represents &, and HC/LM of deviceB similar to that forA.
piece of user-given code, and is simply generatedadist k;
as in Step (3). Code generation begins by visiting the source tran- The proposed EQSS algorithm (Table 1), was applied to the given
sition, once for each of its successor places (Steps (4), (5)). system of four CCPN. The results of scheduling are given in Ta-
ble 3. We observe that each of the two HC/LM models has a
In both the sub-procedures Visirans() (Steps (1)—(3)) and Visit CCS{ts,tg,t10}, which is decomposed by EQSS into three subsets:
Place() (Steps (6-8)), a semaphonetex is used for exclusive {ts,t10}, {to}, and{tio}, becausets, tg} and{ty,t10} are mutually
access to théoken _num variable associated with a place. This exclusive pairs of transitions.

Figure 3: CCPN model of HC/LM A in Bluetooth M/S switch

There are totally six source transitions in the four CCPN models
of the M/S role switch. Thus, six threads were generated to handle
each of the six input events represented by the source transitions

Due to page-limits, the generated code structure is omitted.

5. CONCLUSION

Table 3: Scheduling Results for Bluetooth M/S Role Switch
[CCPN [#T [#P [#S] Schedules]
2

HostA 7] 5 (to,ta, t2, 14,15, t6), (to, t1, 13,15, t6)
HC/LM A 21 15 6 (to,t17t2,t4,t67t77t107t11,t127t14>
(to, 1, 13,15, 16, t8, t10, t14)

(to,t1, 12,14, 16,7, 110, t11, 113, 115,
t16,t18)
(to,t1,t2,t4,t7,t11, 113, 115, t16, t18)
(to, 11,12, 14,16, t7, 110, t11, 113, 115,
t17,t19,t20)

(to, t1,13,15, 16, to, t15,t17, t19, t20)
Same as for HosA

Same as for HC/LMA

HostB 7 5 2
HC/LM B 21| 15 6

where # T: number of transitions, # P: number of places, # S: number

of schedules. for HostA, to: Initialize, t;: ACL_Connection, to: Send
HA2LA _HCI_Switch.Role, t3: t4, t4: Receive LA2HAHCI_Commandstatusevent,
ts: Receive LA2HAHCI_Rolechangeevent, ts: End. for HC/LM A, to:
Initialize, t;: ACL_Connection,t,: Receive HA2LAHCI_Switch.Role, t3: Re-
ceive N2LALMP_Switchreg, t;: Send LA2HAHCI_.CommandStatesevent,
ts: Receive N2LALMP_Slotoffsetsubl, tg: Checking NetWork, t7:
Send LA2NLMP_slotoffsetsub2, tg: Send LA2NLMP_notaccepted,
to: Send LA2NLMP_accepted, tjp: End Checking Network,t;;: Send
LA2N_LMP_Switchreq, ti2: Receive N2LALMP_notaccepted, ti3: Re-
ceive N2LALMP_accepted,tis: End, ti5: Send TDDSwitchA, tis: Receive
BA2LA _TimeOutl,t;7: Receive BA2LARole.SwitchA_Successtig: End,tio: Send
LA2HA _HCI_Role.Changeevent,tyo: End

We have extended the expressiveness of previous system models by[7] P.-A. Hsiung. Hardware-software timing coverification of

allowing complex choices in the Petri net specifications. We also
extended the quasi-static scheduling algorithm to handle such com-
plex choices. Further, we proposed a multi-threaded code genera-
tion procedure for a scheduled system of embedded software spec- 8]

concurrent embedded real-time systet&B& Proceedings —
Computers and Digital Techniquek47(2):81-90, March
2000.

P.-A. Hsiung. Synthesis of parametric embedded real-time

ifications in Complex-Choice Petri Nets. Through a real-world ex-
ample on the master/slave role switch between two wireless Blue-
tooth devices, we have shown the feasibility of our approach and

systems. IrProc. of the International Computer Symposium
(ICS’00), Workshop on Computer Architecture (ISBN

the benefits obtained from broadening the possible class of systems [9]

that could be modeled and scheduled for code generation.

6. REFERENCES
[1] K. Altisen, G. Gssler, A. Pneuli, J. Sifakis, S. Tripakis, and
S. Yovine. A framework for scheduler synthesis. In
Real-Time System Symposium (RTSSIE®BE Computer
Society Press, 1999.

[2] J. Bray and C. F. SturmaBluetooth: Connect Without
Cables Prentice Hall, 2001.

[3] J.-M. Fu, T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen.
Hardware-software timing coverification of distributed
embedded systemkEICE Trans. on Information and
SystemsE83-D(9):1731-1740, September 2000.

[4] H. A. Hansson, H. W. Lawson, M. Stromberg, and
S. Larsson. BASEMENT: A distributed real-time
architecture for vehicle applicatiorReal-Time Systems
11(3):223-244, 1996.

[5] P.-A. Hsiung. Timing coverification of concurrent embedded

real-time systems. IRroc. of the 7th IEEE/ACM
International Workshop on Hardware Software Codesign
(CODES'99) pages 110 — 114. ACM Press, May 1999.

[6] P.-A. Hsiung. Embedded software verification in
hardware-software codesigiournal of Systems Architecture
— the Euromicro Journal6(15):1435-1450, December
2000.

957-02-7308-9)pages 144-151, December 2000.

P.-A. Hsiung. Formal synthesis and code generation of
embedded real-time software. Rioc. of the 9th ACM/IEEE
International Symposium on Hardware Software Codesign
(CODES'01, Copenhagen, Denmargages 208 — 213.
ACM Press, April 2001.

[10] B. Lin. Efficient compilation of process-based concurrent
programs without run-time scheduling. Rmoc. of Design
Automation and Test Europe (DATE'9®gges 211 — 217.
ACM Press, February 1998.

[11] B. Lin. Software synthesis of process-based concurrent
programs. IrProc. of Design Automation Conference
(DAC’98), pages 502 — 505. ACM Press, June 1998.

[12] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of
discrete controllers for timed systems.1ath Annual
Symposium on Theoretical Aspects of Computer Science
(STACS’95)volume 900, pages 229 — 242. Lecture Notes in
Computer Science, Springer Verlag, March 1995.

[13] P. Merlin and G. Bochman. On the construction of
submodule specifications and communication protocols.
ACM Trans. on Programming Languages and Systems
5(1):1 — 25, January 1983.

[14] M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Synthesis of embedded software
using free-choice petri nets. Proc. Design Automation
Conference (DAC'99)ACM Press, June 1999.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

