
Energy Frugal Tags in Reprogrammable I-Caches
for Application-Specific Embedded Processors �

Peter Petrov
University of California at San Diego

CSE Department
ppetrov@cs.ucsd.edu

Alex Orailoglu
University of California at San Diego

CSE Department
alex@cs.ucsd.edu

ABSTRACT
In this paper we present a software-directed customization method-
ology for minimizing the energy dissipation in the instruction cache,
one of the most power consuming microarchitectural components
of high-end embedded processors. We target particularly the in-
struction cache tag operations and show how an exceedingly small
number of tag bits, if any, are needed to compute the miss/hit be-
havior for the most frequently executed application loops, thus min-
imizing the energy needed to perform the tag reads and compar-
isons. The proposed methodology exploits the fact that the code
layout structure of the program loops can be identified after com-
pile and link, and that it typically resides in a very confined mem-
ory location, for which very few bits from the effective address can
be utilized as a tag. Subsequently, we present an efficient, pro-
grammable implementation to apply the suggested energy mini-
mization technique. The experimental results show a significant
decrease in energy dissipation for a set of real-life applications.

1. INTRODUCTION
The ever growing improvements in process technology have made

the utilization of system-on-a-chip (SOC) design approaches highly
attractive. Improved time-to-market, cost-efficient designs, easy
design reuse, and flexible implementation constitute some of the
many SOC advantages. Embedded processor cores are being uti-
lized widely in such systems in order to achieve better time-to-
market, lower design cost, and easily reprogrammable implemen-
tations. However, the increased silicon integration, together with
the ever increasing clock frequencies, have led to proportional in-
creases in terms of power consumption.

Minimizing power consumption is becoming one of the major
requirements for a large class of products including PDAs, cell
phones, laptop computers, and even high-end servers, as reduced
power consumption translates to longer battery life and increased
chip density due to reduced cooling requirements. Consequently,
techniques for minimizing system power consumption are of cru-
cial importance for product quality. Circuit-level power minimiza-

�This work is supported by NSF Grant 0082325.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM 0-89791-88-6/97/05 ...$5.00.

tion techniques have been the dominant approach in designing en-
ergy efficient designs so far [1, 2]. However, architecture-level ap-
proaches are becoming in recent years popular due to their ability
to eliminate redundancies on higher, microarchitectural levels, thus
resulting in even greater power optimizations [3, 4, 5].

Hardware/software co-design methodologies are extremely im-
portant in designing complex SOCs comprising processor cores
and dedicated ASIC modules. Processor speeds globally and per-
formance predictability locally are important design trade-off char-
acteristics taken into account in building such a hardware/software
co-design system [6]. A fundamental issue is the partitioning prob-
lem of system functionality between hardware and software. While
shifting as much as possible of the functionality onto software re-
duces system cost and time-to-market, performance and power con-
sumption suffer, thus diminishing the advantages of general-purpose
processors; the end result typically is either a costly system includ-
ing a large amount of custom hardware, or an extremely power hun-
gry design, utilizing processor cores of very high performance. Yet,
processor cores are still the most viable solution in implementing
complex SOCs if special care is taken to prevent the fundamen-
tal disadvantages of their general-purpose nature. Customizing the
processor microarchitecture to particular application-specific needs
has been shown to be an efficient technique for boosting processor
performance and significantly reducing its power consumption [7].

In this paper, we propose a technique for software-controllable
customization of the instruction cache (I-cache) subsystem of high-
performance microprocessors, a microarchitectural component with
significant contribution to the total power consumption [3]. We de-
scribe an architecture, capable of utilizing application-specific in-
formation in a programmable way; hence the ability to re-customize
in a post-manufacturing fashion helps effectively cover diverse ap-
plications with no need for spinning new silicon, an important ad-
vantage in terms of flexibility for a number of high-performance
embedded systems.

The proposed methodology utilizes information about the appli-
cation loops and more specifically the possible I-Cache conflicts
of loop code or functions called within the loop. The tag opera-
tions associated to the I-cache are typically designed for a worst
case scenario and they utilize the entire effective address. In high-
associativity caches, the tag length approaches the length of the
entire effective address, which results in power expensive tag reads
and comparisons.

The I-cache tag operations are not only quite expensive in terms
of power but usually also highly redundant, as conflicting refer-
ences are frequently close to each other in the address space, thus
necessitating only a few tag bits for conflict identification. A straight-
forward optimization for an architecture with no fetch buffers, al-
ready proposed in [8], consists of avoiding tag operations when

Effective
Address

TAG0 DATA0 TAG1 DATA1

CompComp

set1 hit/missset0 hit/miss

Cache Index

set1 dataset0 data

Tag

TAGi DATAi

tag

data

a) b)

Figure 1: Set associative cache organizations

sequentially fetching within a cache line, and only performing tag
checks when crossing cache line boundaries. The latter happens
when a control changing instruction (branch, subroutine call, etc.)
has been encountered, or the sequential program flow has reached
a new cache line.

We show how depending on the code layout of the application
loops, the minimal number of tag bits needed for identifying cache
conflicts is determined. In the extreme case of a loop that fits in
the I-cache, no tag operations are required at all for identifying
conflicts.

The hardware support for the proposed methodology needs to
be able to utilize only a certain number of least significant bit-
lines from the tag arrays and disable the rest. We complement our
methodology with a discussion of such a hardware implementation
for the proposed I-cache customization. Not only is the hardware
solution efficient, but it is also programmable. Consequently, the
described hardware implementation constitutes a unified microar-
chitectural solution, capable of handling a large set of important
applications through in-field re-customization and of maintaining
the market benefits of high-volume embedded processor produc-
tion runs.

2. RELATED WORK
The area of architecture-level cache power optimizations is a rel-

atively new one. In [9], a small and energy efficient L0 data cache
is introduced in order to reduce power consumption of the memory
hierarchy. The price paid is increased miss rate and longer access
time. In [3], an L0 instruction cache with run-time techniques for
fetching only the frequently executed basic blocks is proposed. The
small size of this cache translates directly to power consumption re-
ductions.

In set-associative cache designs, a significant amount of power
is spent to access simultaneously all the cache ways and at the end
select the data from only one of them. Aphasedcache design [10]
can be used to alleviate the resulting power problem by accessing
only the tag arrays initially. If a hit is identified in a particular as-
sociativity way, the data from this way is read in the next cycle.
Therefore, the phased cache organization reduces the power con-
sumption, while paying the price of an additional cycle to the cache
access time. Theway-predictingset-associative cache organization
[11] attacks this problem by first predicting in which associativity
way the data resides and consequently accesses only the data array
of the predicted way. At the same time, the tag arrays are being
read and the prediction validated. In the case of a misprediction, an
additional cycle for accessing the data is needed if a cache hit has
occurred in another associativity way, or the data is brought from
the next level of the memory hierarchy in the case of a miss.

3. TAG MINIMIZATION

3.1 Cache organization

The I-cache is used to bring the executable code closer to the
processor core, so that the time needed to fetch an instruction is
minimized. Figure 1a outlines the architecture of a 2-way set asso-
ciative cache. The referenced effective address, which in the case of
the I-cache is the content of the Program Counter (PC), is separated
into block index, cache index, andtag. The block index is used to
address a word within a cache line, while the cache index is used to
address the cache line; the tag field checks whether there is a con-
flict with a memory location with the same cache index. Increased
set-associativity results in shorter cache index (smaller number of
sets) and thus wider tags. In the extreme case of fully associative
cache, almost the entire address (except the block index) forms the
tag. The tag field associated to each cache line is stored in a sep-
arate tag memory array. Each time an access is performed to the
I-cache, the tag associated to the cache line is read and compared
to the tag of the effective address being referred.

A power efficent implementation of highly associative cache or-
ganizations was demonstrated in the design of the StrongARM mi-
croprocessor [12]. The tags corresponding to each associativity set
are stored in a fully associative buffer, typically implemented as a
CAM array. Figure 1b shows this structure for a particular asso-
ciativity set. The tag look-up is performed in a fully associative
manner in the CAM buffer and a hitting reference directly selects
its corresponding data line from the data array. In this architecture
most of the power is spent in performing the fully associative tag
look-up, while the total power consumption is similar to that of a
traditional 2-way set associative cache. Because of the high as-
sociativity, the tag length in this cache organization is significant;
consequently, a technique that effectively reduces the number of tag
bitlines being accessed and compared would have a crucial impact
on the total power consumption of the cache.

Conceptually, the tag plays the role of a key for distinguishing
two distinct memory addresses being mapped to the same cache
line. If the referred locations are close in the address space, a large
part of these tag fields is consequently redundant. Depending on
the size of the memory region in which the memory locations re-
side and the cache organization, a very small number of least sig-
nificant tag bits typically suffices to play the cache line “key” role
and distinguish all the possible conflicting addresses for this line. A
large amount of power is spent in reading, comparing and writing
unnecessarily large tags, unless the aforementioned redundancy is
eliminated.

3.2 Tag usage analysis
Programs typically spend most of their execution time in a small

part of the application code. A well known rule of thumb is that “A
program executes about 90% of its instructions in 10% of its code”
[13]. Usually, this small part constitutes a set of loops that exe-
cutes a limited number of static instructions. Therefore, the code
executed in the loop spans a small fraction of the memory space.
Figure 2 shows an example of such a loop and the code layout in
the address space.

Figures 2b and 2c show the memory layout of the code from the
example. The program memory space is divided into regions that
correspond in size to one I-cache associativity-way and is aligned
on the memory boundaries for which thecache indexpart of the ad-
dress is zero. Consequently, for each of these memory regions the
tag part of the address is a constant and this particular tag value is
associated to addresses only within this memory region. Thereafter,
we denote these memory regions as0-tag regions. It is evident that
if a particular code resides within a 0-tag region, there will be no
instruction cache conflicts, because all the addresses will be dis-
tributed to distinct cache lines, since the tag part of these addresses
is a constant. Therefore, for such a code, no tag operations are
needed and only the cold misses for the loop need to be handled.

Figure 2b shows a configuration in which the loop code resides
within four 0-tag regions. In this situation cache conflicts are possi-
ble, since there might be references to addresses with differing tags.
It is evident though, that in such a case the two least significant bits
from the tags suffice for cache conflict identification. It can be ob-
served that these two bits differ for all the tags within this memory
region formed by four consecutive0-tag regions. Therefore, these
two tag bits provide a full resolution for the set of memory ad-
dresses referencing this memory region. In this case the remaining
more significant tag bits are identical for all the tags, but as the next
example shows, it is possible to have differing most significant tag
bits and still achieve a complete cache conflict identification only
through utilization of a small number of least significant bits.

Figure 2c shows a configuration in which the same loop spans
another memory region again comprising four0-tag regions. As
in the previous example, the two least significant tag bits would be
enough to provide a complete address resolution and serve as “re-
duced” tags for cache conflict identification. In this case though,
the remaining most significant tag bits may contain varying values,
which would still not prevent the utilization of only the two least
significant bits as a conflict indicator. This is a direct consequence
of the fact that the tag role in the cache designs is to provide sep-
aration between memory locations that can overlap in the cache.
Therefore, any set of distinct “keys” associated to the memory ad-
dresses that overlap in the cache can be used as tags. Evidently,
the two least significant bits in this example can play this role and
provide complete resolution for cache conflict identification.

01100
01101
01110
01111

...
Cn
C2
C1

C1
C2...
Cn

00110
00111
01000
01001

c)

tags

C1
C2

...C3
Cn

00100
00101

tags

d)

01010
01011

a) b)

 C1;
 C2;
 ...
 Cn;
endfor

for i=1 to K
tags

Figure 2: Memory layout alternatives

In all these examples, the loop code happens to occupy consec-
utive 0-tag regions. In such a case, it is evident that the number
of least significant tag bits needed for complete tag resolution is
dlog

2
ne, wheren is the number of0-tag regions. Since, a loop

body can contain calls to functions placed by the linker in various
memory locations, a situation with non-contiguous0-tag regions
needs to be considered as well. Figure 2d shows such a code lay-
out. The first part of the loop code occupies two0-tag regions,
while the rest of the code resides in another two0-tag regions, but
separated from the first two. If one considers the unused memory
space between the loop parts as a part of the loop, then the loop
code spans a total of eight0-tag regions, thus necessitating a total
of three least significant tag bits for cache conflict identification.
It is evident that this is a worst case scenario, and as the example
shows, in the particular case actually only two least significant bits
would suffice for complete tag resolution. Consequently, one can
observe that for this general case of loop code layout the number of
least significant tag bits is in the range[dlog

2
ne; dlog

2
me], where

n is the number of0-tag regions utilized by the loop code, andm
the total number of0-tag regions that the loop code spans in the
memory space. The number depends on the particular tag values of
the tag regions which the loop code occupies.

3.3 Removing the tag redundancy
The general-purpose cache architecture, seen from this perspec-

tive, is fundamentally a worst case assumption, with the program
taking up residence within the entire addressable memory space.
A large amount of redundancy in performing the tag operations
therein exists, particularly if the program code is sparse but dis-
tributed haphazardly, with no consideration of dynamic code exe-
cution proximity, throughout the0-tag regions.

A consequence of the above observations is that typically there
exist large levels of redundancy in reading the entire tag from the
tag array and comparing it to the effective address tag. Given that
application-specific information about the loop code layout in the
program memory is present during program execution, a large part
of this redundancy can be eliminated, resulting in significant power
savings. The application information can be obtained after com-
pile/link time when the code layout is already known and provided
to the I-Cache microarchitecture in a programmable fashion.

As discussed in the previous subsection, if the code of the fre-
quently executed application parts resides within a0-tag region in
the memory space, then no I-cache conflicts are possible; hence no
tag operations are needed. When the code spansn consecutive0-
tag regions, then exactlydlog

2
ne least significant tag bits can be

utilized as new shorter tags, thus effectively eliminating the signif-
icant redundancy from all tag operations. In the general case of
loop code that spans non-contiguous memory regions, the minimal
number of least significant tag bits for cache conflict identification
needs to be found. As we showed in the previous subsection, this
number lies in the integer region[dlog

2
ne; dlog

2
me]. A straight-

forward algorithm for finding this number starts fromdlog
2
ne tag

bits and keeps adding a tag bit, until all the tags in the code0-tag
regions can be distinctly identified by the values formed by the cur-
rent number of least significant tag bits.

Furthermore, certain compile/link time optimization techniques
can be applied, in order to layout the loop code in such a way that
the number of required tag bits for I-cache conflict identification is
minimized. Placing the loop code as close as possible is a basic
technique for code positioning that aims to minimize the I-cache
miss rate [14]. Consequently, while our methodology does not di-
rectly modify the code layout, it can significantly benefit from code
positioning techniques for I-cache miss rate minimization.

4. APPLYING I-CACHE TAG REDUCTION

4.1 Compile-time support
The methodology starts with application profiling in order to

identify the major application loops. After compile and link, the
loop code layout including the functions that are called within the
loop is fully specified. At this stage the analysis that we present
in the previous section for identifying the minimal number of least
significant tag bits is performed. The next step is to insert special
control code just before entering the loop and right after the exit.
The purpose of this code is to set up the hardware support, which
is described in the next section, so that only the identified number
of least significant tag bits are utilized in the I-cache microarchi-
tecture. This special code includes an instruction that writes into
a specialTag Register(TR) associated to the hardware support for
the tag optimized cache controller. Depending on the processor
architecture in which this cache organization is implemented, the
special register can be either memory mapped or accessed as an
I/O. The particularities of this access and the type of instruction
needed to access such a hardware register are of no importance
to the proposed methodology and are completely processor depen-
dent. Noteworthy is that thetag analysisstep must consider the
small number of control instructions that will be inserted subse-
quently just preceding the major application loops so as to deter-
mine the0-tag region spans of these loops.

4.2 I-cache operation
The only requirement for ensuring correct I-cache operation in

this scheme is the detection of whether a particular cache line is
associated with a full tag or a reduced tag. This is essential as
cache lines from previously executed application loops can contain
tag bits from these loops, which are deficient in enabling correct
conflict identification for the current loop. Consequently, when en-
tering a loop operating with shorter tags, care needs to be taken to
ensure the invalidation of the cache lines left from a previously ex-
ecuted loop utilizing reduced tags. Any application code brought
into the I-cache while performing full tag operations can still be
utilized when in reduced tag mode, of course, by simply reading
the corresponding least significant tag bits and disabling the rest.

This functionality can be easily achieved by assigning a special
status bit called RT (reduced tag) bit, indicating whether the cache
line is associated with a reduced tag. When in normal I-cache op-
erational mode, this bit will always be reset, thus indicating the
utilization of complete tags. After entering a loop in reduced tag
mode, if the RT bit associated to the cache line being accessed is
zero, then a complete tag operation is performed and the RT bit is
set to one. In subsequent accesses to this cache line only reduced
tag operations will be performed. Prior to entering the particular
loop all cache lines still having the RT bit asserted need to be in-
validated so that possible conflicts across application loops are cor-
rectly resolved. When in normal operational mode, if a cache line
has its RT bit set to one, a miss is forced and a full tag is stored
while the RT bit is reset. The insignificant penalty of this forced
invalidation is the only performance penalty introduced by our ap-
proch. A quantitative evaluation of this effect is presented in sec-
tion 6.

4.3 OS interaction and interrupts
If a context switch or interrupt occurs, there are several ways of

dealing with such a situation. If the cache architecture supports
process identifiers (pid) as part of the whole tag in order to avoid
invalidating the cache, then the same pid’s can be used with the
minimized tags proposed in this paper. Of course, if the task being

scheduled utilizes the same tag minimization technique, then the
TR register needs to be preserved as part of the process state.

If an interrupt occurs, then a possible approach consists of lock-
ing the cache for the interrupt routine code. An alternative solution
is to treat the interrupt routine as a code executing in normal tag
mode (i.e., bringing full tags into the cache and resetting the RT
bits), and then safely return to the loop execution in reduced tag
mode. The utilization of the RT status bits completely avoids any
consistency issues that otherwise could have been introduced. Both
approaches can be easily implemented and utilized depending on
the type and complexity of the particular interrupt being handled.

5. IMPLEMENTATION
The proposed methodology necessitates a hardware support that

would be able to dynamically enable only the minimum required
bits from the tag array for the program loops. The hardware re-
quires information as to how many tag bits exactly are needed for
a particular application loop.

We present an efficient hardware for manipulating the tag mem-
ory array so that only the required minimal number of tag bits are
used per application loop. The tag array in the cache subsystem
is typically implemented as an SRAM array (a similar architecture
can be utilized for the CAM based tag arrays in high-associativity
caches), possibly divided into multiple banks. The SRAM data ar-
ray containswordlinesfor each tag data and abitline for each bit
within the tag word. Figure 3 shows the organization of a typical
tag SRAM array.

A read operation from the SRAM array is performed in the fol-
lowing way. The address decoder selects the wordline to be read
from the array. All the bitlines are precharged and if the selected
memory cell by the wordline contains logic zero, then the bitlines
start to get discharged. Since the discharge is quite a slow pro-
cess, there is a sense amplifier at the end of each bitline. If a small
drop in the voltage level is detected, a logic zero is registered. The
precharge and discharge of bitlines are the most energy consuming
operations in SRAM data arrays [15].

By eliminating most of the bitline precharge and discharge op-
erations, our approach greatly reduces the energy dissipation in the
tag SRAM array. This is achieved by gating the bitlines according
to the minimal number of tag bits required to check for I-cache
conflicts. Only the needed bitlines, if any, are precharged and
discharged, thus effectively eliminating the redundant reads. The
sense amplifiers for the disabled bitlines are gated as well. Further-
more, the tag comparator cells are gated in order to perform the
comparison only on the required tag bits.

The number of tag bits for each loop needs to be determined be-
fore entering the loop, so that the appropriate number of bitlines

SRAM

sense amplifiers

wordline

bitlines

Figure 3: SRAM tag array

ADPCM G.721 GSM EPIC JPEG MPEG PEGWIT

#Hits 6.62 275.16 233.77 52.78 159.27 1,133.75 32.36
#Misses 578 781 80348 3290 16,700 61,713 3,720

MR 0.0087 0.0003 0.0344 0.0062 0.0105 0.0054 0.0115
Loops 1(0) 1(0) 1(0) 1(2) 2(2,2) 3(2,1,1) 1(2)

MR-flush 0.0087 0.0003 0.0344 0.0344 0.0220 0.0058 0.0115
E (mJ) 6.59 273.84 232.73 52.53 158.52 1,128.37 32.21

E opt. (mJ) 5.22 217.16 184.56 45.44 139.64 987.84 27.86
Reduction (%) 20.70 20.70 20.70 13.50 11.91 12.45 13.50

Figure 4: Execution and energy statistics for 32K DM I-cache

are enabled. Since this number is fixed for the loop, it can be stored
in a special control register, theTRregister defined in the previous
sections, before entering the loop. Each bit in the TR directly cor-
responds to an enable signal of bitline and sense amplifiers. The
default value of this register specifies that all tag bitlines are en-
abled. The actual value of this register is used to determine the
number of bitlines to enable. The only delay imposed by this im-
plementation consists of the insignificant delay of the gating logic,
roughly corresponding to the delay of a simpleandgate.

The proposed implementation is highly cost efficient, while in-
herently reprogrammable. It does not impose a timing constraint
to the I-cache organization and can be reprogrammed in a post-
manufacturing fashion.

Setting the value for enabling the tag bitlines, and invalidating
the cache are the operations that are performed in software. Note-
worthy is that all of them are performed outside the loop, thus ob-
viating the need for any additional instruction (or equivalently per-
formance degradation) inside the loop.

6. EXPERIMENTAL RESULTS
In our experimental studies, we have used the media benchmark

collection [16]. Initially, the benchmarks were profiled and the ma-
jor application loops identified. This step was performed by uti-
lizing the gnu compilergcc and profilergprof on a Linux work-
station. As a next step, the memory layout of the loops and all
the functions invoked within them was inspected by analysing the
memory map report of the gnu linker. Here the compilation was
performed for the SimpleScalar [17] toolset, since the cache statis-
tics were obtained by performing architectural simulations utilizing
this simulator. The baseline I-cache characteristics and the I-cache
characteristics for the major loops, including the cache invalidation
prior to these loops, were generated using the cache simulator from
the SimpleScalar toolset. The power models for the utilized cache
configurations were obtained by using the Cacti tool [18] for 0.18u
technology process. The total I-cache energy dissipation was com-
puted by using the execution statistics from SimpleScalar and the
static power model produced by Cacti.

As a baseline cache architecture, we have assumed a phased
cache or equivalently (in terms of power), a way-predicting set-
associative cache with perfect prediction accuracy. As described in
[11], the typical way prediction accuracy for I-caches is higher than
96% and this cache organization avoids the performance disadvan-
tages of the phased cache. These cache organizations are frequently
utilized as low-power cache designs. The optimal cache configu-
rations in terms of data and tag bitline and wordline segmentation
of 32K direct-mapped, two, and four way associative caches were
generated by Cacti together with their power characteristics. The
I-cache statistics for the benchmarks and the Cacti power numbers
were utilized to compute the baseline and optimized energy con-
sumption.

Tables 4, 5, and 6 present the experimental results for 32K direct-

mapped, two, and four way associative I-caches, respectively. The
first row gives the number of I-cache hits in millions. The sec-
ond row of the tables corresponds to the number of I-cache misses,
while the third row shows the miss rate percentage. The number of
major application loops and the number of least significant tag bits
utilized by our methodology is shown in row four of the tables. The
number in the brackets shows the utilized number of tag bits for the
corresponding application loop. The next row in the tables presents
the miss rate after the effect of invalidating the entire I-cache before
starting and after leaving each application loop. As was discussed
in section 4.2, complete cache invalidation is not needed as long
as the RT status bits are utilized and only the cache lines that can
potentially cause a consistency issue are invalidated on demand.
Nonetheless, we have experimented with the most conservative ap-
proach of fully invalidating the cache; we show that even this most
pessimistic option results in practically non-existent miss rate in-
creases. Foradpcm, g.721, gsm, epic, andpegwitwhere the entire
application is comprised of a single loop, the miss rate remains un-
affected as can be seen in the fifth row in the tables. For the remain-
ing benchmarks, which contained more than one major loop, one
can observe that the increase in miss rate is less than 0.1%! This
insignificant increase is all the more remarkable since the selected
loops account for more than 95% of the execution cycles.

A baseline cache working with full tags has been accounted for
within the total power numbers for the part of the code remaining
outside the major loops. Finally, the last three rows present the I-
cache energy dissipation for the baseline, the tag-optimized cache
architectures and the achieved percentage energy reduction. It is
noteworthy that the energy data for the baseline 2-SA is slightly
higher than the DM organization, while the 4-SA is slightly less.
This can be easily explained by the fact that our base cache design
is a phased (or way-predicting) cache, in which a single data array
is being read. Therefore, the data energy decreases while the tag
energy contribution increases as cache associativity is increased.
Consequently, since the energy spent in the data array is higher, the
data energy decrease in the 4-SA cache is sufficient to reduce the
total energy below that of a direct-mapped architecture.

As the result tables show, the energy reductions are directly cor-
related with increased cache associativity. This effect is to be ex-
pected, since in our low-power base cache architecture, the tag
power contribution increases with the cache associativity. The only
exception is thegsmfor direct-mapped and two-way set-associative
cache, easily explained since in the case of direct-mapped cache,
the application lies within a single0-tag region, thus requiring no
tag bits for cache conflict identification. In this case, we turn off
completely the cache tag logic. In the case of a two-way set as-
sociative cache, one tag bit is required, necessitating an active tag
decoder, and thus reducing the total power improvement slightly
compared to the direct-mapped case.

By considering the definition of0-tag regions, it can be trivially
observed that increased set associativity leads to a higher number
of 0-tag regions spanned by the loop code. At the same time, in-

ADPCM G.721 GSM EPIC JPEG MPEG PEGWIT

#Hits 6.62 275.16 233.82 52.78 159.28 1,133.80 32.21
#Misses 573 770 26,968 2,377 3,618 13,609 2,252
MR (%) 0.0087 0.0003 0.0115 0.0045 0.0023 0.0012 0.0070
Loops 1(0) 1(0) 1(1) 1(3) 2(3,3) 3(3,2,2) 1(3)

MR-flush (%) 0.0087 0.0003 0.0115 0.0045 0.0139 0.0017 0.0070
E (mJ) 6.80 282.98 240.49 54.28 163.81 1,166.01 33.13

E opt. (mJ) 5.19 215.65 191.31 44.49 137.73 971.95 27.15
Reduction (%) 23.79 23.79 20.45 18.05 15.92 16.64 18.05

Figure 5: Execution and energy statistics for 32K 2-SA I-cache

ADPCM G.721 GSM EPIC JPEG MPEG PEGWIT

#Hits 6.62 275.16 233.85 52.78 159.28 1,133.80 32.08
#Misses 573 768 3,816 2,175 2,804 9,129 2,189
MR (%) 0.0087 0.0003 0.0016 0.0041 0.0018 0.0008 0.0068

Loops (tags) 1(0) 1(0) 1(2) 1(4) 2(3,4) 3(4,3,2) 1(4)
MR-flush (%) 0.0087 0.0003 0.0016 0.0041 0.0137 0.0014 0.0068

E (mJ) 6.45 268.31 228.02 51.47 155.32 1,105.58 31.28
E opt. (mJ) 4.75 197.67 176.56 41.23 127.62 900.86 25.06

Reduction (%) 26.33 26.33 22.57 19.91 17.84 18.52 19.91

Figure 6: Execution and energy statistics for 32K 4-SA I-cache

creased associativity implies longer tags and higher energy contri-
bution of the tag arrays. Consequently, even though more tag bits
need to be utilized, the net power savings are larger.

7. CONCLUSION
In this paper we have presented a programmable customization

methodology for power reduction in the I-cache of high-performance
embedded processors. The proposed framework consists of com-
pile/link time support identifying the minimal number of tag bits
for complete I-cache conflict resolution for the major application
loops. The methodology transfers this application information to
the I-cache microarchitecture by software, and dynamically uti-
lizes it to further eliminate the redundancy in the tag operations.
An efficient programmable implementation was proposed for sup-
porting the suggested power optimization technique. It preserves
the fundamental advantage of processor-based implementations of
flexibility, design reuse, and high-volume productions.

Power consumption is a crucial quality factor in numerous mod-
ern applications. The experimental results demonstrate the strength
of the proposed approach on a set of real-life applications and prove
the viability of the power minimization technique for a large range
of important applications.

8. REFERENCES

[1] K. Ghose and M. B. Kamble, “Reducing power in superscalar
processor caches using subbanking, multiple line buffers and
bit-line segmentation”, inISLPED, pp. 70–75, August 1999.

[2] M. B. Kamble and K. Ghose, “Analytical energy dissipation
models for low-power caches”, inISLPED, pp. 143–148, Au-
gust 1997.

[3] N. Bellas, I. Hajj and C. Polychronopoulos, “Using dynamic
cache management techniques to reduce energy in a high-
performance processor”, inISLPED, pp. 64–69, August 1999.

[4] A. Ma, M. Zhang and K. Asanovic, “Way memoization to
reduce fetch energy in instruction caches”, inWorkshop on
Complexity-Effective Design, 28th ISCA, June 2001.

[5] E. Witchel and K. Asanovic, “The span cache: software
controlled tag checks and cache line size”, inWorkshop on

Complexity-Effective Design, 28th ISCA, June 2001.
[6] W. H. Wolf, “Hardware-Software Co-Design of Embedded

Systems”,Proceedings of the IEEE, vol. 82, n. 7, pp. 967–
989, July 1992.

[7] P. Petrov and A. Orailoglu, “Performance and power effec-
tiveness in embedded processors - Customizable Partitioned
Caches”,IEEE TCAD, vol. 20, n. 11, pp. 1309–1318, Novem-
ber 2001.

[8] R. Panwar and D. Rennels, “Reducing the frequency of tag
compares for low power I-cache designs”, inSLPE, pp. 57–
62, October 1995.

[9] J. Kin, M. Gupta and W. H. Mangione-Smith, “The fil-
ter cache: an energy efficient memory structure”, in30th
MICRO, pp. 184–193, April 2001.

[10] A. Hasegawa et al, “Sh3: high code density, low power”, in
IEEE Micro, pp. 11–19, 1995.

[11] K. Inoue, T. Ishihara and K. Murakami, “Way-predicting set-
associative cache for high-performance and low energy con-
sumption”, inISLPED, pp. 273–275, August 1999.

[12] J. Montanaro et al., “A 160Mhz, 32b 0.5W CMOS RISC Mi-
croprocessor”, inIEEE ISCC, pp. 214–229, February 1996.

[13] J. Hennessy and D. Patterson,Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Mateo, CA,
1996.

[14] K. Pettis and R. C. Hansen, “Profile guided code positioning”,
in SIGPLAN, pp. 16–27, June 1990.

[15] N. Bellas, I. Hajj and C. Polychronopoulos, “A detailed,
transistor-level energy model for SRAM-based caches”, in
ISCAS, pp. 198–201, June 1999.

[16] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Medi-
aBench: A Tool for Evaluating and Synthesizing Multime-
dia and Communications Systems”, in30th MICRO, pp. 330–
335, December 1997.

[17] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Ver-
sion 2.0”, Technical Report 1342, University of Wisconsin-
Madison, CS Department, June 1997.

[18] G. Reinman and N. Jouppi, “An Integrated Cache Timing
and Power Model”, Technical report, Western Research Lab,
1999.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

