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ABSTRACT
An increasing disparity between the energy requirements of portable elec-
tronic devices and available battery capacities is driving the development of
new design methodologies for battery-efficient systems. A crucial require-
ment for battery efficient system design is to be able to efficiently and ac-
curately estimate battery life for candidate system architectures. Recently,
efficient techniques have been developed to estimate battery life under given
profiles of system power consumption over time. However, techniques for
generating the power profiles themselves are either too cumbersome for sys-
tem level exploration, or too inaccurate for battery life estimation.

In this paper, we present a new methodology for efficiently and accu-
rately generating power profiles for different system-level architectures.
The designer can specify the manner in which (i) system tasks are mapped
to a set of available implementations, and (ii) system communications are
mapped to a specified communication architecture. For a given architecture,
a power profile is automatically generated by analyzing an abstract repre-
sentation of the system execution traces, while taking into account the se-
lected implementations of the system’s computations and communications.

Experiments conducted on the design of an IEEE 802.11 MAC processor
indicate that the power profiling approach offers run times that are several
orders of magnitude lower than a simulation based power profiling tech-
nique, while sustaining negligible loss of accuracy (average profiling error
was observed to be less than 3.4%).

1. INTRODUCTION
Advances in wireless communication and semiconductor tech-

nologies are contributing to the rapid growth of the portable elec-
tronics market. However, projections of energy demands of such
devices substantially exceed the capacity of the batteries that power
them, necessitating the deployment of new architectures and design
methodologies for battery-efficient systems [1]. While research on
low power design [2]-[5] has largely been motivated by the need to
improve battery life, it has mainly focussed on minimizing average
power consumption. However, it has been shown that minimiz-
ing average power (or total energy) does not necessarily maximize
battery life. That is because, in practice, the amount of energy de-
livered by a battery can vary significantly, depending on the profile
of the load system’s power consumption over time [6]-[9].

An important aspect of battery-efficient system design is the
availability of automatic tools to estimate battery life at different
points in the system design space. Since most existing techniques
for battery life estimation are based on analyzing battery discharge
under a given system power consumption profile, evaluation of the
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battery efficiency of a candidate architecture is a two step process.
In the first step, the power profile of the architecture is generated
under a typical workload, and in the second step, battery life esti-
mation is performed using a suitable battery model. While research
in battery modeling and analysis addresses the second step [6]-[9],
the focus of this paper is on the first,i.e., efficient and accurate
generation of power profiles for candidate HW/SW system archi-
tectures.

1.1 Related Work
A large body of work exists on analyzing power consumption at

the circuit, logic, register-transfer and architectural levels [2, 3, 4].
Recent work in system-level power estimation has yielded (i) tech-
niques for estimating the power consumption of individual system
components, such as embedded CPUs, the memory hierarchy, sys-
tem busses, peripheral components (e.g., [10]-[13]), and (ii) tech-
niques for estimating the power consumption of the system as a
whole. The latter set of techniques can be categorized as follows.
The first category consists of techniques that statically character-
ize the power consumption of system tasks, using simple power
models for alternate implementations, and inter-task communica-
tion (e.g., [14, 15]). The drawback is that they often assume stat-
ically scheduled systems, and hence do not accurately account for
dynamic effects (e.g., bus conflicts, cache missesetc). The sec-
ond category includes techniques based on system simulation, with
power models for individual components, memories, and system
busses [16, 17, 18]. These techniques can demonstrate high accu-
racy, but are computationally expensive, making them unsuitable
for system-level design space exploration. Raising the level of ab-
straction improves efficiency, but sacrifices accuracy.

Our work belongs to a third category, and is based on a two step
hybrid methodology. Our technique derives accuracy from a one-
time detailed simulation and power analysis (step 1), and compu-
tational efficiency from fast processing of abstract execution traces
(step 2). It bears mentioning that the approach described in [13]
also analyzes data collected from execution traces using analyti-
cal equations. While this approach can accurately estimate aver-
age power, it is not well suited for generating power profiles over
time. In addition, their work applies to tuning of component param-
eters, and assumes that the mapping of the system’s functionality
and communications to the architecture is fixed.

1.2 Paper Overview and Contributions
In this paper, we present a fast power profiling methodology to

drive the design of battery-efficient systems. Power profiling refers
to the analysis of system power consumption over time (as opposed
to average power or total energy estimation), and is required for bat-
tery life estimation [6]-[9]. Our methodology provides the system
designer with a framework to generate the system power profile
while varying the system architecture along two broad dimensions.
In our methodology, the designer can: (i) select different imple-
mentations for system tasks, varying how the system’scomputa-
tions are mapped to system components, and (ii) select different
system-level communication architectures, and experiment with al-
ternative mappings of the system’scommunications.

Our methodology consists of two pre-processing phases (each of
which is performed only once), followed by a fast power profiling
phase (which is performed for each candidate system architecture).
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Figure 1: (a) Functional view of the 802.11 MAC processor system (b) Candidate HW/SW Architecture

In the first phase, execution traces from HW/SW co-simulation are
abstracted into a specialized graph. In the second phase, basic com-
putation blocks and system-level communications are characterized
under potential implementations using detailed power models. In
the third phase, the power profiler processes the graph to generate
the system power profile, while taking into account the mapping of
computation tasks, inter-task communications, and dynamic effects
of the communication architecture. The profiler is efficient, demon-
strating several orders of magnitude improvement over simulation
based techniques, while providing comparable profiling accuracy
(average error observed in our experiments was 3.4%).

In the next section, we present examples that motivate the pro-
posed power profiling methodology, and illustrate the benefits it
provides. In Section 3, we present the power profiling methodol-
ogy, including details of the various steps. In Section 4, we present
experiments conducted on several candidate architectures for an
IEEE 802.11 MAC processor system, and compare the proposed
techniques with HW/SW co-simulation in terms of efficiency and
accuracy.

2. MOTIVATION
In this section, we motivate the need for fast power profiling

techniques using the design of an IEEE 802.11 MAC processor as
an example.

2.1 IEEE 802.11 MAC Processor System
The specification of the IEEE 802.11 MAC processor [19] con-

sists of a set of communicating tasks, shown in Figure 1(a) (details
are available in [19]). The LLC task receives MAC frames from the
Logical Link Control Layer, and stores them in the system memory.
For each frame, the WEP task encrypts frame data, while the ICV
task computes an Integrity Checksum Vector. The HDR task gener-
ates the MAC header. The FCS task computes a CRC-32 checksum
over the encrypted frame and header. MACCTRL implements the
CSMA/CA algorithm, and signals the PLI task when it is “okay to
transmit”. PLI retrieves encrypted frames from the MAC memory,
and writes them on to the Physical Layer Interface.

An architecture implementing these tasks is shown in Fig-
ure 1(b), which consists of two programmable SPARCLite
cores [20], 3 HW co-processors, 2 memories, and queue buffers.
The LLC, WEP and PLI tasks are each mapped to dedicated
HW units. The ICV task is mapped to an embedded SPARCLite
core. A second embedded CPU implements the HDR, FCS, and
MAC CTRL tasks. The system components are connected through
a communication architecture consisting of two busses connected
by a bridge.

2.2 Impact of Architecture on Battery Life
In this example, we consider two variations of the architecture

presented in Figure 1(b). In the first variation (case 1), ICV is im-
plemented as embedded software while FCS is implemented us-
ing dedicated HW. In the second variation (case 2), the mapping is
swapped: FCS is implemented as embedded software, while ICV
is implemented using dedicated HW. All other task and communi-
cation mappings are left unchanged.

We first measured the average power consumed by each of these
architectures under typical workloads using a HW/SW power co-
estimation technique [18]. Cases 1 and 2 were found to consume
(on average) 596:2 mW and 590:7 mW, respectively. Thus, the
two architectures are equivalent from the point of view of average
power or total energy consumption. Next, we measured the battery
life for each of the two architectures using a stochastic model of a
lithium-ion battery [9]. Battery life measurements for the two cases
were found to be 3673 seconds and 4783 seconds respectively, a
difference of 30%.

The example highlights that (i) average power is not a good met-
ric for designing battery-efficient systems, and (ii) the system ar-
chitecture (in this example, the mapping of tasks to components)
can have a significant impact on battery life. This motivates the
need for techniques to enable automatic and efficient battery life
estimation for different system-level architectures.

2.3 Importance of System Power Profiling
Batteries have been found to exhibit rate capacity phenomena,

which result in low efficiencies during periods when the load cur-
rent (and hence, the system power consumption) exceeds a spec-
ified rated value [6]. This phenomenon explains the discrepancy
between the battery efficiencies of the two architectures considered
above. In this system, violations of the rated current can potentially
arise when the ICV computations and WEP computations proceed
in parallel. That is because, at the times at which these computa-
tions overlap, they contribute to an increase in overall system power
consumption, causing violation of the battery’s rated current. When
the ICV task is mapped to SW (case 1), the duration and extent of
rated current violations are greater than when it is mapped to HW
(case 2). Hence, case 2, which has a more “battery friendly” power
profile (relative to case 1), leads to more efficient battery discharge.

The example shows that the system architecture can influence the
power profile in a way that significantly impacts battery life. This
highlights the importance of accurately generating system power
profiles in order to support battery-efficient system design.

2.4 Evaluation of System-level Power Profiles
In the above example, we considered only two architectures from

a large design space consisting of many alternative mappings of
tasks to components, and communication architectures. In reality,
to arrive at the most battery-efficient design, a more thorough ex-
ploration of the design space is desirable.

The time taken by the HW/SW power co-estimation tool to gen-



erate power profiles for each architecture of the MAC processor
(even with speedup techniques such as those described in [18]),
was in excess of 3 hours, for an input trace consisting of 11 MAC
frames. Clearly, the computational requirements of such tech-
niques make them unsuitable for exploring a potentially large de-
sign space.

To illustrate the advantage of using the proposed power profil-
ing technique, we used our profiling tool iteratively to evaluate a
total of 10 different architectures, including those described earlier
(Section 2.2). The total time taken by the tool was 3:14seconds, in-
dicating the high computational efficiency of our approach as com-
pared to co-simulation based power estimation.

3. POWER PROFILING METHODOLOGY
In this section, we first present the overall power profiling

methodology, highlighting the various steps. Next, we present de-
tailed description of key steps, including the related algorithms and
tools employed.

3.1 Overview
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Figure 2: Fast power profiling methodology

The inputs to the power profiling methodology are highlighted
in Figure 2. They include:

� The system specification, comprising a set of communicating
tasks, each of which can potentially be mapped to an embed-
ded CPU (software) or dedicated hardware;

� Typical input stimuli, or a simulation model of the system’s
operating environment (testbench);

� System architecture definition, which includes (i) the map-
ping of system tasks to a set of selected architectural compo-
nents, and (ii) the mapping of inter-component communica-
tions to a specified system-level communication architecture;

The output of the methodology is the power consumption profile
of the system under the selected system architecture, system-level
power consumption statistics, including individual power profiles
of each component, and their relative contribution to total system
power.

The methodology in Figure 2 has three phases, labeled accord-
ingly. In Phase I, HW/SW co-simulation of the system specifica-
tion is performed with provided input stimuli (Step 3), and an initial
mapping of system tasks to selected components (Step 1). During

this initial co-simulation, communication between components is
modeled in an abstract manner (Step 2) (e.g., through the exchange
of abstract communication events). While the resulting system exe-
cution trace is “timing-inaccurate” (owing to the abstract modeling
of communication), it contains critical information with respect to
dynamic communication and computation dependencies. However,
these traces are also quite large, containing significant detail, a lot
of which is irrelevant for our purpose. Hence, in Step 4, infor-
mation that isnecessary and sufficientfor subsequent analysis is
extracted from the traces, and captured in aSymbolic System Ex-
ecution Graph(henceforth called the SYM -GRAPH). The SYM -
GRAPH is an abstract and compact representation of the system’s
execution, which includes essential information about the system’s
computations, communications, and their inter-dependencies, both
within and across tasks. This step is critical to enabling highly effi-
cient analysis without compromising accuracy.

In Phase II, each system task is decomposed into a set of basic
computation blocks and communication events (Step 5). In Step
6, for each computation block and communication event identified
in the previous step, power consumption and execution time under
potential implementations are analyzed using detailed simulation
based performance analysis and power estimation techniques. The
results are stored in lookup tables in the form of absolute data, or
simple parameterized expressions.

Phase III consists of the fast power profiler (Step 8). The power
profiler takes as input (i) the SYM -GRAPHgenerated in Phase I, (ii)
a definition of the system architecture (Step 7), and (iii) the lookup
tables generated in Phase II. The power profiling technique consists
of algorithms that efficiently process the SYM -GRAPH to take into
account the effects of the selected task and communication map-
pings, including dynamic effects such as bus contention and inter-
component synchronization. These algorithms result in (i) creat-
ing/splitting SYM -GRAPH vertices, (ii) modifying time-stamps of
SYM -GRAPH vertices, and (iii) annotating SYM -GRAPH vertices
with power estimates. The resulting SYM -GRAPH is an abstract
yet accurate representation of the system’s execution under the se-
lected architecture, from which the system power profile and other
useful power statistics are easily derived.

Note that, in order to obtain power profiles for different architec-
tures, one merely needs to repeatedly execute Phase III. The advan-
tage is that the underlying algorithm operates on an abstract graph,
rather than detailed traces. Hence, it is orders of magnitude faster
than a complete simulation of the system. Moreover, it is accurate,
because (i) the SYM -GRAPH is annotated with power and timing
information gathered from detailed simulation and power estima-
tion, and (ii) the processing algorithm accurately incorporates ef-
fects of different computation/communication mappings.

3.2 Power Profiling Methodology Details
In this subsection, we present details of certain key steps in the

methodology of Figure 2.

3.2.1 Task Analysis (Step 5)
In this step, from the control flow graph of each taskT, we

identify the set of constituent basic computation blocksBT =
fb1;b2; : : : ;bng. A basic computation blockbi is a straight line
segment of the task specification that can be entered only at the
beginning, and exited only at the end. Note that,bi cannot have
embedded conditionals, loops, or inter-task communication events
emanating from, or terminating within its body. When an architec-
ture is defined, taskT, and consequently all the elements ofBT , are
mapped to either an embedded CPU, or dedicated hardware.1

Next, we identify the set of system-level communication events
CT = fc1;c2; : : : ;cmg initiated by taskT. A communication event
ci is any data transfer or control signal that results in an access
to system-level communication resources. Differentci 2CT could
potentially be mapped to different communication resources. For
example, all control signals generated by a component could be

1The assumption that the granularity of partitioning and mapping is at the task level
does not restrict the methodology in any way, since tasks can be easily broken down
into multiple tasks to obtain more fine-grained mapping control.



mapped to a point-to-point communication channel, while data
transfers could be mapped to a high bandwidth bus.

3.2.2 Lookup Table Construction (Step 6)
In this step, detailed simulation based performance analysis and

power estimation is carried out for the basic computation blocks
and communication events identified in the previous step, for all
target implementations. In our work, we use the framework pre-
sented in [18] for this step.

Each basic computation block of a task is exercised with a
pseudo-exhaustive set of inputs to derive its average execution time
and average power consumption under each implementation. The
results are used to populate a lookup table (LUT), which is indexed
by a basic computation block identifier and implementation choice.

For each communication event, the average execution time and
power consumption per bus word is measured using simulation and
power estimation of the associated master and slave interfaces, and
the bus itself. Note that, typically bus line capacitance estimates
are not available until components have been selected and an ini-
tial floorplan has been generated. Hence, during this step, power
consumption for communication events under a target bus is cal-
culated assuming nominal values for bus line capacitances. Once
the system architecture is defined, the designer specifies actual line
capacitances, (e.g., from a system floorplan), which are used to ap-
propriately scale the power consumption of each communication
event.

Next we describe Phase III of the methodology presented in Fig-
ure 2, where the role of the LUTs will be made clear.

3.2.3 SYM -GRAPH Construction (Step 4)
The basic approach of constructing the SYM -GRAPHis extended

from [21], which focussed solely on the effects of communication
architecture design. We briefly describe the procedure here, high-
lighting enhancements made in order to support power profiling,
and task mapping.
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Task 2
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Figure 3: Segment of a detailed HW/SW co-simulation trace
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To construct the SYM -GRAPH, the execution trace of each task
(obtained via HW/SW co-simulation in Step 3), is analyzed. Con-
tiguous computations are grouped into computation vertices to rep-
resent specific control flow paths in the task that do not contain
any system-level communication events. Each computation vertex
is labeled with the sequence of basic computation blocks it repre-
sents. Next, the procedure groups contiguous system-level com-
munications that correspond to a single communication event (e.g.,
burst data transfers, inter-task synchronization) into a single com-
munication vertex. Each communication vertex is labeled with a

communication event identifier. Edges are inserted in the graph
to capture all the run-time control flow dependencies. An exam-
ple system execution trace and its corresponding SYM -GRAPH are
shown in Figures 3 and 4, respectively.

3.2.4 System Architecture Definition (Step 7)
The system architecture definition includes:

� A mapping from the set of system tasks to a set of selected
system components;

� A specification of the communication architecture topology,
which could range from a shared bus to an arbitrary network
of busses / dedicated channels interconnected by bridges;

� Line capacitances of each bus;

� Mapping of system communications to communication paths
in the selected topology;

� Communication protocol parameters (bus priorities, burst
sizes,etc.)

3.2.5 Power Profiling Algorithm (Step 8)
In this step, the power profiling tool manipulates the SYM -

GRAPH generated in Step 4, based on information obtained from
the system architecture definition (Step 7) and the delay and power
LUTs (Step 5). The algorithm adds new vertices, splits existing
vertices, and scales the execution times and power consumption of
vertices in the SYM -GRAPH in order to take into account task and
communication mappings, as well as dynamic effects introduced
by the communication architecture.

Procedurepprof
inputs: SYM -GRAPH G0, Task Mapping, Communication
Architecture Specification, Communication
Mapping, Delay and Power Lookup Tables
outputs: SYM -GRAPH G0, Power profile, statistics
initial

Initialize queues : QC;QB1 ;QB2 ; : : : ;
/* QC: global queue of vertices, sorted by vertex start times */
/* QBi : pending communication vertices mapped to busBi*/
/* All queues initialized with pending vertices at time t=0 */

begin
do

v := serveready comp(QC);
v:delay:= get delay(v);
v:power:= get power(v);
executecomp(v);
add enabledvertices(v);
for each bus Bi :

w := serveready comm(QBi );
w:delay:= get delay(w);
w:power:= get power(w);
executecomm(w);
add enabledvertices(v);

end for
until no more ready vertices
generatepro f iles();

end

Figure 5: Power profiling algorithm pprof

The algorithmpprof (Figure 5) maintains a queueQC, contain-
ing “ready” vertices sorted by time-stamp, which include computa-
tion vertices from various system tasks. Additionally, for each com-
munication channel (or bus)Bi , the algorithm maintains a queue
QBi of ready communication vertices. The procedure performs the
following actions in a loop.

On dequeuing a computation vertexv, the call toget delay(v)
consults the LUTs to computedelay(v), the execution time ofv.
This is given by∑bi2vdelay(bi) wherebi is a basic computation
block associated withv. Similarly,get power(v) returnspower(v),

which is given by
∑bi2v power(bi)�delay(bi)

∑bi2v delay(bi)
.



For each system bus (or communication channel)Bi , the corre-
sponding queueQBi is serviced in accordance withBi ’s protocol.
Dequeued communication vertices are assigned execution times
and power values using similar lookup based techniques (or sim-
ple calculations using supplied capacitance values). Communica-
tion vertices are then processed byexecutecomm(), a procedure
that transforms the SYM -GRAPH to incorporate the effects of the
communication architecture [21]. While we do not go into the de-
tails of the procedure here, it bears mentioning that its execution
may result in splitting of some communication vertices into mul-
tiple vertices (due to maximum burst transfer sizes set by the bus
protocol), or creation of new vertices (due to handshaking defined
by the bus protocol). Clearly, this affects the sequencing of data
on the bus, leading to potential inaccuracies in the power profile of
the bus at communication vertex boundaries. However, in our ex-
periments we observed this to have an insignificant impact on the
system power profile, and hence do not consider it to be a serious
issue.

The procedureadd enabledvertices(v) assigns time-stamps to
vertices that become ready as a result of executingv, and popu-
lates the appropriate queues. The algorithm terminates when all
the queues are empty.

4. EXPERIMENTS
In this section, we describe experiments that study the accuracy

and efficiency of the proposed methodology in generating power
profiles of alternate architectures of the IEEE 802.11 MAC pro-
cessor described in Section 2. We first describe the design space
of system architectures that we considered. Next, we describe the
methodology used to conduct experiments. Finally, we present and
discuss the results of our experiments.

4.1 Design Space for the MAC Processor
For system tasks, we considered two implementations for each

of the WEP, ICV, and FCS tasks, namely synthesized hardware,
and software running on the SPARCLite processor. The mapping
of the remaining tasks was kept fixed, as in Figure 1(b). Two dif-
ferent communication architectures were considered for mapping
system communications. The first (shown in Figure 1(b)) is a high-
performance architecture consisting of two busses connected by a
bridge. In this case, all data transfers are mapped either to (i) the
bus on which the initiating component resides, or to (ii) a path com-
prising two busses. In the second architecture, the two busses are
replaced by a single priority based shared system bus. In both cases,
control signals are mapped to dedicated communication channels
(as shown in Figure 1(b)). In all we considered 10 candidate archi-
tectures, and applied our profiling technique to each.

4.2 Experimental Methodology
The MAC processor was designed in the POLIS [22] environ-

ment using a combination of Esterel [23] and C to specify the sys-
tem tasks, and PTOLEMY [24] for system level simulation. A
modified version of the power co-estimation technique of [18] was
used to generate power profiles for 10 candidate system architec-
tures. These simulations were driven by actual 802.11 workloads
obtained by running the ETHEREAL packet capture software [25]
on a laptop PC connected to a wireless LAN while receiving video
data. Next, we applied our profiling tool to generate power profiles
for the same architectures and input stimuli. The results of various
experiments conducted are described next.

4.3 Average Power Estimation
The aim of the first set of experiments was to evaluate the ac-

curacy of the proposed power profiler in estimating average power.
Table 1 reports on the results of conducting experiments on 10 dif-
ferent architectures for the MAC processor. Column 1 describes
the architecture under evaluation. Column 2 reports the average
power estimated using co-simulation based power estimation [18],
and Column 3 reports the average power as estimated using our
power profiling technique. Column 4 reports the error between the
two estimates. The results in Table 1 indicate that the average error

with respect to power co-estimation was only 0.38%, and demon-
strate that the proposed methodology is capable of measuring aver-
age system power with a very high degree of accuracy.

4.4 Profiling Accuracy
In the next experiment, we compared the system power con-

sumption profile over time,p(t), generated by our power profiling
technique, withpsim(t), generated using HW/SW co-estimation.
To do this, bothp(t) and psim(t) were averaged over a constant
size window, to obtain a set of discrete pointsti , at intervals
of τ = 0:5 ms. We define the absolute error at timeti to be
ε(ti) =j p(ti)� psim(ti) j, and the profiling error at timeti to be

εP(ti) =
jp(ti)�psim(ti)j

psim(ti)
�100.

Columns 5 and 6 of Table 1 report on the profiling accuracy of
our technique. Column 5 indicates the the average absolute error
(averaged over the length of the trace)ε, while Column 6 indicates
the average profiling errorεP. Note that, since we take the modulus
in computing bothε(ti) andεP(ti), positive and negative errors will
not cancel out. From the table it is clear that the power profile
p(t) closely tracks the profilepsim(t). Over all 10 architectures, the
average profiling error is 3.8%.

To investigate how profiling errors of different magnitude con-
tribute to the average, we plotted the frequency distribution of the
profiling error εP(ti) for one of the candidate architectures (Fig-
ure 6). We observe that for all the time intervals, the errors are
below 20%, while 98% of the time, they are below 8%. This shows
that not only does the profilep(t) track psim(t) with low average
error, the deviation of profiling error from the mean is also quite
reasonable.
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Figure 6: Distribution of the profiling error ( τ = 0:5 msec) in
the obtained power profile of a candidate architecture

4.5 Effect of Profiling Granularity
In this experiment, we illustrate how the average profiling error

εP varies with increasing profile granularity. Figure 7 illustrates this
dependence for one of the candidate architectures.τ is varied from
0:5 ms, at which the error is maximum (4.73%), up to the length of
the entire profile, when the error is minimum (0.49%). This shows
that the power profiling technique yields even higher accuracy for
coarser grained profiles. This matches requirements from battery
life estimation, where large internal time constants of batteries and
power supply circuitry often make fine-grained profiles redundant.
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Figure 7: Effect of granularity on average profiling error

4.6 Computational Efficiency
Finally, we report on the computational efficiency of the pro-

posed methodology. In Table 1, Column 7 reports on the elapsed



Table 1: Results from power profiling of candidate architectures for the IEEE 80 2.11 MAC processor
Average Power Power Profiling CPU timeArchitecture

HW/SW co-
estimation (mW)

Trace based
profiling (mW)

Relative error
(%)

Avg. absolute
error (mW)

Avg. relative
absolute error

(%)

Trace Based
Profiling

(sec)
All HW,

Single bus
380.7 380.8 0.03 1.8 0.4 0.21

All HW,
Two busses

418.2 414.9 0.80 4.1 2.2 0.36

ICV in SW,
Single bus

544.2 543.0 0.18 24.0 4.1 0.26

ICV in SW,
Two busses

596.2 592.9 0.55 13.0 3.4 0.42

WEP in SW,
One bus

613.8 614.0 0.16 45.0 7.3 0.25

WEP in SW,
Two busses

628.3 625.5 0.45 41.8 6.2 0.37

FCS in SW,
Single bus

517.2 512.2 0.97 19.0 3.2 0.22

FCS in SW,
Two busses

590.7 587.4 0.22 4.6 2.2 0.37

FCS, ICV in SW,
Single bus

672.2 672.2 0.00 26.3 3.5 0.26

FCS, ICV in SW,
Two busses

766.8 763.5 0.43 23.3 4.3 0.42

time in running HW/SW power co-estimation for each specified
architecture. Column 8 indicates the elapsed time in generating
power profiles for each of the candidate architectures using the pro-
posed power profiler. Measurements of elapsed time were made on
a 400Mhz Sun Ultra-II workstation with 128MB RAM. Clearly,
CPU times of the power profiling tool are significantly superior to
the co-estimation approach. On average, the time taken to obtain
the power profile for each architecture is 0:31 s. In comparison,
the time required to generate a system power profile for each ar-
chitecture using HW/SW co-simulation based power profiling ex-
ceeded 3 hours. This indicates that using our approach yields CPU
time improvements of 4 orders of magnitude compared to power
profiling based on co-simulation. While the time consumed in the
pre-processing phases of the proposed methodology were signifi-
cant (4-5 hours), it should be noted that this is a non-recurring cost.
We expect that for systems with complex design spaces, amortiza-
tion of this cost over a large number of candidate architectures will
result in significantly superior efficiency.

5. CONCLUSIONS
In this paper, we presented a new methodology for efficiently

and accurately generating power profiles for different system-level
architectures. We conclude that using an abstract representation of
system execution traces can provide for several orders of magni-
tude efficiency improvements over simulation based power profil-
ing techniques. Additionally, accurate pre-characterization, cou-
pled with careful incorporation of interactions between compo-
nents, results in negligible loss of accuracy in the power profiles.
We believe that our approach, coupled with efficient battery mod-
eling techniques, will be an invaluable aid in designing battery-
efficient systems.
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