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ABSTRACT
We propose a software synthesis procedure for reactive real-
time embedded systems. In our approach, control parts of
the system are represented in a decomposed form enabling
more complex control structures to be represented. We pro-
pose a synthesis procedure for this representation that in-
crementally aggregates elements of the representation while
keeping the resulting code size under tight control. This
method combined with heuristic strategies works very well
on real-life designs and demonstrates the potential to pro-
duce results that challenge or beat hand-written implemen-
tations.
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1. INTRODUCTION
A major bottleneck in the implementation of embedded sys-
tems is the development of software, its debugging, and
its integration with the hardware components. The ability
to analyze a system before a specific technology is chosen
as a target implementation and thus to ”get it right the
first time” is of paramount importance to reduce the cost
of development. This scenario fueled the quest for a de-
sign methodology that favors system-level description of the
functionality and constraints, technology independent verifi-
cation, and automatic optimized mapping from the system-
level description and constraints to software and hardware
implementation. Here, we focus our attention on automated
software synthesis.

In order to understand our approach, we must informally
distinguish between specification languages and programming
languages and between software synthesis and software com-
pilation. A specification language provides a high-level spec-
ification that describes the function that must be performed

regardless of how it will be implemented.

A programming language, such as a C- or Pascal-like, im-
perative, non-concurrent language, has semantics that are
very close to that of the implementation domain (assem-
bly code or executable code) and in a sense it already de-
scribes the desired implementation of the software. Soft-
ware compilation denotes an optimized translation process
from a programming language to the implementation do-
main. Software synthesis denotes an optimized translation
process from a specification language to a programming lan-
guage.

Examples of software synthesis are the C code generation
capabilities of systems based on finite state machines (FSM)
such as those based on StateCharts [2], ESTERELStudio [1],
or of programming environments such as SDL [10], ECL [8],
and ESTEREL [7].

The main motivation for pursuing sofware synthesis is to
provide designers with front-end tools and languages they
can use to express a system’s behavior in a way that is nat-
ural in that it is defined by the semantic domain of the
application rather than dictated by the semantic domain of
the implementation technology. This allows them to con-
centrate their efforts in specifying the desired behavior with
little concern regarding the efficiency or cost-effectiveness
of the implementation trusting that the automatic synthesis
system will deliver a behaviorally equivalent implementation
that satisfies the required cost and performance constraints.
For example, a language such as ECL (which combines the
reactive semantics of ESTEREL with the expressive power
and data types of C) provides the user with primitive con-
tructs for expressing synchronous concurrency and various
forms of preemption along with a synthesis path that gen-
erates behaviorally equivalent C code. For someone who
needs to design a highly concurrent complex real-time sys-
tem, ECL has a definite advantage over C since otherwise
the designer himself would have to come up with an imple-
mentation for concurrency and preemption based on C con-
structs, which would be time-consuming and error-prone,
or RTOS support which may not be available on a typical
embedded platform, or not be as well defined semantically.

The straightforward implementation of a FSM is a flat or
single-step implementation consisting of a sequence of tests
and assignments in which:



• a variable can be assigned or tested only once,

• a variable cannot be tested after being assigned, and

• a variable can be assigned only after all the variables
it depends on have been tested.

Note that the same variable can be tested and assigned, and
some tests may follow some assignments. However, any test
on any given variable v must precede any assignments on
that same v.

Conversely, in a multi-step implementation the final value of
state variables and outputs is computed by degrees in that
intermediate data can be stored in temporary variables that
can be tested after being written, and more than once.

In the reactive real-time embedded systems, the category
that we consider, the objective is to ensure sufficient execu-
tion speed within the available resources, namely data mem-
ory (normally RAM) and code memory (normally ROM).
Execution speed is achieved by minimizing the number of
steps performed. In general, a flat implementation will be
faster and will use less data memory than an equivalent
multi-step implementation but will use more code memory. 1

A multi-step implementation may be desirable if it allows
to fit the program in the amount of memory available while
maintaining acceptable performance.

2. RELATED WORK
In [4, 5] a software synthesis methodology is proposed that
operates on an extended FSM model called codesign FSM
(CFSM) [9] which extends classical FSMs with arithmetic
and relational operators. Structurally, A CFSM is a directed
network of one combinational control node (CTR), one or
more combinational datapath nodes (DPN), and one or more
registers in which the combinational part is acyclic. In the
software synthesis process, reduced-order BDDs (ROBDD)
are used to represent a CFSM’s unique CTR in the form
of its characteristic function as they are an efficient way
to represent a relation that reflects the cost of the software
implementation in term of size (as the number of BDD nodes
relates to code size) and speed (as the depth of the BDD
branches relates to the number of steps perfomed by the
code along the various branches). By reducing the BDD
size we reduce the size of the resulting code and the main
problem is to find a good BDD variable ordering that does
not violate dependency relations between variables i.e. each
assignment cannot precede any test on which it depends.

However, single-CTR representations do not scale well at all
to real-life designs as the BDD tends to grow exceedingly big
mainly because of the fixed variable ordering which must be
the same on every BDD path and thus on every branch of
the resulting implementation. It is desirable to extend the
approach and start from an enhanced CFSM representation
that allows multiple CTRs connected either in parallel (i.e.
driven by the same inputs) or sequentially (i.e. one node’s
output drive another node’s input possibly through DPNs),
and then incrementally combine nodes in the representation.

1A typical situation is a tree program in which two or more
sub-trees can be merged by adding extra temporary vari-
ables.

Nodes connected in parallel define projections of the FSM on
separate outputs and their composition is equivalent to com-
puting a product FSM. Nodes connected in sequence define
intermediate steps in the computation and their composition
is equivalent to flattening those steps.

In [6], Balarin et al . present an algorithm that only consid-
ers combining nodes connected in parallel which translates
into sharing computation steps that would otherwise be du-
plicated. That algorithm is effective at minimizing the code
which implements the data path but does not address the
size explosion derived from the collapsing of the CTRs.

3. OUR APPROACH
This work proposes an approch in which a CFSM’s CTRs
are connected either in parallel or sequentially with two
objectives: (1) maintain an optimal variable ordering on
each branch that produces a minimal implementation, and
(2) never let the BDD size grow beyond a given acceptable
limit. We create a set of possibly different BDD orderings
by heuristically picking the first variable v in the order and
creating a BDD manager for each value of v being used in
the CFSM. Each CTR in the CFSM will be implemented in
just one of the managers. Within each group of CTRs that
share the same BDD manager (called a region) the compo-
sition of CTRs is done incrementally in pairs. In order to
avoid the BDD explosion, each composition will take place
only if the sizes of the BDDs to be combined are below a
given set limit.

As in [4] and [5], here we make the simplifying assumption
that each step in the implementation (as does each BDD
node) has the same cost, and that each code path (as does
each BDD path) has the same probability of being traversed.
Since reducing the size of the BDD reduces its average depth,
we only consider the the code size as cost function.

The rest of the paper is organized as follows. Section 4
details the CFSM model. Section 5 describes the primitive
operations that can be performed on it. Section 6 describes
the algorithm and the heurstics. Section 7 presents and dis-
cusses the experiments and the results. Finally, in Section 8
we draw the conclusions and outline possible future devel-
opments.

4. PRELIMINARIES
Structurally A CFSM is a directed network of combinational
nodes and registers in which the combinational part is acyclic.
Each node in the network can have multiple inputs and out-
puts. Each net has a single source, which can be either a
primary input or an output of some node, and possibly many
destinations which can be primary outputs or inputs of some
nodes. A net can be either trigger or data. With trigger nets
we associate two values: present and absent, while data nets
can be associated with any finite set of values. If a node in
the network has at least one trigger input, then we say it
is a control transition relation (CTR). Otherwise, we say it
is a data path node (DPN). Both CTRs and DPNs define a
function from their inputs to their outputs. However, since
some outputs may be “don’t-cares” for some inputs, it is
more precise to call them relations. To evaluate a DPN or
a CTR for a given input means to find an output assign-
ment that satisfies the relation represented by that node.



v = foo(v);

present (a) {

v = 1;

}

present (b) {

v = v + 1;
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Figure 1: A simple CFSM

We require that CTRs be reactive: if there are no present
triggers at their inputs, the trigger outputs should not be
emitted (i.e. they should be absent) and data outputs should
be “don’t-cares”.

A CFSM as a whole also defines an input-output function (or
more precisely relation). To evaluate a CFSM for a given set
of primary inputs, we need to evaluate all of its nodes in any
topological order.

We do not make any assumption on how DPNs are specified
or represented. A CTR defines a relation between its inputs
and outputs R = R(I1, · · · In, O1, · · ·Om). In the following,
we will refer to the CTR or its characteristic function by the
same name. Figure 1 depicts a simple CFSM and a fragment
of ECL code that explains its behavior.

For the kind of processing that will be used in this work, it
is useful to represent a CTR as

R = FR(x, s) · MR(s, g1, · · · glast, v) (1)

where FR, called selecting function is a a relation that maps
the input x to a selection variable s, andMR is a multiplexer
that selects one gi as the value of v for a given value of s.

MR(s, g1, · · · glast, v) =
X

i

[(s ≡ i) · (y ≡ gi)] (2)

The relation R is defined by the intersection of FR and
MR. However, the representations of the two cannot be
combined (namely the BDD for the composition will not
be constructed) since FR(x, s) represents a relation between
boolean values of x and non-negative integer values of s, and
MR(s, g1, · · · glast, v) is a mapping between each value k of
s and a function gk = gk(z, x) that defines the value of v,
where z is a set of ouputs of some other CFSM node.

We will use the notation FR ¦MR to indicate the implicit
intersection of the two.

R = FR(x, s) ¦MR(s, g1, · · · glast, v) (3)

Figure 2 depicts the internal structure of a CTR. Semantically,
the formulae (1) and (3) are equivalent to the simpler form
below from which formula (1) can be derived by applying
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Figure 2: Structure of a CTR

the Shannon decomposition.

R = ∃s[(v ≡ gs) · (FR(x, s))] (4)

The F ¦ M form is not used for binary outputs since the
multiplexer M can be easily rewritten as a trivial two-case
multiplexer of the form s ·v + s̄ · v̄ and the selecting function
is simply FR(x, v) = R(x, v) .

In a multi-output node there can be a shared selecting func-
tion which drives a M only for some of the outputs. That
is, there can be a CTR R defined as

R(x, v1, v2) = FR(x, s1, v2) ¦MR(s1, g1, · · · , glast, v1) (5)

where FR(x, s1, v2) = FA(x, s1) · FB(x, v2) = FA(x, s1) ·
B(x, v2)

5. PRIMITIVE OPERATIONS
The CFSM minimization algorithm that will be outlined
later performs parallel and serial composition of CTRs. The
parallel composition of two CTRs A and B is denoted by
A ◦B. The sequential composition is denoted by A . B.

By definition, the parallel composition of two CTRs is the
intersection of their characteristic function. When A and B
do not have a multiplexer their parellel composition is thus
simply the intersection of the two selecting functions, that
is

A ◦B = FA · FB (6)

In the parallel composition of two F ¦ M nodes only the
selecting functions are to be composed.

A ◦B = (FA · FB) ¦ [MA ‖ MB ]

where the ‖ operator denotes the fact that the multiplexers
are independent of each other.

By definition, the serial composition of two CTRs connected
by variables v1, · · · vn is the projection onto the variable
space orthogonal to v1, · · · vn of the intersection of their
characteristic function. Therefore, the sequential compo-
sition of two nodes A(x, v) and B(x, v, y), in the case A has
no multiplexer, only involves the intersection of the selecting
functions and elimination of v, that is

A . B = ∃v(FA · FB) ¦MB (7)

or

A . B = ∃v(FA · FB) (8)



if also B does not have a multiplexer.

The sequential composition of two nodes A and B both in
F ¦M form is a little more complicated. In this situation,
one input case of the multiplexer of the driven CTR is the
output of the driving multiplexer. (Note that, due to type
consistency, an input of MB cannot be driven by an output
of FA’s). For example, let the factors be

FA(x, s) ¦MA(s, g1, · · · glastA , v)

and

FB(x, z) ¦MB(z, h1, · · ·hlastB , y)

where hj=v. Their sequential composition is defined as

A . B = FA.B(x, u)¦
MA.B(u, h1, · · ·hj−1, g1, · · · glastA , hj+1, · · ·hlastB , y) (9)

where MA.B is a multiplexer obtained by replacing the in-
put hj with the list of possible values assigned to v by A,
FA.B(x, u) = ∃s∃z(FA(x, s) · FB(x, z) ·GA.B(s, z, u)), and
GA.B(s, z, u) is a mapping that returns the value of the se-
lection variable u ofMA.B for a given assignment of s and z.
The straightforward definition of G is one that enumerates
the cases of MA.B . That is

G =

lastA+lastBX
u=1

0BBB@
(u < j) · (u ≡ z)
+
(u ≥ j) · (u < j + lastA) · (u ≡ z + s− 1)
+
(u ≥ j + lastA) · (u ≡ z + lastA − 1)

1CCCA
The implementation of A.B can be optimized by eliminating
the redundant hk cases from MA.B , and substituting in
G each value of u that selects a redundant case with the
value of the unique case not removed. This optimization
can reduce significantly the size of the multiplexer and the
size of the BDD that represents the selecting functions.

A DPN driven by the output of CTR can be distributed over
the inputs of the CTR. For example consider a net w = f(v)
where the driving net v is the output of a CTR R = FR(x, s)¦
MR(s, g1 · · · glast, v). R defines a function v = (x?g1 : g2).
The combination of R and f is

w = f(x?g1 : g2)

which can be rewritten as

w = (x?f(g1) : f(g2))

We will call this transformation of the CFSM structure ex-
pression replacement. It may be applied to the case in which
one or more DPNs are driven by a CTR A and drive another
CTR B so as to make A and B suitable for sequential com-
position.

6. THE ALGORITHM
The algorithm is sketched as follows:

1. The CFSM structure is partitioned into separate re-
gions chosen in such a way that some regions are insen-
sitive to some inputs or current state variables. Each
region rvi∈K is obtained by restricting the initial CFSM
to some set K = {· · · kj · · · } of values of variable vi.

To be eligible, vi must be testable i.e. be an input
or a current state. For the partitioning to be accept-
able, the regions must not overlap i.e. no CTR can be
in more than one region. For feasibility, the number
of values of vi that yield a non-empty region must be
small. For each region a separate BDD manager will
be created. In each BDD manager the variables vi will
be ordered at the top and in the same order. All other
variables may be reodered differently in each manager.
(The default is to have an empty set of such vi’s, thus
only one region and one BDD manager.)

2. In each region, the CTRs are combined incrementally
in pairs. The candidates for the next parallel com-
position are found by a breath-first output-to-input
traversal algorithm that computes the groups of CTRs
that are not topologically ordered and that share at
least one input. The candidates for sequential compo-
sition are found by a depth-first output-to-input recur-
sive traversal algorithm that returns the first pair of
CTRs that are topologically sorted via direct nets only
(i.e. there does not exist a path of nets that reaches
the driven CTR from the driving CTR that traverses
a node outside the pair. Composing CTRs indirectly
connected would result in a cycle). At any stage of the
algorithm, we can apply expression replacement to any
DPN that sits between two CTRs thus allowing those
two CTRs to be composed.

3. Each CTR of the resulting CFSM is synthesized as C
code with the same basic technique used in [5], but the
blocks of code for all the CTRs are inlined in one func-
tion and are ordered consistently with the topological
order of the CTRs in the CFSM.

The user can control some aspects of the process such as:

• Choose the variables vi by which the partitioning is
done (The default is none). Not surprisingly, for a de-
sign specified in FSM form, choosing the variable repre-
senting the graphical state as the partitioning variable
produces good results as the FSM is designed to react
to different inputs in different states.

• Set the order in which the various types of operations
should be attempted and whether the selected opera-
tion should be repeated until convergence. 2

• Set the maximum acceptable size (in number of BDD
nodes) for two nodes to be composed.

Since the optimal ordering is CTR specific, in principle one
could use a different BDD manager for each CTR and create
a new manager every time a new combined CTR is created.
That turns out to be extremely expensive in terms of mem-
ory use and CPU time and is not viable for anything but the
simplest designs. Using a unique BDD manager for each re-
gion requires an ordering that maintains the combined size
of all the BDDs that are built during incremental compo-
sition process within an acceptable size. We use a generic

2In the case of full collapsing the order of the operations is
irrelevant to the final result but can influence the speed of
the collapsing process.
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Figure 3: The Test1 example

heuristic criterion that is acceptable, if not optimal, for any
generic design: the nets in CFSM are ordered topologically
from input to output and the BDD variables are created in
that order. This criterion guarantees that in each CTR in
the original CFSM, as well as in each CTR that is created
during the collaping process, no output will be ordered be-
fore its support. Dynamically reordering the BDDs while
collapsing the CFSM is theoretically possible as long as it
is constrained so as not to violate the property above - but
it is currently not implemented. At the end of the collaps-
ing process the BDD for each remaining CTR will undergo a
constrained reordering right before the code generation step.

7. EXPERIMENTAL RESULTS
The examples are a mix of simple test cases and excerpts
form real industrial applications. For each test, an ESTEREL

program was created and compiled into a CFSM via an esper-
imental version of the ESTEREL compiler that generates a
CFSM output. For each test, a a correponding hand-written
implementation in C was written for comparison. The test
machine was an IBM ThinkPad T21 equipped with a Pen-
tium III running at 800 MHz. The various versions were all
compiled with gcc from egcs-2.91.57 using the ”-O3” opti-
mization level. For each test, the table shows the number
of CTRs in the initial CFSM representation, the number of
CTR after the optimization, the object code size of the hand-
written version we compare to, and the object code size of
the code generated by the synthesizer. All the tests are syn-
thesized as one region except for cruisecommL which was
split in two regions based on the values of a state variable.
In all tests, each region was fully collapsed.

The results indicate that our synthesizer has the potential to
produce code that is comparable in size with, and sometimes
better then a hand-written implementation.

In controlFuelA the synthesized version’s big size is explained
by the fact that the CFSM was generated from an ESTEREL

Initial Final Size Size
Example CTRs CTRs hand auto
abro 50 1 188 240
test1 94 1 642 640
test2 53 1 352 272
u1pulse 225 1 752 1456
sch1pulse 187 1 788 1584
controlFuelF 117 1 700 992
controlFuelA 99 1 584 4176
cruiscommL 592 2 2590 1424

Figure 4: Tests used in the experiments

program that made liberal use of await statements. The
ESTEREL compiler creates a one-hot encoding of the re-
sulting state machine (one boolean state variable per await,
where states in which more than one such variable is set
are unreachable) with consequent explosion of the next-state
relation and hence of the synthesized code. The situation
improves slightly by perfoming state re-encoding (via UC
Berkeley’s sis [3]) which reduces the number of reachable
states, but since such re-encoding is done in the boolean
space the number of tests on the state variables is still high
and that affects the code size. The same considerations ap-
ply to u1pulse and sch1pulse. The initial ESTEREL pro-
gram for controlFuelF, behaviorally equivalent to control-
FuelA, uses a single await statement within a loop which
translated to a single state variable used to encode the sys-
tem’s implicit state.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a software synthesis ap-
proach based on BDDs and CFSMs that works well on real-
life designs and has the potential to beat hand-written im-
plementations. By allowing the construction of BDDs in
separate managers we create implementations that can visit
variables in different orders on different branches and thus
are more compact and efficient than those based on a single
ROBDD. By incrementally combining nodes in the CFSM we
prevent size explosion.

There are many possible developments of the the approach
described in this paper which will need to be explored such
as:

• Resolving the ROBDD limitations by using, in the in-
cremental composition process, either (1) a non-BDD
internal representation for CTRs while still using BDDs
for the final synthesis performed on the resulting set of
CTRs, or (2) a BDD model more flexible then ROBDD
to achieve better variable ordering on a per-branch ba-
sis.

• Testing our methodology extensively and comparing
the results to other automatic synthesis tools, both
commercial and academic.

• Linking our synthesizer to alternative front ends not
based on the ESTEREL compiler e.g. tools based on
XMI.

• Integrating the incremental composition approach with
run-time scheduling of DPNs.
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