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ABSTRACT
This paper describes a hardware/software codesign approach for
the design of embedded systems based on digital signal proces-
sors and FPGAs. Our approach is based on distributed virtual ma-
chines for simulation and verification of the application on a Linux
cluster and for running the application on different target architec-
tures (DSPs, FPGAs) as well. The main focus is the description
of the virtual machine, which was designed to make DSP applica-
tions portable across different platforms while maintaining optimal
code.

1. INTRODUCTION
In recent years the interest in the problem of designing mixed

hardware/software systems has increased due to growing system
complexities. Hardware/software codesign environments are very
important in order to shorten and improve the design process of
DSP applications. To reach the required hard real-time behavior
of such systems, the designers should be able to select between
functions implemented in programmable DSPs or functions imple-
mented in dedicated hardware (FPGAs). This choice is determined
by requirements like performance, cost, power, weight and more.
We have developed a hardware/software cosimulation environment
for the verification of heterogeneous DSP applications [11].

1.1 Application
Realtime simulation gains more importance in the development

of new technical products. Therefore, the overall project deals with
a process coupled simulator for the verification of radio systems
(VHF band from 118 to 400 MHz) for air traffic control. The real-
time simulator supports multipath fast fading effects, propagation
losses and additive white Gaussian noise development of an aero-
nautical radiochannel in realtime. To fulfill the realtime constraints
combined hardware/software systems are necessary

2. RELATED WORK
Two main approaches for multilanguage verification functional

correctness of the hardware and software work together [8]: the

.

compositional and the cosimulation based approach. The composi-
tional approach aims at integrating the partial specification of sub-
systems into a unified representation. This description is used for
the verification of the entire behavior of the system. The cosimu-
lation approach (e.g. [8, 11]) based on multilanguages consists in
interconnecting the simulation environments associated to each of
the partial specifications.

The main focus of this section deals with related projects based
on virtual machines.

V. K. Madisetti [9] presents a virtual prototyping environment
that is suitable for system design and legacy system reengineer-
ing. The application is composed of a set of generic instructions
which are interpreted by a processor model. The instruction set
also includes MPI primitives [6] to model the communication. The
processor model comprises a set of configurable generic VHDL
processes. This modular approach allows it to map communication
and computation and control related design decisions very quickly.

Randall S. Janka [7] developed a new specification and design
methodology which effectively allows the designer to evaluate can-
didate architectures and technologies before committing to a tech-
nology. This methodology is called MAGIC which stands for the
’methodology applying generation, integration, and continuity’. The
application is specified on MATLAB/Simulink, the de facto lingua
franca of algorithm developers. The Simulink model consists of
blocks and links between these blocks. The blocks are transformed
into VSIPL computation function calls, while the links are trans-
formed into MPI function calls. VSIPL stands for ’vector, signal
and image processing’ and is an API which provides hundreds of
functions. The C code generation is a functionality of Simulink’s
Real-Time Workshop (RTW).

Another quite different idea influencing this project is the use
of virtual machines to keep hardware independence for heteroge-
nous target architectures. The Java Virtual Machine (JVM) [13]
is the Java component responsible for hardware and operating sys-
tem independence and the small size of compiled code of the Java
platform. The JVM does not assume any particular implementation
technology, host hardware or operation system. It may be imple-
mented in software, microcode or directly in silicon. The JVM
knows nothing about the Java programming language, only about a
particular binary format, the class–file format.

3. NOVEL HW/SW CODESIGN APPROACH
We apply a new HW/SW codesign approach (Figure 1) which

allows us to simulate our designs on different abstraction levels.
It is possible to consider results of former implementations in the
current design flow. Designing starts with modeling the problem
in Simulink. At this point it is already possible to simulate the



dataflow graph [2]; thus we can find and remove functional errors.
The dataflow graph consists of functional blocks and connections
between the blocks. The dataflow graph is the highest level of ab-
straction, because only the application is modelled and no assump-
tions about the target architecture are made.
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Figure 1: Design flow

The graph is partitioned depending on the target architecture [1].
In the partitioning process, computation time, required memory,
area and power consumption of the blocks and also the costs of
communication between the functional blocks are considered. We
use genetic algorithms [14, 4] to achieve a suitable partitioning.
The partitioned dataflow graph is translated into bytecode [3].

The next level of abstraction is the bytecode level, where the
application is represented as a bytecode file for every CPU. This
bytecode is interpreted by a virtual machine for 32bit DSP pro-
cessors (Dsp32VM). For simulation the Dsp32VM also runs on a
Linux network using the Message Passing Interface (MPI) [6] for
communication between the computers (Figure 2). At this level, ex-
periments with different target architectures and parameters (design
space exploration) can be made. Also the functional correctness of
the distributed application is verified.

Dsp32VM also runs on the target architecture (DSP, FPGA) and
can interpret the same bytecode. Thus it is possible to simulate
and visualize the program flow of the target architecture application
already on the Linux network. Runtime, communication costs etc.
for every target architecture are collected in a database and can be
used for future partitioning and simulation tasks.

3.1 The virtual machine Dsp32VM
The virtual machine for 32bit DSP-CPUs (Dsp32VM) interprets

a bytecode in which the application program is encoded. The inter-
preter fetches the bytecode and executes the instructions in the na-
tive code. The instruction set architecture and bytecode interpreter
are optimized for the digital signal processing domain. That means
that there are many complex instructions including vector and ma-

trix operations. Figure 2 shows the architecture of the Dsp32VM
consisting of:

Code Memory. Contains the whole bytecode (instructions and con-
stants) and is loaded from the host computer at initialization
time.

Data Memory. Also called heap, contains the variables of the ap-
plication (scalars, vectors and matrices).

Fetch & Decode Unit. All instructions, are fetched and decoded
by this unit; therefore, this unit must be implemented very
carefully to avoid execution delays.

Execution Unit. This unit consists of subunits for every datatype
(scalar integer / float, vector integer / float, matrix integer /
float). It is possible to implement just a few of these subunits,
for example, on FPGA devices. In this case, the bytecode ID
carries the information about which subunit is used.

Registers. There are 32 registers on the Dsp32VM to speed up
the bytecode execution. The execution unit provides a lot of
one–word instructions which operate on registers.

Boot Unit. At initialization time the bytecode is loaded down from
the host computer. The boot unit handles this job.

Timer Unit. Up to 8 timers can be used in one application to gen-
erate the sampling clock for the calculation of the dataflow
graphs.

IO Unit. This unit consists of several input and output ports which
are used for interfacing the target architecture.
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Figure 2: Architecture of Dsp32VM

3.2 Target architecture model
By applying a virtual machine on every CPU on the target board,

we can model the target architecture as an architecture graph . This
architecture graphGA = (VA,EA) consists of nodesVA realized by
virtual machines and edgesEA implemented as unidirectional com-
munication channels.
The communication model (Figure 3) is based on a synchronous
oneword communication. Sender task A writes data in a send queue
and task B reads the data from a receive queue. Write timetSP, read
time tRG, transfer timetTW and buffer size are parameters which
can be modified during simulation on the Linux network. The times
for initialization of the bufferstSI andtRI are also adjustable.
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The instruction set includes commands for sending vectors and ma-
trices. These instructions are based on the one-word communica-
tion model described above.

3.3 Bytecode structure
An application for the Dsp32VM consists of a variable number

of 32bit words stored in a bytecode file. Figure 4 shows the struc-
ture of a bytecode application.
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Figure 4: Bytecode structure

The bytecode file consists of a few header words and the real appli-
cation code:

Bytecode ID. To recognize a bytecode file, the first word is an
identifier (Figure 5). It contains the version and revision
number of the virtual machine which are necessary for ex-
ecution. The bytecode ID also includes a number of flags
which indicate the execution units used for execution of the
file.
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Figure 5: Bytecode identifier

Start Vector. The start vector contains the address of the first word
of an application.

Trap Vector. In the trap vector the address of the trap handler within
the application code is stored.

Interrupt Vectors. These vectors contain the addresses of all of
the interrupt service functions.

Application Code. Here the real bytecode for application is stored.
This area includes also the constants, trap- and interrupt–
handler functions.

Booting the bytecode means that the Dsp32VM inspects the byte-
code ID and if the Dsp32VM can execute the file, the bytecode will
be loaded into the code memory. Then the program counter is set
with the start vector and the execution unit starts interpretation.

3.4 Bytecode vs. native code machine
As shown in Figure 6, the bytecode machine contains an addi-

tional abstraction layer which maps the different target architec-
tures on a uniform machine, the Dsp32VM. Thus the same byte-
code can be interpreted on every target architecture running a
Dsp32VM.
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Figure 6: Bytecode vs. native code machine

We implemented the Dsp32VM on a Linux cluster, the TMS320C67
DSP from Texas Instruments and an Xilinx Virtex FPGA board.
This environment allows us to develop an application on a Linux
cluster using debugging and profiling tools for the Dsp32VM. The
resulting bytecode is loaded down to the individual target architec-
ture: thus, there is no need for recompilation of the application for
DSP and FPGA devices.
However, there are unfortunately some disadvantages which are: i)
interpreting the bytecode produces an overhead in execution time.
Every instruction must be fetched, decoded and executed. As we
use a hash–table to decode instructions, we needO(1) time, inde-
pendent of instruction set size. ii) the implementation of a Dsp32VM
is very critical because poor implementation results in a bad perfor-
mance for every application running on this virtual machine.

Despite the disadvantages described above the use of virtual ma-
chines is still very advantageous:

• The Dsp32VM layer provides a uniform architecture for ev-
ery target platform (DSP, FPGA, MC, Workstation). In other
words, every target board can be modelled on a uniform ar-
chitecture graphGA = (VA,EA).

• To use a new CPU, we only have to implement a well spec-
ified virtual machine. All design tools and applications can
be reused without recompilation.

• We simulate applications on a Linux cluster and tune the pa-
rameters of the architecture graph (number of CPUs, buffer
size etc.) to find out the best target architecture for the appli-
cation.

• For a fast execution of the application, the bytecode can be
used as input for a native code generator which translates the
bytecode into the native code for a particular CPU.

3.5 Instruction set
To reduce the overhead of interpretation, we provide very power-

ful instructions which operate on scalars, vectors and matrices. All



instructions, in the virtual machine are implemented in the native
code on a particular target CPU.

3.5.1 Datatypes
Because of the 32bit architecture of the virtual machine, the base

datatypes are:

• 32bit signed integer

• 32bit floating point (IEEE 754)

In every memory location, one of the base datatypes (called scalars)
can be stored. Based on these scalars we provide extended datatypes
which are described below:

• One-dimensional arrays of scalars (vectors)

• Two-dimensional arrays of scalars (matrices)

• First in last out buffers (stacks)

• First in first out buffers (queues)

• Circular buffers

It is important to note that no type information is stored together
with the base datatypes. The type of data value is determined by
the instruction using it. Extended datatypes, of course, need addi-
tional information like size, read and write position this additional
information is stored together with the data.

3.5.2 Instruction encoding
Encoding defines the structure of the instructions on the binary

level. There are instructions from one to four words in length. The
structure of the first instruction word is uniform for all instructions
(figure 7).
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Figure 7: First instruction word

Prefix (bits 26 . . . 31). The prefix contains information about the
data type of arguments and the execution unit needed for ex-
ecuting the instruction.

Number of parameters (bits 23 . . . 25).Number of parameters
needed for execution of the instruction.

Opcode (bits 15 . . . 22).The opcode defines the instruction and at
the same time it is used as a hash–key. Using a hash table for
encoding the instructions reduces the overhead of interpreta-
tion in the Dsp32VM.

Register number (bits 0 . . . 14).There are three five bit groups
which contain the numbers of one destination and two source
registers. By doing this we can encode most of the instruc-
tions in one instruction word.

3.5.3 Library mechanism
To enhance the power of the Dsp32VM, we add a library mecha-

nism which allows us to include native code operations within byte-
code applications. The native code operations can be executed in
a transparent way by using therExecute instruction. The native
code operation is specified by a unique 32 bit value which is used
as a hashing key to access the operations inO(1) time.

Thus we have the possibility to test new algorithms in the native
code without having to change the instruction set of the virtual ma-
chine.
But the native library mechanism must be handled with care be-
cause native function calls lead to applications which are not portable
without implementation of the used library operations on different
target architectures. One way to reduce the risk of porting prob-
lems is to define a standard Dsp32VM library which is available on
every target architecture.

3.6 HW/SW partitioning
To map a dataflow graph on a heterogeneous target architecture

which consists of DSPs and FPGAs, it is necessary to partition the
functional blocks so that design constraints, including the runtime
constraints, are met and at the same time the system cost is mini-
mized.
Our partitioning method uses genetic algorithms to solve this prob-
lem. Genetic algorithms are based on the principle of evolution.
Different individuals are created, but only the fittest survive and in-
crease. An individual is reduced to a chromosome represented by
a binary string. In this context two major issues have to be con-
sidered: i) mapping of the partitioning problem on a binary string
and ii) evaluation of this chromosome. For creation, mutation and
crossover of the chromosome population, we use a Parallel Genetic
Algorithm Library (PGA-Pack) [12]. The PGA-Pack is a C library
which allows distributed computation on computer networks using
MPI. More details in [10].

4. SIMULATION ON A LINUX CLUSTER
One of the key features of our approach is the possibility to simu-

late bytecode on a Linux cluster. The simulation results in a graphic
representation of the runtime behavior of the application on the tar-
get architecture. The use of an abstract virtual machine allows us to
simulate a heterogenous architecture (DSP, FPGA, MC) very well,
because there is a clear mapping between instructions executed by
the target architecture and the instructions simulated in the Linux
cluster. Thus we can determine the execution time of every instruc-
tion on every target CPU by measuring. These execution times are
stored in a database and will be used during simulation on the Linux
cluster.
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Figure 8: Simulation on a Linux cluster

As shown in figure 8, the simulation environment consists ofn+1
workstations to simulate a target architecture ofn CPUs and one



workstation is called the master which controls the simulation and
provides the user interface. On every Linux workstation used for
simulating, a CPU runs a virtual machine (Dsp32VM). For simula-
tion, every Dsp32VM obtains the hardware information (execution
times, memory size, buffer size etc.) from the database. The master
loads the bytecode files into the code–memory of every Dsp32VM
and starts the simulation. During simulation, logging information
is generated and stored in a logfile.
We use the Message Passing Interface implementation MPICH [5]
for all communication between the workstations. For logging we
use the Multi–Processing Environment (MPE). The virtual machine
and the master program are written in C++. Because of the object
oriented software paradigm, this allows us to design the project as
modular as possible. For example, by using polymorphism we can
implement different I/O units for the Dsp32VM derived from an
abstract I/O class. Another motivation to choose C++ was the fact
that the MPICH and MPE libraries are written in C.
As explained above, the hardware parameters for a particular ap-
plication can be adjusted to find the best target architecture. For
example, you can replace a DSP by a FPGA and observe the im-
provement in execution time. You can also simulate the application
on different components–of–the–shelf (COTS) boards modelled as
an architecture graph. With this approach, we can significantly re-
duce time to market.

5. EXPERIMENTAL RESULTS
The following sections present the results of experiments and

simulations with the novel codesign approach based on distributed
virtual machines.

5.1 HW/SW partitioning
We used the mathematical model of a so-called ”loading bridge”

as a sample application and mapped it to a dataflow graph [10]. Ta-
ble 1 shows the difference in execution times for the simulation
in this example, depending on the target architecture. We have
simulated the ”loading bridge” application for a target architec-
ture with one, two and four DSP processors (Texas Instruments
TMS320C40). The results show that the speedup for two and four
processors is not significant. This is a consequence of our schedul-
ing method which works very well for functional blocks with nearly
the same execution time, but it produces unsatisfactory results in
other cases. This problem is solved by using a heterogenous target
architecture. The most time consuming block (integrator) is im-
plemented on a FPGA device to reduce its execution time from 27
to 10 cycles. As shown in table 1, the architecture with two DSP
processors and one FPGA device is the best one.

target architecture execution cycles

1 DSP (C40) 185
2 DSPs (C40) 173
4 DSPs (C40) 141
2 DSPs + 1 FPGA 118

Table 1: Execution cycles for different target architectures

5.2 DSP implementation
The second set of results is derived from an implementation of

the Dsp32VM on a multi–DSP board of Blue Wave Systems. This
board contains two TMS320C6701 floating point DSPs operating
at 167 MHz, and it can be optionally extended with a Xilinx FPGA
module. We have compared the execution times of bytecode and

native code applications to find out the overhead of the bytecode
interpreter. By using the standalone simulator and profilerload6x
from Texas Instruments, we have obtained the following results:

Single instructions. Every Dsp32VM bytecode instruction is im-
plemented by an individual C function. Depending on the
numberN of data words every instruction has to process, we
define the execution time as:

F(N) = F1 +N ·F2

That means that the number of cycles needed to execute any
bytecode instruction is given by the constantsF1 and F2.
These constants are a result of measuring at the target CPUs
(for example the FIR filter instruction on the TMS320C6701
DSP:F1 = 134andF2 = 4).

Bytecode interpreter. The interpreter fetches instructions, decodes
them and calls the appropriate C functions. The number of
cycles needed to interpretn instructions in the Dsp32VM is
given by:

Cycles= C1 +n ·C2

Measurments with the multi–DSP board gaveC1 = 17 and
C2 = 59.

Bytecode application. Thus the number of cycles needed to exe-
cute an application can be then calculated by:

Cycles= C1 +n ·C2 +
n−1

∑
i=0

F1i +Ni ·F2i

Upon definition of execution time for bytecode applications, we
have compared them with native code programs. We compared
bytecode with native C code and modified C code (”Native- Func-
tions” where each operation is implemented as a particular C func-
tion). Table 2 contains the execution cycles for different numbers of
multiplications with floating point variables. The results show that
using simple scalar bytecode instructions like addition and multi-
plication is very expensive.

MUL N Native- Native- Byte-
Elements Code Functions Code

1 17 26 102
10 112 230 867
100 169 2120 8517

Table 2: Comparison of the bytecode and native code (simple
functions)

On the other hand, using specific signal processing, vector or ma-
trix instructions leads to good results especially for largeN (ta-
ble 3). For example, a FIR filter instruction with orderN = 150has
an overhead of less than 20%.

N’th Order Native- Byte-
FIR filter Functions Code

10 135 254
100 495 614
150 695 814

Table 3: Comparison of the bytecode and native code (complex
functions)



5.3 FPGA implementation
An FPGA implementation of Dsp32VM on a Xilinx Virtex FPGA
board is underway. In a first version, it implements a subset of the
full Dsp32VM as defined in section 3.1. The supported command
set comprises all program control statements and the scalar integer
operations. Currently there is no exception mechanism for detect-
ing unsupported commands at execution time. This requires the de-
velopment tools to prohibit the use of such commands at compile
time. The ultimate goal, however, is to support the entire command
set in this implementation. All Dsp32VM addressing modes are
supported: immediate, direct, register, and register indirect.

The virtual machine is implemented on the FPGA in a simple
micro-programmed style. This allows to extend the supported com-
mand set with little modifications in the VHDL source code. Regis-
ters are implemented as a RTL (register transfer level) VHDL code.
Code, data and stack are stored in SRAM, either internally or ex-
ternally. Partitioning between the size of code/data memory and
stack has to be done manually. Microcode is stored in the internal
SRAM.

The particular bitcoding of the instructions is, of course, iden-
tical to the software implementation on DSPs. So it is possible to
reuse the existing Dsp32VM design flow and development toolchain
from source code down to Dsp32VM bytecode. The bytecode is
then translated into a memory config file for Virtex’ SRAM using a
specialized tool specific for this hardware implementation. Finally,
the resulting file can be loaded into the FPGA and executed.

5.4 Simulation results
As shown above, the number of execution cycles needed for a byte-
code application can be exactly calculated, if the constantsC1,
C2, F1i and F2i are known. Due to the same architecture of the
Dsp32VM on the target board and the Linux simulation cluster, we
were able to simulate the execution of bytecode applications with a
resolution down to single CPU cycles.
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Figure 9: Simulation of synchronous communication

Figure 9 shows the simulation result of a simple application which
transfers a single integer value between four CPUs in a synchronous
way. Every involved CPU increments the received integer value
and sends it to the next one.
Our experiments have shown that a typical signal processing appli-
cation can be implemented in the bytecode with acceptable over-
head, and the uniform Dsp32VM architecture on every CPU makes
it possible to simulate heterogenous multiprocessor applications on
a Linux cluster with minimal errors.

6. CONCLUSION AND FUTURE WORK
We have presented a new hardware/software codesign approach

for the design of embedded systems based on digital signal pro-
cessors and FPGAs. It is based on distributed DSP virtual ma-

chines for simulation and verification on a Linux cluster and also
for running the application on different target architectures (DSPs,
FPGAs). Our first experiences have shown the feasibility of this
approach. Ongoing investigations will evaluate this framework by
giving more complex examples.

Another usecase for the concept of virtual machines is the possi-
bility to utilize simulators for education in hardware/software code-
sign. Students are able to develop, optimize applications and ex-
plore the design space for expensive multi-processor boards by us-
ing the Dsp32VM simulator environment.
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