

Program Slicing for Codesign
Jeffry T Russell

Department of Electrical and Computer Engineering
University of Texas at Austin

jeff_russell@ieee.org

ABSTRACT
Program slicing is a software analysis technique that computes the
set of operations in a program that may affect the computation at a
particular operation. Interprocedural slicing techniques have
separately addressed concurrent programs and hardware
description languages. However, application of slicing to
codesign of embedded systems requires dependence analysis
across the hardware-software interface.

We extend program slicing for a codesign environment.
Hardware-software interactions common in component-based
systems are mapped to previously introduced dependences,
including the interference and signal dependences. We introduce a
novel access dependence that models a memory access side effect
that results in activation of a process. A slicing algorithm that
incorporates this variety of dependences is described.

1. Introduction
Program slicing is a software analysis method often used to
compute the subset of program statements that may affect the
computation at a particular program point. This program point,
which may be defined as a statement or a particular variable used
at a statement, is the slicing criterion. In the simple case of a
single entry-single exit program, a slice is determined by finding
all the transitive data and control dependences that lead to the
slicing criterion. Slicing is positioned primarily as a maintenance
or reuse tool for activities such as program understanding,
regression testing, and function extraction from existing code.
Codesign techniques that emphasize reuse of existing subsystems
can benefit from program slicing analysis as a design tool. As
embedded systems density increases, system on chip solutions
incorporate powerful processor cores that readily support the use
of software components, typically packaged as a huge library of
functions, e.g. one port of the networking subsystem for the Linux
2.4 kernel was found to contain over 200,000 lines of code in over
400 files. Often the only organization is a directory structure and
only documentation comments in the code. As an interactive tool,
a program slicer facilitates understanding of relevant portions of
the software by directly analyzing the source code.

There is a significant body of work published on program slicing,
including proposals for its application to hardware description
languages. However, to the best of our knowledge, there has been
no attempt to extend slicing to the hardware-software interface
present in component-based embedded systems. Such an
extension is needed to aid a designer in understanding the
complex interaction between software device driver routines and
the hardware controllers to which they interface.
The focus of this paper is to extend program slicing for use in a
codesign environment. To accomplish this we identify typical
dependences at the hardware-software interface, incorporate these
in a graph-based representation, and then define a slicing
algorithm using these dependences. We present a consistent,
formal definition of the dependences based on several previous
works, plus introduce the novel access dependence.
The remainder of the paper is organized to introduce program
slicing in Section 2 and describe software-hardware interactions
leading to the dependences for use in a slicing algorithm in
Section 3. A case study is presented in Section 4, and finally,
related slicing work is described in Section 5.

2. Background
Program slicing is a somewhat mature field, as demonstrated by
published survey articles [10][15][2], reported research tools
[6][1][9], and the availability of a commercial tool [2]. Program
slicing was first introduced by Weiser [16] who defined a slicing
criterion as any subset of program variables at a statement. The
program slice consists of those statements that may affect the
values of the criterion variables, including whether or not the
statement executes. It is computed by iteratively solving data and
control flow equations based on a control flow graph
representation of a program.
An early work by Horwitz et. al [7] that formulated the slice
computation as a graph reachability problem was based on a
representation called a procedure dependence graph (PDG), also
called a program dependence graph [5]. A PDG summarizes the
control and data dependences of a single entry-single exit program
found by analyzing its control flow graph (CFG).
In graph-based slicing, the slicing criterion is a program point,
which is a node in the CFG. The slice consists of all nodes that
can transitively reach the criterion node. We use the graph-based
approach to define slicing for the hardware-software interface.
Figure 1(a) is an intuitive example of a procedure with a slice.

2.1 Dependence Analysis
In this work, the formal representation underlying a source code
specification is a control flow graph (CFG), which is defined as a
flat representation, i.e. there are no basic blocks.

A single entry, single exit procedure P is represented as a control
flow graph which is a directed graph G=(N,E) where the set of
nodes N contains two special nodes ns ∈N and ne ∈N, and ∀n∈N
there is a walk from start node ns to end node ne that includes n.
The nodes represent operations of P. Edges represent flow of
control and are labeled with the condition that determines when
the flow is active. The start node is a control predicate that models
activation of the procedure. A CFG is shown in Figure 1(b),
where the start node is labeled with the procedure name. The CFG
is extended from the source code specification to include synthetic
assignment operations for each formal parameter, and an
assignment to a temporary variable to represent the function
return value.
A node d dominates a node m in a control flow graph G if every
path from the start node ns to node m goes through d. A node m is
post-dominated by a node p in directed graph G if every path from
m to ne (not including m) contains p. Referring to Figure 1(b),
node 5 is immediately post-dominated by node 8, node 6 does not
post-dominate a node and node 7 does not dominate a node.
Let G be a CFG. Let n1 and n2 be nodes in G. Node n2 is control
dependent on n1 if and only if

1. there exists a path P from n1 to n2 with any internal node
n∈P post dominated by n2; and

2. node n1 is not post-dominated by n2
Note that n1 will always have two or more outbound control flow
edges in the CFG if it is the source of a dependence relation. For
the CFG in Figure 1(b), nodes 6 and 7 are control dependent on
node 5, but node 8 is not control dependent on node 5 since node
8 post-dominates node 5.
Let G be a CFG. Let n1 and n2 be nodes in G. Node n2 is data
flow dependent on n1 if and only if

1. there exists a walk W from n1 to n2 with such that no
interior node n∈W defines variable v; and

2. variable v is defined by n1 and used by n2.
The procedure dependence graph (PDG) is a procedure
representation that makes explicit both the data and control
dependences for each operation [5]. Formally, the procedure

dependence graph for a procedure P is a directed graph G=(N,E).
The nodes N represent the operations of the procedure, i.e. the
nodes are the same as a control flow graph of procedure P. The
edges E represent dependences between operations. Figure 2
shows a PDG. The open ended arrows are data dependences.

2.2 System Dependence Graph
A multiple procedure program is represented by a collection of
program dependence graphs with edges between them [7]. The
system dependence graph (SDG) for a program Prog is a directed
graph G=(GPDG, EInter) consisting of a set of procedure
dependence graphs, GPDG, and a set of augmenting edges that
express interprocedural relationships between the PDGs, EInter.
To support the linking of procedures, each function call operation
in a CFG is hierarchically extended into several operations as
demonstrated in Figure 3. The call node acts as a control predicate
to all other detailed operations and models control flow transfer to
the called procedure. Parameters are passed using temporary
variables assigned at actual-in nodes and output values are
returned at actual-out nodes. Any global variables used in a called
routine are modeled as input and output variables so that data
dependences can be easily tracked. We assume all function calls
return, so there is no need for a return edge.
In the SDG, there are three types of edges linking the
hierarchically extended call site to the called procedure: (1) A call
edge connects a call node to the entry node of the called

 proc1(a,b)

d= 1

if(b)

c=a+1

d=d+b

e=c+d

T F

proc1_out=e

T
F

ne

a=...

b=...

c= 0

0

1

2

3

4

5

6

7

8

9

10

(a) (b)

int
proc1(a, b)
{

int c=0;
int d=1;
int e;

if(b)
{ c=a+1;

d=d+b;
}
e=c+d;
return e;

}

Figure 1. Procedure proc1() and its CFG. Underlined
statements indicate slice from the criterion “d=d+b”.

proc1() d=1

a=...

b=...

if(b)

c=a+1

d=d+b

e=c+d

proc1=e

c=0

0

1

2

3

4

5

6

7

9

8

Figure 2. A program dependence graph (PDG) for proc1().

call1(a,b)

z=x+1

call1_out=z

T
F

ne

a=...

b=...

x=proc1(a,b)

call proc1

x=proc1(a,b)

a_in=a

b_in=b

x=proc1_out

TF

(a) (b)
Figure 3. Hierarchical detail of a function call.

procedure, (2) a param-in edge to pass values and (3) a param-out
edge to return values. See the example in Figure 4.

2.3 Program Slicing
A slicing criterion is a program point p, which is a node in the
SDG. A program slice is a subgraph of the SDG that contains all
nodes that may influence the computation at the slicing criterion.
The slice for a criterion with multiple program points is computed
as a union of slices, one for each node in the criterion.
For a program consisting of a single procedure, the SDG is a
single procedure dependence graph (PDG). In this simple
intraprocedural case, the slice is found by analyzing the PDG for
transitive flow and control dependences from the slicing criterion.
Consider the slice first shown in Figure 1 as a source code
example. The corresponding PDG is shown in Figure 2, and the
criterion is node 7. The dependence edges are followed
(backwards) from the criterion to find nodes in the slice: the two
data dependences yield nodes 2 and 4, and the control dependence
edge yields node 5. All inbound edges are followed from these
nodes, which all yield node 0.
In a multiple procedure SDG, the slice is found by transitively
following all control, flow, and param-out edges. A goal in
program slicing is to produce a more precise slice, which is a slice
that more closely reflects the feasible paths in a program
(compared to a conservative analysis that considers all paths). The
call and param-in edges that are encountered are followed taking
into account the calling context to improve precision. If a param-
out edge had been previously followed, then the current path is in
a function call. When encountered, only the matching call or
param-in edge back to the call site is followed. However, if the
current walk has not descended into a function call, then all call
and param-in edges are followed since there is no calling context.

3. Hardware-Software Interface
The application of program slicing is important for embedded
system design, especially for component-based systems. The
functionality of hardware or software components can be
represented as a collection of communicating processes, where
each process is represented by a control flow graph. A single
process specification may consist of several CFGs that represent
distinct procedures that are linked via procedure calls.
The operating system is an important part of a component-based
embedded system. It abstracts the system hardware into a common
programming model, effectively decoupling application software
from the hardware components. It also provides a multitasking
runtime environment such that multiple software processes can be
executed (apparently) in parallel. This enables use of common

libraries, third party software modules, and applications that are
portable across hardware platforms.
A key hardware component is the I/O controller (IOC) that
provides an interface to the outside world. The IOC has a
programming interface that is used to control data transfers
between memory buffers and the external medium. An embedded
system that makes use of IOCs requires software modules called
device drivers that interface the hardware to the operating system.
We focus on the device driver and IOC interaction as the
representative hardware-interface. The programming interface of
an IOC can be viewed as a collection of memory locations and
procedures.
We assume all communication is via shared memory, which may
reside on a variety of physical components, e.g. the CPU, main
memory, or the IOC itself. The software procedures use normal
load and store operations to access shared memory, including
registers on the IOC. Though implementations typically use
pointer de-references to access IOC registers, we represent
software access to shared memory as a variable access in the case
study. The hardware has equivalent operations to access shared
memory.
The IOC behavior is modeled as a collection of parallel processes
specified as procedures. A procedure may be a non-halting
process that controls the overall component and interacts with the
registers. Other procedures may react to input, e.g. a hardware
procedure that is activated based on receiving a signal or as a side
effect from a memory access.
A register on an IOC can act as a communication channel similar
to a function call. The software puts a message in the channel, i.e.
stores a value in a register, which causes a hardware process to
activate with the message as a “parameter”. The software control
flow continues to completion while the hardware process executes
in parallel. This type of access is called signaling.
Hardware processes may also activate one another using a
communication channel, i.e. using signals. Hardware may also
activate a software process through an interrupt signal.
A similar, but distinct, interaction involves a software load or
store to a specific memory location that actives a process. The
hardware process is specified to be sensitive to an access to a
particular register, and the software activates it as a side effect to
the variable access. This leads to our novel access dependence.

3.1 Interface Dependences
In this section, we define three dependences that may exist
between software and hardware processes: interference, signal,
and the novel access dependences.

a_in=a

b_in=b

x=proc1_out

call
proc1() proc1()

d=1

a=a_in

b=b_in

if(b)

c=a+1

d=d+b

e=c+d

proc1_out=e

c=0
call1()

a=...

b=...

z=x+y

call1_out=z

call

param-in

param-out

param-in

Figure 4. Function call edges in a SDG.

An interference dependence is a data dependence resulting from
the definition and use of variables that are common to parallel
executing statements [11].
Let G1 and G2 be CFGs with a shared variable v. Let n1 be a node
G1 and n2 be a node in G2. Node n2 is interference dependent on
n1 if and only if

1. n1 and n2 may potentially execute in parallel; and
2. node n1 defines v and node n2 uses v.

If a communication channel exists between processes such that an
assignment to the channel results in the activation of a process,
then there is a signal dependence [4]. Let G1 and G2 be CFGs with
a common communication channel w. Let n1 be a node in G1.
The CFG G2 is signal dependent on n1 if and only if

1. G1 and G2 may execute in parallel; and
2. node n1 writes a message to w such that G2 may be

activated.
The last type of interaction is one that we propose to model the
side effect of a memory access that activates a process. Let G1 and
G2 be CFGs. Let n1 be a node in G1. Let variable v be a shared
variable to which G1 can explicitly access. The CFG G2 is access
dependent on n1 if and only if

1. G1 and G2 may execute in parallel; and
2. node n1 uses or defines a variable v; and
3. a use or definition of v may activate G2 .

The key difference of the proposed access dependence is that no
explicit communication channel exists between the procedures.
The process activation is a side effect of the operation that
accesses the special memory location.
For our use in a codesign environment, we expect that the
designer (or component provider) annotate the CFGs with these
dependences: interference, signal, and access. This is assumed
both from the point of view that SDG generation is an orthogonal
issue from slicing [13], and it is a practical matter that software
and hardware components are specified in different source
languages. Based on practical experience, it is suggested that the
IOC supplier provide no more than an abstract CFG model; one
that is useful for analysis but which hides details of its intellectual
property.

3.2 Slicing Algorithm
The proposed algorithm for slicing shown in Table 1 is designed
for conceptual simplicity, not implementation efficiency. We
assume the SDG consists of multiple procedures that may execute
in parallel, and there are no procedure calls across processes. The
types of edges in the SDG are: control, flow, call, param-in,
param-out, interference, signal, and access. The interprocedural
edges (param-in, param-out, and call) are uniquely labeled for
each procedure call operation, i.e. the calling context.
A marked node means it is part of the slice, and a visited node
means all inbound edges have been considered for the current
calling context. The set of visited nodes is tracked separately for
each calling context.
A call context stack is associated with each node in the algorithm
to track the particular sequence of procedure calls. When the
algorithm descends into function calls (param-out edge) the
current calling context, i.e. the edge label, is pushed on call stack.

The algorithm ascends from a function call (call or param-in edge)
if the current calling context matches the edge label, at which time
the calling context is popped off stack. Initially the stack is
empty, and an empty stack matches all labels. This occurs when
the criterion is in the same procedure whose start node is reached,
yet there are inbound call edges to follow. Since no calling
context exists, all potential function calls are followed. When a
new process is entered (interference, signal, or access edge), the
call stack is reset, since calls only occur within a process.

Table 1. Worklist algorithm to compute a slice.
algrithm MarkSdg
input Crit : node in Sdg, the slicing criterion
global Sdg : procedure dependence graph for a procedure
declare Visited[] : Sets of nodes visited, one set per call context
 WorkList : Set of Sdg nodes
 p, m, n : Nodes in Sdg.
 .stack : a node call context stack, initially empty.
 .context() : node method, returns current call context
 .push() : node method, puts new call context on stack
 .pop() : node method, removes call context from stack
 θ(v) : function that returns the process containing v.
begin MarkSdg

WorkList := Crit //initialize with slicing criterion
while Worklist ≠ ∅ do

Select and remove node n from WorkList
Mark n // part of slice
Add n to Visited[n.context()] // visited node for context
foreach m ∉Visited[n.context()] with edge (m,n) do

if (m,n) ∈ {control, flow } then
m.stack := n.stack
Insert m into Worklist

elseif (m,n) ∈ {call , param-in } then
if n.current() is empty then

Reset m.stack // no calling context
Insert m into Worklist

else
if (m,n) labled with n.current() then

m.stack := n.stack
m.pop()
Insert m into Worklist

endif
endif

elseif (m,n) ∈ { param-out } then
m.stack := n.stack
m.push((m,n) label) // saves call context
Insert m into Worklist

elseif (m,n) ∈ {interference } then
if (θ(m), θ(n)) is valid thread order then

Reset call stack for m
Insert m into Worklist

endif
elseif (m,n) ∈ {signal } then

Reset m.stack // no calling context
Insert m into Worklist

elseif (m,n) ∈ {access } then
Mark m // in slice, but not completely visited
foreach p with edge (p,m) of type {control }do

Reset p.stack // no calling context
Insert p into Worklist

endfor
endif

endfor
endwhile

end MarkSdg

Additionally, when a process boundary is crossed following an
interference edge, the process order is validated to insure a
feasible execution is under consideration. The dependence edges
and the actions within the algorithm are summarized in Table 2.
Note that our newly proposed access dependence may appear
similar to a signal dependence when computing a slice, but only
control dependences are followed from the source node (of the
access dependence).

4. Case Study
Our case study demonstrates interprocedural dependences based
on the transmit path for a 550 UART (universal asynchronous

receiver/transmitter), an IOC component widely used both as a
discrete chip and as a core in SoC designs [17]. We present an
abstract set of partial CFGs in Figure 5 that represents the
operations involved in the transmission of a single byte.
The CFG in Figure 5(a) is a portion of a setup software routine
that writes a value to the MCR register with the bit set to enable
auto flow control. The software procedure xmit_char() with input
parameter c is shown in Figure 5(b). The procedure implements a
busy wait on the LSR register to check the THRE bit, which
indicates the transmit hold register is empty. When the bit is set,
THR register is written with the byte to be sent, c.
The THR register is a shared variable. When accessed from
outside the IOC, it has the side effect of firing the thr_write()
procedure in Figure 5(c). This is an access dependence. This
procedure clears the bit that indicates the THR is empty, and then
fires the send() procedure in Figure 5(d) using a signal, i.e. the
enable operation. This is a signal dependence.
The send() procedure reads the shared variables THR and MCR,
which are interference dependent on the assignment operations in
the software procedures. Likewise, the LSR register is written by
the IOC which creates another interference dependence to
xmit_char() which reads the variable. Note that the interference
dependence from the MCR write in setup() impacts the flow of
control in the hardware procedure send().
The SDG that represents this system is shown in Figure 5(e).
Space precludes a detailed example of a slice, but any node in the
SDG can be used as a criterion to compute a slice according to the
algorithm in Table 2.

Table 2. Summary of dependence edge traversal.

Edge
Predicate to
follow edge

Next set of
edges to follow

Traversal
state change

Control None All None
Flow None All None

Call Valid call
context All Call depth

decrease

Param-in Valid call
context All Call depth

decrease

Param-out None. All Call depth
increase

Inter-
ference

Feasible
process order All New process

Signal None All New process
Access None Control only New process

(a) (b) (c)

(d)

LSR[THRE]=1

if (MCR[AFE])

wait
CTS_active

i=8

while i>0

ne

TF

send

TSR=THR

wait baud_edge

output TSR[0]

TSR >> 1

T F

TF

i=i-1

LSR[THRE]=0

enable send()

ne

thr_write
TF

LSR[THRE]=0

enable send()

thr_write

if ()

wait
CTS_active

i=8

while()

send

TSR=THR

wait
baud_edge

output TSR

TSR >> 1

i=i-1

val=AFE_EN

MCR=valse
tu

p

stat=LSR

stat=stat &
THRE_BIT

xm
it_

ch
ar

c=c_in

while()

THR=c

inter

inter

inter

inter

ac
ce

ss

signal

LSR[THRE]=1

val=AFE_EN

MCR=val

ne

setup

TF
stat=LSR

stat=stat &
THRE_BIT

ne

xmit_char
TF

c=c_in

while
(stat==0) TF

THR=c

(e)

SDG

SW
 C

FG
s

H
W

 C
FG

s

Figure 5. The case study CFGs for the device driver (a-b) and IOC (c-d) with the combined SDG(e) .

This case study demonstrates the expressiveness of the three
interprocess dependences of interference, signal, and access, in
addition to normal data and control dependences, to model the
typical interactions across the hardware-software interface that is a
central focal point of codesign activity.

5. Related Work
Program slicing is a source code analysis that was introduced as a
dataflow equation problem by Weiser [16]. Interprocedural
precision was improved with graph-based slicing introduced by
Horwitz et. al using the system dependence graph [7]. Our base
definitions, assumptions, and vocabulary are based on this work.
Several works have proposed efficient algorithms for specific
dependences [1][6][7][14] [13][12][11], but our algorithm
purposefully excludes such advanced techniques to keep the
concepts understandable.
Slicing for concurrent programs defines the interference
dependence [11][12], though the previous work defines it for a
single PDG. A threaded CFG was defined such that all parallel
threads, which we call processes, were explicitly indicated in a
single CFG, which can be analyzed to find interference
dependences as well as feasible process execution order. Our
technique is more general but requires a designer to explicitly
indicate interference dependences and feasible process ordering
between software and hardware procedures, since they do not
share a common specification domain.
There is little work published regarding the application of
program slicing to hardware description languages. The basics of
applying slicing to VHDL descriptions were addressed by
Iwaihara et. al [8] who introduced a signal dependence. They
defined it as a dependence that activates an operation, while we
define it as activating an entire procedure. Furthermore, their
explanation seems to extend the definition to include shared
variable flow dependence similar to our interference dependence.
The work by Clarke et. al [4] defines slicing for VHDL by
mapping the VHDL constructs to a software control flow graph
representation for which slicing tools exist [2], i.e. one that
handles C programs. They map a signal dependence to a function
call and introduce a synthetic master process that continuously
invokes the non-halting VHDL procedures.

6. Conclusion
Program slicing was introduced using a graph-based
representation of dependences call the System Dependence Graph
(SDG). A set of typical interactions was defined for a software-
hardware interface of a component-based system. The
dependences involved in such interactions were defined with the
purpose of slicing. This includes a slightly different definition for
a signal dependence compared to previous work, as well as the
novel access dependence to model a memory access with the side
effect of firing a process.
A worklist algorithm that is conceptual clear, but not particularly
efficient, was presented to demonstrate the use of the dependences
to compute a slice. A partial example system based on a real IOC
was described to demonstrate how the system specification
appears as a SDG that can be used for slicing into both hardware
and software procedures. Our future work includes the application
of program slicing to identify evaluation scenarios that can be
used as a basis for performance estimation in high-level codesign
activities.

7. REFERENCES
[1] G. Agrawal, L. Guo, Evaluating explicitly context-sensitive

program slicing, PASTE ’01, June 2001.

[2] P. Anderson, R. Teitelbaum, Software inspection using
CodeSurfer, Proc of Workshop on Inspection in Software
Engineering (CAV 2001), Paris, July 18-23, 2001.

[3] G. Canfora, A. Cimitile, A. De Lucia, G. Di Lucca, Software
salvaging based on conditions, Proc. Int. Conf. on Software
Maintenance, 1994, pp 424-433

[4] M. Clarke, P. Fujita, S. Rajan, T. Reps, S. Shankar, T.
Teitelbaum, “Program slicing of hardware description
languages”, Proc. 10th Adv. Res. Work. Conf. Correct Hard.
Design and Ver. Methods, Bad Herrenalb, Germany, 1999.

[5] J. Ferrante, K. Ottenstein, J. Warren, The program
dependence graph and its use in optimization, ACM Trans.
Prog. Lang. and Sys, v. 9, n. 3, pp. 319-349, July 1987.

[6] M. Harrold, N. Ci, Reuse-driven interprocedural slicing,
Proc 1998 Int. Conf. Software Engineering, 1998, pp. 74-83.

[7] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing
using dependence graphs, ACM Trans. on Progr. Lang.
Systems, vol 12, no 1, Jan 1990, pp. 26-60.

[8] M. Iwaihara, M. Nomura, S. Ichinose, H. Yasuura, “Program
slicing on VHDL descriptions and its applications”, Proc.
3rd Asian Pacific Conf. Hardware Description Languages,
Bangalore, Jan 1996, pp. 132-139.

[9] D. Jackson, E. Rollins, A new model of program
dependencies for reverse engineering, Proc. ACM Conf. on
Foundations of Software Engineering, Dec 1994.

[10] M. Kamkar, An overview and comparative classification of
program slicing techniques, Journal Systems Sofware, 1995,
Elsevier Science Inc, v 31:197-214,

[11] J. Krinke, Static slicing of threaded programs, ACM
Workshop on Program Analysis for Software Tools and
Engineering, 1998.

[12] M. Nanda, S. Ramesh, Slicing concurrent programs, Proc.
Int. Symp. Software Testing and Analysis, 2000, pp 180-190

[13] T. Reps, G. Rosay, Precise interprocedural chopping, Proc
3rd ACM SIGSOFT Symposium on Foundations of Software
Engineering, 1995, pp. 41-52.

[14] S. Sinha, M. Harrold, G. Rothermel, System-dependence-
graph-based slicing of programs with arbitrary
interprocedural control flow, Proc. 21st Int. Conf. on
Software Engineering, May 1999.

[15] F. Tip, A survey of program slicing techniques, Journal of
Programming Languages, v. 3, no. 3, pp 121-189, Sept 1995.

[16] M. Weiser, “Program slicing”, IEEE Trans Soft. Eng., v. 10,
no. 4, July 1984, pp 352-357.

[17] Texas Instruments, TL16C550C data sheet, SLLS177F,
March 2001.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

