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ABSTRACT 
Program slicing is a software analysis technique that computes the 
set of operations in a program that may affect the computation at a 
particular operation. Interprocedural slicing techniques have 
separately addressed concurrent programs and hardware 
description languages.  However, application of slicing to 
codesign of embedded systems requires dependence analysis 
across the hardware-software interface. 

We extend program slicing for a codesign environment. 
Hardware-software interactions common in component-based 
systems are mapped to previously introduced dependences, 
including the interference and signal dependences. We introduce a 
novel access dependence that models a memory access side effect 
that results in activation of a process. A slicing algorithm that 
incorporates this variety of dependences is described. 

1. Introduction 
Program slicing is a software analysis method often used to 
compute the subset of program statements that may affect the 
computation at a particular program point. This program point, 
which may be defined as a statement or a particular variable used 
at a statement, is the slicing criterion. In the simple case of a 
single entry-single exit program, a slice is determined by finding 
all the transitive data and control dependences that lead to the 
slicing criterion. Slicing is positioned primarily as a maintenance 
or reuse tool for activities such as program understanding, 
regression testing, and function extraction from existing code.  
Codesign techniques that emphasize reuse of existing subsystems 
can benefit from program slicing analysis as a design tool. As 
embedded systems density increases, system on chip solutions 
incorporate powerful processor cores that readily support the use 
of software components, typically packaged as a huge library of 
functions, e.g. one port of the networking subsystem for the Linux 
2.4 kernel was found to contain over 200,000 lines of code in over 
400 files. Often the only organization is a directory structure and 
only documentation comments in the code. As an interactive tool, 
a program slicer facilitates understanding of relevant portions of 
the software by directly analyzing the source code.  

There is a significant body of work published on program slicing, 
including proposals for its application to hardware description 
languages.  However, to the best of our knowledge, there has been 
no attempt to extend slicing to the hardware-software interface 
present in component-based embedded systems.  Such an 
extension is needed to aid a designer in understanding the 
complex interaction between software device driver routines and 
the hardware controllers to which they interface. 
The focus of this paper is to extend program slicing for use in a 
codesign environment. To accomplish this we identify typical 
dependences at the hardware-software interface, incorporate these 
in a graph-based representation, and then define a slicing 
algorithm using these dependences. We present a consistent, 
formal definition of the dependences based on several previous 
works, plus introduce the novel access dependence. 
The remainder of the paper is organized to introduce program 
slicing in Section 2 and describe software-hardware interactions 
leading to the dependences for use in a slicing algorithm in 
Section 3. A case study is presented in Section 4, and finally, 
related slicing work is described in Section 5. 

2. Background 
Program slicing is a somewhat mature field, as demonstrated by 
published survey articles [10][15][2], reported research tools 
[6][1][9], and the availability of a commercial tool [2]. Program 
slicing was first introduced by Weiser [16] who defined a slicing 
criterion as any subset of program variables at a statement.  The 
program slice consists of those statements that may affect the 
values of the criterion variables, including whether or not the 
statement executes. It is computed by iteratively solving data and 
control flow equations based on a control flow graph 
representation of a program.  
An early work by Horwitz et. al [7] that formulated the slice 
computation as a graph reachability problem was based on a 
representation called a procedure dependence graph (PDG), also 
called a program dependence graph [5]. A PDG summarizes the 
control and data dependences of a single entry-single exit program 
found by analyzing its control flow graph (CFG). 
In graph-based slicing, the slicing criterion is a program point, 
which is a node in the CFG. The slice consists of all nodes that 
can transitively reach the criterion node. We use the graph-based 
approach to define slicing for the hardware-software interface.  
Figure 1(a) is an intuitive example of a procedure with a slice. 

2.1 Dependence Analysis 
In this work, the formal representation underlying a source code 
specification is a control flow graph (CFG), which is defined as a 
flat representation, i.e. there are no basic blocks.  

 
 
 
 



 

 

A single entry, single exit procedure P is represented as a control 
flow graph which is a directed graph G=(N,E) where the set of 
nodes N  contains two special nodes ns ∈N and ne ∈N, and ∀n∈N 
there is a walk from start node ns to end node ne that includes n. 
The nodes represent operations of P.  Edges represent flow of 
control and are labeled with the condition that determines when 
the flow is active. The start node is a control predicate that models 
activation of the procedure. A CFG is shown in Figure 1(b), 
where the start node is labeled with the procedure name. The CFG 
is extended from the source code specification to include synthetic 
assignment operations for each formal parameter, and an 
assignment to a temporary variable to represent the function 
return value.  
A node d dominates a node m in a control flow graph G if every 
path from the start node ns to node m goes through d. A node m is 
post-dominated by a node p in directed graph G if every path from 
m to ne (not including m) contains p. Referring to Figure 1(b), 
node 5 is immediately post-dominated by node 8, node 6 does not 
post-dominate a node and node 7 does not dominate a node. 
Let G be a CFG.  Let n1 and n2 be nodes in G.  Node n2 is control 
dependent on n1 if and only if 

1. there exists a path P from n1 to n2 with any internal node 
n∈P post dominated by n2; and 

2. node n1 is not post-dominated by n2 
Note that n1 will always have two or more outbound control flow 
edges in the CFG if it is the source of a dependence relation. For 
the CFG in Figure 1(b), nodes 6 and 7 are control dependent on 
node 5, but node 8 is not control dependent on node 5 since node 
8 post-dominates node 5.  
Let G be a CFG.  Let n1 and n2 be nodes in G. Node n2 is data 
flow dependent on n1 if and only if 

1. there exists a walk W from n1 to n2 with such that no 
interior node n∈W defines variable v; and  

2. variable v is defined by n1 and used by n2. 
The procedure dependence graph (PDG) is a procedure 
representation that makes explicit both the data and control 
dependences for each operation [5]. Formally, the procedure 

dependence graph for a procedure P is a directed graph G=(N,E). 
The nodes N represent the operations of the procedure, i.e. the 
nodes are the same as a control flow graph of procedure P. The 
edges E represent dependences between operations. Figure 2 
shows a PDG. The open ended arrows are data dependences.  

2.2 System Dependence Graph 
A multiple procedure program is represented by a collection of 
program dependence graphs with edges between them [7]. The 
system dependence graph (SDG) for a program Prog is a directed 
graph G=(GPDG, EInter) consisting of a set of procedure 
dependence graphs, GPDG, and a set of augmenting edges that 
express interprocedural relationships between the PDGs, EInter. 
To support the linking of procedures, each function call operation 
in a CFG is hierarchically extended into several operations as 
demonstrated in Figure 3. The call node acts as a control predicate 
to all other detailed operations and models control flow transfer to 
the called procedure.  Parameters are passed using temporary 
variables assigned at actual-in nodes and output values are 
returned at actual-out nodes. Any global variables used in a called 
routine are modeled as input and output variables so that data 
dependences can be easily tracked. We assume all function calls 
return, so there is no need for a return edge.   
In the SDG, there are three types of edges linking the 
hierarchically extended call site to the called procedure: (1) A call 
edge connects a call node to the entry node of the called 
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return e;
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Figure 1.  Procedure proc1() and its CFG. Underlined 
statements indicate slice from the criterion “d=d+b”.  
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Figure 2. A program dependence graph (PDG) for proc1(). 
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Figure 3.  Hierarchical detail of a function call. 



 

 

procedure, (2) a param-in edge to pass values and (3) a param-out 
edge to return values.  See the example in Figure 4. 

2.3 Program Slicing 
A slicing criterion is a program point p, which is a node in the 
SDG. A program slice is a subgraph of the SDG that contains all 
nodes that may influence the computation at the slicing criterion. 
The slice for a criterion with multiple program points is computed 
as a union of slices, one for each node in the criterion. 
For a program consisting of a single procedure, the SDG is a 
single procedure dependence graph (PDG). In this simple 
intraprocedural case, the slice is found by analyzing the PDG for 
transitive flow and control dependences from the slicing criterion. 
Consider the slice first shown in Figure 1 as a source code 
example. The corresponding PDG is shown in Figure 2, and the 
criterion is node 7.  The dependence edges are followed 
(backwards) from the criterion to find nodes in the slice: the two 
data dependences yield nodes 2 and 4, and the control dependence 
edge yields node 5.  All inbound edges are followed from these 
nodes, which all yield node 0.  
In a multiple procedure SDG, the slice is found by transitively 
following all control, flow, and param-out edges.  A goal in 
program slicing is to produce a more precise slice, which is a slice 
that more closely reflects the feasible paths in a program 
(compared to a conservative analysis that considers all paths). The 
call and param-in edges that are encountered are followed taking 
into account the calling context to improve precision.  If a param-
out edge had been previously followed, then the current path is in 
a function call. When encountered, only the matching call or 
param-in edge back to the call site is followed. However, if the 
current walk has not descended into a function call, then all call 
and param-in edges are followed since there is no calling context. 

3. Hardware-Software Interface 
The application of program slicing is important for embedded 
system design, especially for component-based systems. The 
functionality of hardware or software components can be 
represented as a collection of communicating processes, where 
each process is represented by a control flow graph. A single 
process specification may consist of several CFGs that represent 
distinct procedures that are linked via procedure calls.  
The operating system is an important part of a component-based 
embedded system. It abstracts the system hardware into a common 
programming model, effectively decoupling application software 
from the hardware components. It also provides a multitasking 
runtime environment such that multiple software processes can be 
executed (apparently) in parallel. This enables use of common 

libraries, third party software modules, and applications that are 
portable across hardware platforms. 
A key hardware component is the I/O controller (IOC) that 
provides an interface to the outside world. The IOC has a 
programming interface that is used to control data transfers 
between memory buffers and the external medium. An embedded 
system that makes use of IOCs requires software modules called 
device drivers that interface the hardware to the operating system. 
We focus on the device driver and IOC interaction as the 
representative hardware-interface. The programming interface of 
an IOC can be viewed as a collection of memory locations and 
procedures.  
We assume all communication is via shared memory, which may 
reside on a variety of physical components, e.g. the CPU, main 
memory, or the IOC itself. The software procedures use normal 
load and store operations to access shared memory, including 
registers on the IOC. Though implementations typically use 
pointer de-references to access IOC registers, we represent 
software access to shared memory as a variable access in the case 
study. The hardware has equivalent operations to access shared 
memory. 
The IOC behavior is modeled as a collection of parallel processes 
specified as procedures. A procedure may be a non-halting 
process that controls the overall component and interacts with the 
registers.  Other procedures may react to input, e.g. a hardware 
procedure that is activated based on receiving a signal or as a side 
effect from a memory access. 
A register on an IOC can act as a communication channel similar 
to a function call.  The software puts a message in the channel, i.e. 
stores a value in a register, which causes a hardware process to 
activate with the message as a “parameter”. The software control 
flow continues to completion while the hardware process executes 
in parallel.  This type of access is called signaling. 
Hardware processes may also activate one another using a 
communication channel, i.e. using signals.  Hardware may also 
activate a software process through an interrupt signal. 
A similar, but distinct, interaction involves a software load or 
store to a specific memory location that actives a process.  The 
hardware process is specified to be sensitive to an access to a 
particular register, and the software activates it as a side effect to 
the variable access. This leads to our novel access dependence. 

3.1 Interface Dependences 
In this section, we define three dependences that may exist 
between software and hardware processes: interference, signal, 
and the novel access dependences.  
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Figure 4.  Function call edges in a SDG. 



 

 

An interference dependence is a data dependence resulting from 
the definition and use of variables that are common to parallel 
executing statements [11]. 
Let G1 and G2 be CFGs with a shared variable v.  Let n1 be a node 
G1 and n2 be a node in G2.  Node n2 is interference dependent on 
n1 if and only if 

1. n1 and n2 may potentially execute in parallel; and 
2. node n1 defines v and node n2 uses v. 

If a communication channel exists between processes such that an 
assignment to the channel results in the activation of a process, 
then there is a signal dependence [4]. Let G1 and G2 be CFGs with 
a common communication channel w.  Let n1 be a node in G1.  
The CFG G2 is signal dependent on n1 if and only if 

1. G1 and G2 may execute in parallel; and 
2. node n1 writes a message to w such that G2 may be 

activated. 
The last type of interaction is one that we propose to model the 
side effect of a memory access that activates a process. Let G1 and 
G2 be CFGs.  Let n1 be a node in G1. Let variable v be a shared 
variable to which G1 can explicitly access. The CFG G2 is access 
dependent on n1 if and only if 

1. G1 and G2 may execute in parallel; and 
2. node n1 uses or defines a variable v; and 
3. a use or definition of v may activate G2 . 

The key difference of the proposed access dependence is that no 
explicit communication channel exists between the procedures.  
The process activation is a side effect of the operation that 
accesses the special memory location.  
For our use in a codesign environment, we expect that the 
designer (or component provider) annotate the CFGs with these 
dependences: interference, signal, and access.  This is assumed 
both from the point of view that SDG generation is an orthogonal 
issue from slicing [13], and it is a practical matter that software 
and hardware components are specified in different source 
languages. Based on practical experience, it is suggested that the 
IOC supplier provide no more than an abstract CFG model; one 
that is useful for analysis but which hides details of its intellectual 
property. 

3.2 Slicing Algorithm 
The proposed algorithm for slicing shown in Table 1 is designed 
for conceptual simplicity, not implementation efficiency. We 
assume the SDG consists of multiple procedures that may execute 
in parallel, and there are no procedure calls across processes. The 
types of edges in the SDG are: control, flow, call, param-in, 
param-out, interference, signal, and access. The interprocedural 
edges (param-in, param-out, and call) are uniquely labeled for 
each procedure call operation, i.e. the calling context. 
A marked node means it is part of the slice, and a visited node 
means all inbound edges have been considered for the current 
calling context. The set of visited nodes is tracked separately for 
each calling context. 
A call context stack is associated with each node in the algorithm 
to track the particular sequence of procedure calls. When the 
algorithm descends into function calls (param-out edge) the 
current calling context, i.e. the edge label, is pushed on call stack.  

The algorithm ascends from a function call (call or param-in edge) 
if the current calling context matches the edge label, at which time 
the calling context is popped off stack.  Initially the stack is 
empty, and an empty stack matches all labels.  This occurs when 
the criterion is in the same procedure whose start node is reached, 
yet there are inbound call edges to follow.  Since no calling 
context exists, all potential function calls are followed. When a 
new process is entered (interference, signal, or access edge), the 
call stack is reset, since calls only occur within a process. 

Table 1. Worklist algorithm to compute a slice. 
algrithm MarkSdg 
input Crit : node in Sdg, the slicing criterion 
global Sdg : procedure dependence graph for a procedure 
declare Visited[] : Sets of nodes visited, one set per call context 
  WorkList : Set of Sdg nodes 
  p, m, n : Nodes in Sdg.  
  .stack : a node call context stack, initially empty. 
  .context() : node method, returns current call context 
  .push() : node method, puts new call context on stack 
  .pop() : node method, removes call context from stack 
  θ(v) : function that returns the process containing v. 
begin MarkSdg 

WorkList := Crit  //initialize with slicing criterion 
while Worklist ≠ ∅  do 

Select and remove node n from WorkList 
Mark n  // part of slice 
Add n to Visited[n.context()]  // visited node for context 
foreach m ∉Visited[n.context()] with edge (m,n) do 

if (m,n) ∈ {control, flow } then 
m.stack := n.stack 
Insert m into Worklist 

elseif (m,n) ∈ {call , param-in } then 
if  n.current() is empty then 

Reset m.stack  // no calling context  
Insert m into Worklist 

else  
if  (m,n) labled with n.current() then 

m.stack := n.stack 
m.pop() 
Insert m into Worklist 

endif 
endif 

elseif (m,n) ∈ { param-out } then 
m.stack := n.stack 
m.push( (m,n) label) // saves call context 
Insert m into Worklist 

elseif (m,n) ∈ {interference } then 
if  ( θ(m), θ(n) ) is valid thread order then 

Reset call stack for m 
Insert m into Worklist 

endif 
elseif (m,n) ∈ {signal } then 

Reset m.stack  // no calling context  
Insert m into Worklist 

elseif (m,n) ∈ {access } then 
Mark m // in slice, but not completely visited 
foreach p with edge (p,m) of type {control }do 

Reset p.stack  // no calling context  
Insert p into Worklist 

endfor 
endif 

endfor 
endwhile 

end MarkSdg 



 

 

Additionally, when a process boundary is crossed following an 
interference edge, the process order is validated to insure a 
feasible execution is under consideration.  The dependence edges 
and the actions within the algorithm are summarized in Table 2.  
Note that our newly proposed access dependence may appear 
similar to a signal dependence when computing a slice, but only 
control dependences are followed from the source node (of the 
access dependence). 

4. Case Study 
Our case study demonstrates interprocedural dependences based 
on the transmit path for a 550 UART (universal asynchronous 

receiver/transmitter), an IOC component widely used both as a 
discrete chip and as a core in SoC designs [17].  We present an 
abstract set of partial CFGs in Figure 5 that represents the 
operations involved in the transmission of a single byte.  
The CFG in Figure 5(a) is a portion of a setup software routine 
that writes a value to the MCR register with the bit set to enable 
auto flow control. The software procedure xmit_char() with input 
parameter c is shown in Figure 5(b).  The procedure implements a 
busy wait on the LSR register to check the THRE bit, which 
indicates the transmit hold register is empty.  When the bit is set, 
THR register is written with the byte to be sent, c. 
The THR register is a shared variable.  When accessed from 
outside the IOC, it has the side effect of firing the thr_write() 
procedure in Figure 5(c). This is an access dependence. This 
procedure clears the bit that indicates the THR is empty, and then 
fires the send() procedure in Figure 5(d) using a signal, i.e. the 
enable operation. This is a signal dependence.  
The send() procedure reads the shared variables THR and MCR, 
which are interference dependent on the assignment operations in 
the software procedures. Likewise, the LSR register is written by 
the IOC which creates another interference dependence to 
xmit_char() which reads the variable.  Note that the interference 
dependence from the MCR write in setup() impacts the flow of 
control in the hardware procedure send(). 
The SDG that represents this system is shown in Figure 5(e). 
Space precludes a detailed example of a slice, but any node in the 
SDG can be used as a criterion to compute a slice according to the 
algorithm in Table 2.  

Table 2. Summary of dependence edge traversal. 

Edge 
Predicate to 
follow edge 

Next set of 
edges to follow 

Traversal 
state change 

Control None All None 
Flow None All None 

Call Valid call 
context All Call depth 
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Param-in Valid call 
context All Call depth 

decrease 

Param-out None. All Call depth 
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Signal None All New process 
Access None Control only New process 
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Figure 5. The case study CFGs for the device driver (a-b) and IOC (c-d) with the combined SDG(e) . 



 

 

This case study demonstrates the expressiveness of the three 
interprocess dependences of interference, signal, and access, in 
addition to normal data and control dependences, to model the 
typical interactions across the hardware-software interface that is a 
central focal point of codesign activity.  

5. Related Work 
Program slicing is a source code analysis that was introduced as a 
dataflow equation problem by Weiser [16].  Interprocedural 
precision was improved with graph-based slicing introduced by 
Horwitz et. al using the system dependence graph [7]. Our base 
definitions, assumptions, and vocabulary are based on this work. 
Several works have proposed efficient algorithms for specific 
dependences [1][6][7][14] [13][12][11], but our algorithm 
purposefully excludes such advanced techniques to keep the 
concepts understandable.  
Slicing for concurrent programs defines the interference 
dependence [11][12], though the previous work defines it for a 
single PDG.  A threaded CFG was defined such that all parallel 
threads, which we call processes, were explicitly indicated in a 
single CFG, which can be analyzed to find interference 
dependences as well as feasible process execution order. Our 
technique is more general but requires a designer to explicitly 
indicate interference dependences and feasible process ordering 
between software and hardware procedures, since they do not 
share a common specification domain. 
There is little work published regarding the application of 
program slicing to hardware description languages.  The basics of 
applying slicing to VHDL descriptions were addressed by 
Iwaihara et. al [8] who introduced a signal dependence. They 
defined it as a dependence that activates an operation, while we 
define it as activating an entire procedure. Furthermore, their 
explanation seems to extend the definition to include shared 
variable flow dependence similar to our interference dependence.  
The work by Clarke et. al [4] defines slicing for VHDL by 
mapping the VHDL constructs to a software control flow graph 
representation for which slicing tools exist [2], i.e. one that 
handles C programs.  They map a signal dependence to a function 
call and introduce a synthetic master process that continuously 
invokes the non-halting VHDL procedures.  

6. Conclusion 
Program slicing was introduced using a graph-based 
representation of dependences call the System Dependence Graph 
(SDG). A set of typical interactions was defined for a software-
hardware interface of a component-based system. The 
dependences involved in such interactions were defined with the 
purpose of slicing. This includes a slightly different definition for 
a signal dependence compared to previous work, as well as the 
novel access dependence to model a memory access with the side 
effect of firing a process. 
A worklist algorithm that is conceptual clear, but not particularly 
efficient, was presented to demonstrate the use of the dependences 
to compute a slice.  A partial example system based on a real IOC 
was described to demonstrate how the system specification 
appears as a SDG that can be used for slicing into both hardware 
and software procedures. Our future work includes the application 
of program slicing to identify evaluation scenarios that can be 
used as a basis for performance estimation in high-level codesign 
activities.  

7. REFERENCES  
[1] G. Agrawal, L. Guo, Evaluating explicitly context-sensitive 

program slicing, PASTE ’01, June 2001. 

[2] P. Anderson, R. Teitelbaum,  Software inspection using 
CodeSurfer, Proc of Workshop on Inspection in Software 
Engineering (CAV 2001), Paris, July 18-23, 2001. 

[3] G. Canfora, A. Cimitile, A. De Lucia, G. Di Lucca, Software 
salvaging based on conditions, Proc. Int. Conf. on Software 
Maintenance, 1994, pp 424-433 

[4] M. Clarke, P. Fujita, S. Rajan, T. Reps, S. Shankar, T. 
Teitelbaum, “Program slicing of hardware description 
languages”, Proc. 10th Adv. Res. Work. Conf. Correct Hard. 
Design and Ver. Methods, Bad Herrenalb, Germany, 1999. 

[5] J. Ferrante, K. Ottenstein, J. Warren, The program 
dependence graph and its use in optimization, ACM Trans. 
Prog. Lang. and Sys, v. 9, n. 3, pp. 319-349, July 1987. 

[6] M. Harrold, N. Ci, Reuse-driven interprocedural slicing, 
Proc 1998 Int. Conf. Software Engineering, 1998, pp. 74-83. 

[7] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing 
using dependence graphs, ACM Trans. on Progr. Lang. 
Systems, vol 12, no 1, Jan 1990, pp. 26-60. 

[8] M. Iwaihara, M. Nomura, S. Ichinose, H. Yasuura, “Program 
slicing on VHDL descriptions and its applications”, Proc. 
3rd Asian Pacific Conf. Hardware Description Languages, 
Bangalore, Jan 1996, pp. 132-139. 

[9] D. Jackson, E. Rollins, A new model of program 
dependencies for reverse engineering, Proc. ACM Conf. on 
Foundations of Software Engineering, Dec 1994. 

[10] M. Kamkar, An overview and comparative classification of 
program slicing techniques, Journal Systems Sofware, 1995, 
Elsevier Science Inc, v 31:197-214,  

[11] J. Krinke, Static slicing of threaded programs, ACM 
Workshop on Program Analysis for Software Tools and 
Engineering, 1998. 

[12] M. Nanda, S. Ramesh, Slicing concurrent programs, Proc. 
Int. Symp. Software Testing and Analysis, 2000, pp 180-190 

[13] T. Reps, G. Rosay, Precise interprocedural chopping, Proc 
3rd ACM SIGSOFT Symposium on Foundations of Software 
Engineering, 1995, pp. 41-52. 

[14] S. Sinha, M. Harrold, G. Rothermel, System-dependence-
graph-based slicing of programs with arbitrary 
interprocedural control flow, Proc. 21st Int. Conf. on 
Software Engineering, May 1999. 

[15] F. Tip, A survey of program slicing techniques, Journal of 
Programming Languages, v. 3, no. 3, pp 121-189, Sept 1995. 

[16] M. Weiser, “Program slicing”, IEEE Trans Soft. Eng., v. 10, 
no. 4, July 1984, pp 352-357. 

[17] Texas Instruments, TL16C550C data sheet, SLLS177F, 
March 2001. 

 


	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index




