
Large Exploration for HW/SW partitioning of Multirate
and Aperiodic Real-Time Systems

Abdenour Azzedine, Jean-Philippe Diguet, Jean-Luc Pillippe
Université de Bretagne SUD; LESTER lab.; Lorient, France

jean-philippe.diguet@univ-ubs.fr

ABSTRACT
This paper addresses the domain of fine and coarse grain HW /
SW codesign for Real-Time System On-Chip. We propose a new
method for the real-time scheduling and the HW / SW partitioning
of multi-rate or aperiodic tasks. The large design space exploration
is based on parallelism/delay trade-off curves.

Keywords
HW / SW Codesign, system design exploration, RT scheduling

1. INTRODUCTION
The use of on-chip heterogenous real-time systems is continuously
growing in various areas like mobile communications, automotive,
avionics, robots, ... These trends are sustained by the numerous
advantages the real-time SOC (system-on-chip)) approach offers :

� the use of an RTOS facilitates the management of aperiodic
tasks and real time constraints;� dedicated HW modules can be implemented on the same chip
to speed up critical applications tasks;� the chip capacity enables to implement complex applications
with a large set of architectural alternatives;� the on-chip communication bandwidth makes HW / SW code-
sign really attractive;� the processor core can be tailored reagrding the application
in terms of co-processors and dedicated memory hierarchy.

However, the associated design space is conjointly exploding and
consequently requires methods and tools to guide the designer to-
wards an (the) interesting solution. First, the increase of applica-
tion complexity means an increase of the specification granularity.
Thus, for each task of an application, a lot of parallelism / cost /
time trade-offs should be considered in order to perform an effi-
cient system-level design. Secondly, the system must be able to

optimally handle a set of applications which are characterized by
both periodic (e.g. audio decoding) and aperiodic tasks which can
have hard (e.g. game pad management) or soft (mail loading) real-
time constraints. Then, depending on criticality and periodicity as-
pects, a design tool must address the trade-off between the respect
of response times and the area and power requirements.

In this paper we propose a framework to combine the HW / SW par-
titioning and scheduling problems of real-time systems onto mono-
processor architectures. The specification is a multi-rate periodic
and aperiodic task graph. Each task is described with a hierarchi-
cal control data flow graph. This graph is estimated for various
time constraints in order to produce area/time trade-off curves. The
method is based on an accurate static scheduling and a large branch
and bound exploration. The rest of the paper is organized as fol-
lows. Section 2 places our work within the state of the art. Section 3
details our codesign context. In Section 4 we present the different
steps of our exploration, partitioning and scheduling method. Sec-
tions 5 and 6 contain respectively results from a real-life application
and a conclusion about this work and future developments.

2. STATE OF THE ART
Design of complex system on chip requires a specification based
on a coarse grain granularity. Such a specification can be data-flow
[2, 22], control-data flow (CDFG) [19, 13] or task-graph oriented
[23, 18]. Furthermore, embedded systems can be both aperiodic
or periodic and even multirate. Moreover, to perform an efficient
design space exploration, a large set of parallelism/delay trade-offs
must be associated with each node of the specification. For these
reasons, we have chosen to specify the application with a hierar-
chical task graph which is well-adapted to the task-level real-time
scheduling. Each task is then described with functions (i.e. CDFG)
in order to efficiently explore several architecture solutions. The
step detailed in this paper is located after a functional (CDFG) de-
composition of the application followed by a task merging step [8].
Three kinds of architectures are usually targeted, the first one is
based on monoprocessor architectures with hardware accelerators
which can [21, 2] or not run simultaneously [20]. The second one
addresses multiprocessor architectures [23, 5, 22] and the last one
includes ASIP [7, 12] designs. In this paper, we focus on mono-
processor architectures where the processor can be parameterized
with fine-grain coprocessors and communicate with coarse-grain
accelerators. We first make this choice because their low-cost and
low-power characteristics make them very interesting in practice
for embedded systems [6]. Secondly, on-chip HW / SW monopro-
cessor systems can meet hard real-time constraints. Actually, in-
tegrated HW accelerators can benefit from the fact that intra and
inter task parallelism can be exploited thanks to actual and future

chip capacities [24]. Moreover, on-chip communications reduce
the penalty due to communication overhead. Note that in this con-
text, we consider that an HW accelerator can be a DSP used as
a slave module (dedicated to a single task). Our goal is to com-
bine a large design space exploration with a real-time scheduling
suitable to real-life cases in terms of multirate tasks and low or
high priority aperiodic tasks. In the area of multiprocessor archi-
tectures single-rate [17] but also multi-rate preemptive [23, 3, 9]
scheduling techniques have been proposed. However, in that case
dependent tasks (or processes) have the same period and are clus-
tered in independent subgraphs. Moreover, multiprocessor research
don’t really target a full design space exploration, basically hard-
ware implementations are just considered as processors limited to a
single task execution. In [18] Dave and al. propose the association
array and task clustering to solve the multirate problem in code-
sign, but these concepts are really interesting only in the context
of multiprocessors architectures. The method is extended in [3] to
aperiodic tasks for which time slots are reserved within the hyper-
period. This technique is valuable if aperiodic tasks have strict re-
sponse times but can lead to very costly design if the tasks are rarely
launched or if their execution is not critical. In [21] aperiodic tasks
are not included but the multirate issue is considered in the context
of a monoprocessor HW / SW architecture. The method is based
on the fixed priority scheduling theory [14, 16], however the de-
sign space exploration is limited to a fine grain solution (processor
+ coprocessor) or separately to a coarse grain architecture which
include a processor and parametrized ASIC.The dependence ques-
tion is solved while using the Inverse Deadline technique, but like
in [3] the question of dependent tasks with distinct periods is not
considered (for instance the issue of tasks release time). We have
also chosen a static scheduling as it is the only solution to guar-
anty real time constraints but we’ve added a low cost scheduling
technique for low priority aperiodic tasks. We considere an acyclic
task graph mapped on HW / SW mono-processor architecture, we
adress the dependencies between task while using task pipelining
and priority assignments. Regarding previous work, the originality
is a combination of the three following points (i) multirate real-time
static scheduling (ii) criticality-based scheduling of aperiodic tasks
(iii) large design space exploration combining fine and coarse grain
HW / SW codesign.

3. FRAMEWORK

3.1 System specification
Basically, the system is specified with an acyclic task graph (TG).
In our approach, a TG is one of the hierarchy level of the speci-
fication (cf. fig.1). The system level describes system inputs and
outputs. At the task level (TG), a node represents a periodic or
aperiodic task and an edge a data (communication channel) or a
control (event) dependence between tasks. Note that task dead-
line constraints can be derived, for periodic tasks, from system in-
put/output constraints as described in [1]. The resource constraints
due to data sharing is indicated with a special node (

���
). Accord-

ingly to real-time theory, the function level is a cluster of sequential
or mutually exclusive CDFG which compose a task. Finally, at the
instruction level a fonction is described as a hierarchical CDFG.
A HCDFG top-down decomposition is performed as follows: a
CDFG is built each time a conditionnal instruction is found, when
no more conditionnal instruction is present a DFG is created (basic
block). Thus, in a CDFG a node represents a conditionnal instruc-
tion, a data transfer, (H)CDFG or a DFG. In a DFG, which means
the lowest hierarchy level, only remain elementary nodes represent-
ing data-transfer or data-processing.

System level

Functions level

system

Environment
outputs

T4T1

e1

en

sm

s1

f21

f33

Tn

C31

Tasks level

inputs

T4T1

T2
en sm

s1e1

f22

2

T6

T6

TnT5

f32

HCDFG de f32

 Instructions level
D323

D324

C322D321

Figure 1: multi-level specification

 Execution time.

cost

SWHW2HW1 Cop1 Cop2

Figure 2: Task dynamic estimations

3.2 Target Architectural Model
In the context of the Design Trotter tool, each node (i.e. task) can
be linked to a CDFG specification. Such a specification is an entry
point for our dynamic estimation tool [15] which can provide a set
of implementations from a sequential software to a highly paral-
lel hardware module. The estimation result is a parallelism/delay
trade-off curve as showed in fig.2.

There are three kinds of implementations. The first one is totally
software and its cost is given by the program and data memory
sizes. The second one, called coprocessor solution, is a software
implementation but the processor core is upgraded with coproces-
sors. This is what is usually called a fine-grain codesign where
specific instructions can be speed up by the use of dedicated func-
tionnal units (multiplier, butterfly, MAC ...). There is no commu-
nication delay since the additionnal functional units are acceeded
through the processing unit registers. Its cost is based in the pro-
gram and data memory sizes and the coprocessors area. Note, that
as coprocessors can be shared between tasks, the cost computation
must take into account previous task implementations. Finally a
hardware implementation represents a dedicated hardware module
with its own control. Contrary to previous solutions, a HW module
can run simultaneously with the processor but also implies com-
munication delays. For instance, the different HW solutions cor-
respond to different loop unfolding solutions [15], so to various
trade-offs between parallelism exploitation (speed) and local mem-
ory size. A hardware module is dedicated to a given task. The
different costs are computed as follows :

CSW � DataMemSize � PgmMemSize

CCop � CSW � ∑
i

cost � i ��� Max � PrevCop � i �
	 Cop � i �����
CHW � HWarea � LocalMemSize

PrevCop � i � and Cop � i � are respectively the number of coprocesseur
of type i required by previous and current tasks. The architecture
model is given in fig.3, it has been implemented on a FPGA Vir-
tex 800 with the free soft IP LEON [11] which communicates with
HW modules (for instance a DCT accelerator) through the amba
bus. Moreover, the Leon’s RTOS is RTEMS designed for multi-
processor architectures.

Real Time
OS

 Sw/Hw Bus

P
r
o
c
e
s
s
o
r

 Cpr n

Main
 memory and

I/O

Cpr 2
Coprocessors for
Critical operations
acceleration

A
c
c
1

M

Cpr 1

Communication
memory

Accelerators,
distributed control

A
c
c
n

M

A
c
c
2

M

 Hw/Hw Bus

Figure 3: Architectural model

When a periodic task is implemented on a hardware module, the
processor RTOS initiliazes the task execution by activating the mod-
ule timer, then the hardware module runs independently from the
processor scheduler. We will see in 4.3 that a real aperiodic task
can not be scheduled on a HW component. The processor controls
HW / SW communications by reading and writing data in dedicated
hardware modules.

4. PARTITIONING / SCHEDULING METHOD
4.1 Basic concepts
Each task k is characterized by the following parameters (see fig.4):

� Task Id Tk� Absolute Deadline Dk� Period Pk� Release time Rk� Execution vector : C1
k 	������CM

k � where CM
k is the delay associ-

ated with the Mth implementation.

Regarding aperiodic tasks, the period means the minimum delay
between two successive executions of the task. In the case of hard
real-time constraints (RTC), this delay is the lower bound but with
soft RTC this delay is an average value.

R + 2PR + P TimeC

P PP

DD

Figure 4: Tasks parameters

4.2 Scheduling Policy
4.2.1 Schedulability analysis
In order to guaranty RTC, we use a fixed priority static and pre-
emptive scheduling. The small complexity of static schedulers is
also an important issue in the domain of embedded real-time sys-
tems. Since the aim is to minimize resource slack time we don’t
use the rate monotonic analysis but we compute the task response
time with the basic exact analysis [14, 16]. This analysis considers
independent periodic tasks with the highest priority first (HPF) pol-
icy. The fixed priorities are computed as the inverse of the deadline.
The exact analysis principle is detailed in 1, the complete formu-
lation is given in 2. Thus, a task can be scheduled if the response
time RTi of Ti is such as : � Tj � hp � i ��	�� RTi � Di with

RTi � Ci � ∑
j � hp � i �

�
RTi

Pj � � C j (1)

where hp � i � is the set of SW tasks whith a higher priority than task
i. As t is present on both sides in 1, it must be computed iteratively
until RTi � n � � RTi � n � 1 � or RTi � n ��� Di

4.2.2 Resource sharing constraints
A task Ti can be delayed by lower priority tasks Ti if they share
a critical resource (shared memory or I/O). Actually, a critical re-
source can’t be used simultaneously by different tasks and a task
must ends its job with this resource even if a higher priority task is
waiting for it during its execution. Bi is defined as the longest lock
time of the task i due to lower priority task Tj with j � l p � i � where
l p � i � is the set of tasks with a lower priority than task Ti. The com-
plete response time analysis (eq.2) takes into account this locking
time.

4.2.3 Communication delays
Communications delays are included in the execution time of soft-
ware and coprocessor implementations. (They also include an aver-
age value of the RTOS overhead). In the HW / HW communications
case, the data are transfered through shared memory and the mem-
ory accesses are included in estimated execution times. So, only SW

/ HW or HW / SW communications introduce new delays. These de-
lays are due to the read and write instructions that execute the pro-
cessor in the local HW accelerator memory. Thus, the exact analysis
of task schedulability is finally : � Tj � hp � i �
	�� RTi � Di with

RTi � Ci � Bi � Tcomi � ∑
j � hp � i �

�
RTi

Pj � ��� C j � T com j (2)

This is not the scope of this paper to detail precisely how HW/SW
communication are correlated with the size of the HW accelerator,
but we can indicate that it depends on four parameters given in
eq.3 : Tinit is the initialization delay of the communication, Tdata is
linked with the data format, Dmem is the number of data transfered
to/from the local memory of an accelerator and Nit the number of
times the accelerator is fired to execute the task (in a given period).

Thus, we observe a trade-off between the accelerator parallelism
(i.e. memory and processing unit sizes) and the number of times
the hardware module is used during the task execution.

Tcomi � Tinit � Nit � Dmem � Tdata (3)

Remark: we don’t take into account the release jitter within the
computation as explained in [16] and improved in [10], since the
predecessors of a given task are either scheduled on the same pro-
cessor or executed on a remote hardware module whose the exact
execution delay is known and the scheduling date choosen in order
to produce data intime as explained in 4.4.2.

4.3 Aperiodic tasks scheduling
Like in [3], we consider the lower bound of the delay between two
successive executions as the strict period of an aperiodic task with
a hard real time constraints. For instance the tool detailed in [1]
produces an intervalle PminPmax � for each aperiodic (sporadic) task
within the application. Thus by selecting Pmin one can guaranty
real time constraints while systematically allocating time slots (HW

or SW) to this task.

In practice, such a method cannot be applied if the task criticity
doesn’t justify a costly allocation of hardware resources or proces-
sor cycles. This trade-off between hard RTC and resource savings
is handled by a task server [4]. This task has the lowest priority.
The task server, whose period is fixed by the designer, represents
an amount of time slots available for non critical aperiodic tasks
which will be triggered in a FIFO order.

4.4 Dependent tasks scheduling

4.4.1 Priority assignement & Release time shifting
In real life examples, tasks communicate so are not independent
as specified in 4.2. Usually, before applying the exact response
time analysis, the dependencies which can be related to precedence
constraints are eliminated while modifying absolute deadlines and
release times. However, if we consider generalized data dependen-
cies as shown in fig.5 we can avoid the dependencies constraints
while considering a pipeline and static execution of dependent tasks.
In that case, the dependencies problem resolution can be reduced
to a correct choice of release times.

In a case as depicted in fig.5, we assume that n � Pj � m � Pi means
that the task i needs the data produced by n previous periods of task
j, these data are then used during m periods of the task i (if the
asumption is not true, the scheduling policy is not optimal but cor-
rect since this is the worst case). Actually, Ti and Tj can be consid-
ered as independent if Ti processes n data sets previously computed
by the task Tj while Tj computes the n next data sets. Thus, the
dependency constraint can be avoided by correctly shifting release
times.
If n � m � 1 this is a single rate dependency.
If n � m !� 1 this is a single rate dependency with latency con-
straints, i.e. the task Ti starts with the same period after n execu-
tions of the task Tj . So a new release time is computed.
So finally the priority asignment is simply given by : Priority � Tk � # 1

Dk

4.4.2 Release time computation
The schedulability analysis is performed while considering inde-
pendent tasks, then when an implementation solution is found, the

Communication channel

1) Pj = Pi : simple dependency
constraint
2) nPj = mPi with n or m >1 :
generalized dependency constraint

Pi
Di
Ri
Ci

Pj
Dj
Rj
Cj

TiTj

Figure 5: Precedence generalized constraints

new release times R "i are computed in order to respect the assump-
tion, namely the precedence constraints. The computations are per-
formed in the precedence order within the task graph. Four cases
must be distinguished regarding the tasks Tj # Ti from fig. 5

1. HW # SW or HW # HW.

R "i � max $ Ri;R " j �%� n � 1 � Pj � C j &
Tj is implemented on a hardware module so its response time
is equal to C j (no interruption).

2. SW # HW.

R "i � max $ Ri;R " j �'� n � 1 � Pj � TR j � Tcom j &
TR j is the response time of Tj and Tcom j is the communi-
cation delay to be added to TR j for the transfer of data from
the processor to the hardware module memory

3. SW # SW and priority (Tj) � priority (Ti)

R "i � max $ Ri;R " j �'� n � 1 � Pj &
4. SW # SW and priority (Tj) � priority (Ti)

R "i � max $ Ri;R " j �%� n � 1 � Pj � T R j &
TR j is computed with the method of exact analysis (eq.2) but the
set of conflicting tasks is no more hp � j � but hpp � j � which includes
two kinds of software tasks : i) the predecessors of Tj and ii) higher
priority tasks which are not successors of task Tj .

Remark : if Ti has several predecessors, R "i is computed for all its
predecessors and the maximal result is selected.

In fig.6 an example of dependency resolution is given. The exact
analysis shows that the four tasks are can be scheduled. Then we
compute the associated release times while considering Tcom � 0
for simplicity :

R "1 � R "2 � 0 	 R "3 � max (R3;max (R "1 � P1 � TR1;R "2 � 4 � P2 � T R2)*)+�
520; R "4 � max (R4;R "3 � 2 � P3 � C3) = 960

4.5 Principle of the partitioning algorithm
We currently use an exact Branch & Bound algorithm which find
out the lowest cost solution regarding the silicon area (so the FPGA
or Chip size).

The B&B tree is organized as follows : on a given branch, tasks are
ordered according to their priority (highest first). And for a given
level, implementations are ordered according to their costs (i.e. left
edge solution is fully software).

R4
*

R3
*

T2

T1

T4

T3

T1, T2 produce data for T3.
T3 consumes data produced by T1 and T2 and produces data for T4.

T4 consumes data produced by T3.

Sw

Sw Hw Sw

2*P1 = 5*P2 = 3*P3 = 2*P4

T1

T2

T3 T4

T1 : P1 = 300, D1 = 180, C1 = 100, R1 = 0.
T2 : P2 = 120, D2 = 80, C2 = 40, R2 = 0.
T3 : P3 = 200, D3 = 100, C3 = 40, R3 = 0.
T4 : P4 = 300, D4 = 240, C4 = 60, R4 = 0.

Figure 6: Dependent graph scheduling example

The tree is travelled from left to right. So, if a schedulable solution
is found for a given task (according to (2), the right side remain-
ing solutions can be eliminated and the algorithm goes down to the
next level (i.e. next task). The main difficulty of the method ap-
pears during the tree exploration when an HW solution is selected
after a SW solution. In that case the algorithm must go up to the
previous level to add the SW/HW communication time and recheck
the schedulability of the SW solution.

4.6 Global Methodology
Finally the global methodology can be divided in five main steps :

1. Multi-level system specification;

2. System-level estimation : estimation tools are used to pro-
duce sw / sw+cop / hw trade-off curves;

3. Priority assignment & aperiodic task management : the pri-
orities are computed and set of independent tasks is then con-
sidered, hard RTC aperiodic tasks are transformed into pe-
riodic tasks and weak RTC aperiodic tasks allocated to the
server task;

4. RT Static Scheduling / partitioning : the B&B algorithm pro-
duces a low cost architecture. Regarding the processor slack
time, the task server is defined or step 4 restarted with a task
server period constraint.

5. Task release time computation : regarding multi-rate and
precedence constraints, the correct task release times are pro-
vided to the RTOS.

5. RESULTS
In order to get derived constraints we reuse the Dashboard con-
troller example given in [1] and described in fig.7 (Ti for i � 1 ��� 10 �).
These tasks are aperiodic but have hard real-time constraints known
through intervals PminPmax � . So, we consider these tasks periodic
with a period equal to Pmin. In order to extend the application scope,
we imagine new tasks to be handled by the system. First, we add
two periodic tasks T11 , 12 which address the speed control. Then,
some aperiodic tasks with soft RTC like air conditioning control
(T13) or board light control T14 are introduced as candidates to clus-
ter within a the task server. Since we don’t have tasks codes neither
HCDFG descriptions, we can only propose coarse sw / sw+cop /
hw estimates which are given in fig.8. However, the goal here is
mainly the illustration of our approach combined with constraint
derivation methods.

First, we only address critical tasks, the task server is considered
afterwards regarding the processor slack time. The designer can
define a minimum slack time allocated to tasks server, If this de-
lay is no sufficient then the server task, with a minimum period,
is included in the initial task vector. So, our tool input data are
the task vector : V T � T1 	���� T12 � and the period / deadline vector
: V P � 228 	 456 	 456 	 19 	 138168 	��-����	 1000000 � � 10 . 5 � s, the imple-
mentation arrays (fig.8), the communication descriptors (Tinit 	 Tdata),
the task descriptors (Di 	 Ri) and the task graph.

� In a first step, priorities Pyi are computed : Py4 / 1 , Py1 /
2 , Py2 / 3 , Py3 / 4 , Py5 / 5 , Py6 / Py7 / 6 , Py8 / 7 , Py9 / Py10 / 8 , Py11 /
9 , Py12 / 10� Second step, B&B search : bestcost / 1668 [(T1,Sw), (T2,Cop), (T3,Hw),

(T4,Sw), (T5,Sw), (T6 ,Cop), (T7,Cop), (T8,Sw), (T9,Sw), (T10,Sw), (T11,Sw),

(T12,Sw)]� Third step, release time computation : R2 0 / R3 0 / R11 0 / R12 0 /
288 , R4 0 / 348 , R5 0 / R6 0 / R7 0 / R8 0 / R9 0 / R10 0 / 137940� In this example, the tasks T13 	 T14 can be assigned to the tasks
server (with a priority equals to 11) because the processor
slack time equals 0 � 1%. Both tasks will be correctly sched-
uled if they don’t require more than 0 � 1% of the processor
time, in the opposite case their execution will be delayed.

1

1

P5,6,7,8,9,10 = [138168, 7199280]

1

1 1

1

1
660

242

T9

T8

T7

T6

T5

T4
T3T2

T1

Wheel
pulses Filter

Speed Speedometer

Accumulate
pulses

Compute
Total Km

Compute
Partial Km

LCD Display
Driver

Lifetime
Odometer

Resettable
Trip Odometer

Read
Speed

P1 = [228, 11880] P2,3 = [456, 23760]
P4 = [19, 990]

Speed control Motor control
1

1

T10

T11 T12

P11 = P12 = 1000000

Speed
controller

Dashboard
Controller

A.C
control

B.L
control

T13T14

Figure 7: Car controller task graph

Cop1 Cop2 Cop3

Cost 80 96 112
cop21 1 0 1
cop31 0 1 1
cop61 1 0 0
cop71 1 0 0

T9 SW9

C 70
Cost 85

T1 SW1

C 60
Cost 120

T2 SW2 Cop21

C 200 120
Cost 160 100

T3 SW3 Cop31 HW1

C 150 120 60
Cost 130 100 300

T4 SW4

C 6
Cost 90

T5 SW5 HW5

C 220 150
Cost 400 900

T6 SW6 Cop61

C 60 40
Cost 80 50

T7 SW7 Cop71

C 50 35
Cost 70 45

T8 SW8 HW8

C 360 210
Cost 190 430

T10 Sw10

C 50
Cost 96

T12 Sw12 Hw12

C 165 60
Cost 135 198

T11 Sw11 Hw11

C 400 120
Cost 160 220

Coprocessor Implementation costs :
The "Copij"' cost only includes the Sw cost as
"Copij" solution can share coprocessors, the final
cost is obtained by adding the cost of allocated
coprocessors.

Figure 8: SW/Cop/HW solutions

6. CONCLUSION
In this paper we have presented the Scheduling and Partitioning
task for Real-Time Embedded Systems of our design tool called
Design Trotter. The method is based on a static fixed priority

scheduling and we propose a solution to schedule multirate and
aperiodic tasks. The technique takes advantage from the task pipelin-
ing while the assumption of independent tasks is guaranteed by the
shifting of release times. The partitioning algorithm is linked to
dynamic estimation task which provides trade-off curves in order
to perform a design space exploration according to the huge VLSI
potential of future system on chip. Our future work will address the
refinements of communication and RTOS overhead aspects. Cur-
rently a heuristic approach of the B&B algorithm is under develop-
ment in order to adress large task graphs.

7. REFERENCES
[1] A.Dasdan, D.Ramanathan, and R.K.Gupta. Rate derivation

and its application to reactive, real-time embedded systems.
In 35th ACM/IEEE Design Automation Conf., San Francisco,
USA, 1998.

[2] A.Kalavade and E.Lee. Global criticality/local phase driven
algorithm for the constrained hw/sw partitioning problem. In
Int. Work. on H/S Codesign, Sept. 1994.

[3] B.P.Dave, G.Lakshminarayana, and N.K.Jha. COSYN:
Hardware-software co-synthesis of heterogeneous distributed
embedded systems. IEEE Trans. on Software Engineering,
7(1), Mar. 1999.

[4] B.Sprunt, L.Sha, and J.P.Lehoczky. Aperiodic task
scheduling for hard real-time systems. Journal of real-time
systems, Sept. 1989.

[5] D.Kirovski and M.Potkonjak. System-level synthesis of
low-power hard real-time systems. In 34th ACM/IEEE

Design Automation Conf., San Francisco, USA, 1997.

[6] F.Balarin and A. Sangiovanni-Vincentelli. Schedule
validation for embedded reactive real-time systems. In 34th

ACM/IEEE Design Automation Conf., Anaheim, USA, 1997.

[7] F.Charot and V.Messé. A flexible code generation framework
for the design of application specific programmable
processors. In 7th Int. Work. on H/S Codesign, Roma, Italy,
May 1999.

[8] H.Gomaa. Software Design Methods for Concurrent and
Real-Time Systems. Addison-Wesley, 1993.

[9] H.Oh and S.Sha. A hw/sw co-synthesis technique based on
heterogeneous multiprocessor scheduling. In ACM Int. Symp.
CODES, Roma, May 1999.

[10] J.C.Palencia and M. Harbour. Exploiting precedence
relations in the schedulability analysis of distributed
real-time systems. In 20th Real-time System Symp.,
Scottsdale, USA, Dec. 1999.

[11] J.Gaisler. Leon sparc processor core.
http://www.gaisler.com/leon.html.

[12] K.Küçükakar. An ASIP design methodology for embedded
systems. In 7th Int. Work. on H/S Codesign, Roma, Italy,
May 1999.

[13] M.Auguin, L.Capella, F.Cuesta, and E.Gresset. Synthesis of
signal processing systems from binary controlled data-flow
specifcations. In Int. Conf. on Signal Proc. Appli. & Techno.
(ICSPAT), Dallas, USA, Oct. 2000.

[14] M.Joseph and P.Pandya. Finding response time in a real-time
system. IEEE Design and Test of Computers, 29(5):390–395,
1986.

[15] Y. Moullec, J-Ph.Diguet, and J-L.Philippe. Fast and adaptive
dataflow and data-transfer scheduling for large design space
exploration. In 12th ACM Great Lake Symposium on VLSI,
New York, USA, Apr. 2002.

[16] N.Audsley, A.Burns, M.Richardson, K.Tindell, and
A.J.Welling. Applying new scheduling theory to static
priority preemptive scheduling. Software Egineering
Journal, pages 284–292, sep 1993.

[17] P.Bjørn-Jørgensen and J.Madsen. Critical path driven
cosynthesis for heterogeneous target architectures. In 5th Int.
Workshop on H/S Codesign, Codes/CASHE’97,
Braunschweig, Germany, Mar. 1998.

[18] P.Dave and N.K.Jha. CASPER: Concurrent
hardware-software co-synthesis of hard real-time aperiodic
specification of embedded system architectures. In Design,
Automation & Test in Europe Conf., Paris, France, Feb. 1998.

[19] P.Eles, K.Kuchcinski, Z.Peng, A.Doboli, and P.Pop.
Scheduling of conditionnal process graphs for the synthesis
of embedded systems. In Design, Automation & Test in
Europe Conf., Paris, France, Feb. 1998.

[20] R.Gupta and G. Michelli. Hardware-software cosynthesis for
digital systems. IEEE Design and Test of Computers, Sept.
1993.

[21] R.Kamden, A.Fonkua, and A.Zenatti. Hardware/software
partitioning of multirate system using static scheduling
theory. In IEEE Int. Conf. on Computer Design, Texas, Sept.
1999.

[22] T.Grandpierre, C.Lavarenne, and Y.Sorel. Optimized rapid
prototyping for real time embedded heterogenous
multiprocessors. In ACM Int. Symp. CODES, Roma, May
1999.

[23] T.Y.Yen and W.Wolf. Sensitivity-driven cosynthesis of
distributed embedded systems. In 8th IEEE/ACM Int. Symp.
on System Synthesis, Cannes, France, Sept. 1995.

[24] W.R.Davis, N.Zhang, K.Camera, F.Chen, D.Markovic,
N.Chan, B.Nikolic, and R.W.Brodersen. A design
environment for high throughput, low power,dedicated signal
processing systems. In IEEE Custom Integrated Circuits
Conference, CICC’2001, San Diego, CA, May 2001.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

