
 Fast Processor Core Selection for WLAN Modem
using Mappability Estimation

Juha-Pekka Soininen, Jari Kreku, Yang Qu and Martti Forsell
VTT Electronics

PO. Box 1100 (Kaitoväylä 1), FIN-90571 Oulu, FINLAND
Tel: +358 8 551 2111

e-mail: Juha-Pekka.Soininen@vtt.fi

ABSTRACT
Mappability metric and a novel method for evaluating the
goodness of processor core and algorithm combinations are
introduced. The new mappability concept is an addition to
performance and cost metrics used in existing codesign and
system synthesis approaches. The mappability estimation is based
on the analysis of the correlation or similarity of algorithm and
core architecture characteristics. It allows fast design space
exploration of core architectures and mappings with little
modeling effort. The method is demonstrated by analyzing
suitable processor core architectures for baseband algorithms of
the WLAN modem. 140400 architecture-algorithm pairs were
analyzed in total and the estimated results were similar to the
results of more detailed evaluations. The method is not, however,
limited to the WLAN modem, but is applicable for digital signal
processing in general.

Keywords
mappability estimation, processor architecture evaluation,
codesign, cost function

1. INTRODUCTION
Complete computer networks can be integrated into a single ASIC
within the near future when the silicon capacity exceeds the
billion-transistor mark [1].  It will also be possible to develop
mobile terminals that combine the functionality of communication
systems, multimedia appliances, audio and video systems, and
computers. Personalized services, privacy, portability and
mobility are features that require highly integrated power and
performance optimized solutions. A set of applications can consist
of tens or even hundreds of programs or functions. The processing
can be bit-stream or data block oriented, database or data storage
oriented, or real-time responses to sporadic external events. The
overall load can consist of several simultaneous or parallel
activities.

Both multimedia and wireless communication applications are
difficult to implement energy efficiently. Dedicated solutions are
required instead of general-purpose platforms. Heterogeneous

multicomputer systems, where the architecture of each computer
and processor and respective computation load are considered
together, are viable alternatives when flexibility and variability is
combined with performance and efficiency.

The design of an integrated multicomputer system will extend the
problems faced with current system-on-chip (SoC) design with
system level and computer architecture design problems [2, 3].
Performance design with analyses, simulations and measurements
have been studied and used in computer architecture design [4]. In
the codesign, the hardware complexity- and software performance
estimation-based cost functions have been used [5].

The efficient reuse and high utilization of the platform’s resources
will be the success factors when we are designing and using an
ASIC with 10-100 computers. Reuse at all levels is needed in
order to manage the overall complexity. Efficient use of
resources, resource sharing and programmability results in fewer
overheads in terms of design effort, energy usage and cost. The
key design problems will be the scaling of the computation,
storage and communication capacities, mapping of functionality
and resources, and the validation of quality characteristics such as
performance, energy efficiency and resource utilization of both
the subsystems and the complete network.

In this paper we present a mappability estimation method for
evaluating the goodness of processor architecture and algorithm
pair. By mappability of an architecture-algorithm pair we mean
the degree of matching between resources provided by the
processor architecture and requirements described by the
algorithm. The perfect match would mean exactly the right
number of resources and an optimal pipeline organization for the
algorithm giving maximal utilization of functional units,
instruction set and memory interface, so that increasing the
number of any resources would only decrease the utilization
respectively.

Mappability estimation method is targeted for the identification of
good processor core and algorithm mappings. This problem must
be solved in multicomputer SoC design flow before the final
processors or algorithms are available, because in ASIC
implementation it is also possible to optimize the system by
changing the processor architecture or instruction set.
Configurable processor cores are good examples of this new
possibility. So, the mappability estimation can be used either for
the evaluation or selection of the processor-algorithm pair by
using models of existing processor cores like TMS320C6201 or
ADSP-2181 [6], or for identification of “optimal” architecture to
be implemented as a customizable RISC or VLIW core or as a
custom processor. This paper discusses the latter approach.



The analysis is based on comparing the characteristics of
algorithms and processor cores instead of mimicking the
execution. This allows us to use simple models of both processors
and algorithms and results to extremely rapidly analyze a large
number of alternatives. Fast reduction of design space is the main
benefit compared to traditional approaches.

The main limitation of our approach is that the effects of memory
organization, cache and communication are not yet considered
because they would require more detailed views of partitioning,
compilation and application programs. That would increase the
complexity of estimation significantly. The absolute performance
of a processor is not yet taken into account in our approach. The
designer has to check explicitly that the processor is capable of
doing the computation within the specified time frame.

The paper is organized as follows: Section 2 gives an overview of
related work; Section 3 introduces our approach; Section 4
describes the experimental results achieved with WLAN
algorithms and 10800 processor core models; Section 5 concludes
the paper.

2. RELATED WORK
The modern processor cores actively try to speed up system
performance by using parallelism and overlapping. This makes
the processor architecture design and evaluation a challenging
task. In the quantitative approach [4] the information to be
evaluated, e.g. execution time, Amdahl’s law and locality of
reference, is extracted from the execution or simulation of a set of
benchmark programs.  In the analytical approach the key metrics
of the goodness of the processor’s architecture, e.g. execution
time of a parametric “average” program, power consumption or
silicon area, are modeled by analytical equations [7]. The main
principles of the physical approach are extracted from electronics
and silicon engineering: locality of communication, asynchrony of
operations, regularity of structure and overall simplicity [8].
Existing processors are typically compared using benchmark or
implementations programs. Analytical performance modeling and
simulation are applicable at earlier stages of design only because
of the complexity problems [9].

In software estimation-based approaches the idea is to analyze the
amount of required computation and to estimate the execution
time with the used processor. The number of instructions can be
derived from an intermediate representation of a program [10],
specification language [11] or source code [12]. The execution
time can be based on instruction or function level timing models.
In the retargetable estimation approach [13] the parameterized
architecture model allows study of the potential of the
architecture. The results are more independent of the compiler’s
ability to optimize the code. In execution time estimation
approaches the potential for executing the algorithm even more
efficiently than the processor architecture allows is not analyzed
as it is in our approach. In the S3E2S environment the processor
selection is based on the comparison of algorithm properties, e.g.
relative importance of memory accesses, data transformations and
control instructions to the core’s characteristics [14]. In our
approach both algorithm and core architecture models are more
detailed and, therefore, the mappability correlation function is
more comprehensive.

3. ARCHITECTURE-ALGORITHM
MAPPABILITY
The figure of merit proposed for architecture-algorithm pair is
mappability, e.g. ( )acM ,= , where c  is core architecture and a
is algorithm. The mappability is optimal when the hardware
architecture does not constrain the execution and it does not have
any unused capacity, as depicted in Figure 1. In an ideal case all
the hardware in the core is participating in the execution of code
all the time, but additional gates cannot be used because of the
nature of the code.

Instruction capability, instruction execution speed and dynamic
parallelism are core characteristics that affect performance.
Instruction capability depends on instruction set, internal registers
and memory interface. Execution speed depends on
superpipelining degree, pipelining support and instruction types.
Dynamic parallelism depends on execution architecture and the
core’s capability to utilize the potential in the algorithm’s control
flow.

Mappability

Architecture-algorithm pair

Optimal
mapping

Additional
capacity
not used

Architecture
constrained
performance

Figure 1. Mappability function.

The computation constraints from the algorithm are caused by its
control flow structure and data dependencies. The control flow
determines the executed program paths. It depends on input data
or events. Data dependencies constrain the order and the amount
of parallelism in which the operations can be executed.

The Core-Algorithm Mappability Analysis Approach
(CAMALA) extracts essential characteristics of the core and
algorithm and analyses how much correlation exists between the
algorithm’s computation requirements, e.g. data dependencies and
control flow structure, and core properties, e.g. instruction set,
execution architecture and memory interface. The algorithm
characterization is based on compilation, profiling and bound
checking. The result is our intermediate representation graph. The
core model consists of the instruction models described using
weighted data dependency graphs, and interface and architecture
parameters.

3.1 MODELING AND
CHARACTERIZATION
The algorithm a  can be modeled as a control flow graph

( )GVA ,= , where nodes Vv j ∈  are basic blocks and arcs Gg j ∈

are branches. Each basic block jv  has an execution weight jw

and its operation can be modeled as a data dependency graph
( )jjj UOW ,= . In W the nodes jk Oo ∈  are primitive operations of

target independent representation and arcs jk Uu ∈ are data



dependencies. Each arc ku  has a label describing its data type

kdt . Each arc Gg j ∈  has a branching probability jP .

The core c  consists of instructions Ii j ∈ and execution

architecture parameters. Each instruction ji  can be modeled as a

weighted data dependency graph similar to jW and instruction’s

execution cost jC . If the core is not capable of implementing all

the primitive operations in O , then virtual instructions are added
to I  to model the required subroutines. The architecture
parameters are listed in Table 1.

Table 1. Core parameters.

Parameter Values

Branch prediction technique, PT no/static/dynamic

Dynamic prediction efficiency Pe 0-100%

Superpipeling degree, D 1-N

Bypassing , DB yes/no

Number of execution paths, E 1-N

Number of registers R 0-N

Read buses BR 0-N

Write buses BW 0-N

Read/Write buses  BD 0-N

Program bus BP yes/no

Bus width Bw 1-N

Floating point cost factor Cf 1-N

Word length cost factor Cw 1-N

3.2 MAPPABILITY CORRELATION
In our approach the mappability estimate ( )acmi ,  is calculated for
a single data dependency graph at the time using a simple ratio of
estimates

( )
( )
( ) ( ) ( )
( )
( ) ( ) ( )










<

≤
=

ceae
ce
ae

aece
ae
ce

acmi

,

,
, (1)

where ( )ce  is the estimated core characteristic and ( )ae  is the
estimated algorithm characteristic. The result is then extended to
cover the whole algorithm using weighted average of mappability
values

( )
( )( )

∑

∑

=

=
⋅

=

Vi
i

Vi
ii

c w

acmw

acM

K

K

1

1
,

,  (2)

where a  is the control flow graph of the algorithm, iw  is the

weight and im  the mappability value for node i .

The good mappability of an algorithm and a processor core
requires that the instruction-set is suitable for the required
computation, the execution architecture supports the logical and
effective ordering of operations and the data is available when
needed. In order to manage the complexity of estimation, we have
divided the correlation problem into six orthogonal parts, of which
the average is the overall mappability.

Instruction set correlation depends on how effectively and
extensively the core’s instruction set can be used for the given
algorithm. Effectiveness relates to the instructions’ ability to
execute the desired functionality. In the algorithm model the
graphs ( )jjj UOW ,=  will be replaced with the graphs ( )jjj UIW ′=′ ,

by replacing the primitive operations jOo∈  with implemented

instructions jIi ∈ . The procedure is basically similar to what

happens in a compiler’s back-end. The data types and available
accuracy needs to be checked. If they do not match, the
instructions costs are multiplied with floating point cost factor fC

or word length cost factor, wC  respectively. In equation 1 the
algorithm estimate is the number of executed operations and the
core estimate is the total cost of the executed instructions scaled
with the ratio of used instructions to implemented instructions, k ,
which describes the extent of instruction usage.

Internal data availability correlation expresses how effectively
registers can be used. In program execution the registers store
intermediate results and often-used operands. Knowing how many
registers can be used requires that we know the number of
intermediate results ( )ar  during algorithm execution. In the
algorithm model the intermediate results are the arcs v  in data
dependency graphs W, so for each node we calculate the
maximum number of intermediate results in one schedule step

using ASAP and ALAP schedules, so ( ) jUae ~ . Because the

schedules are not constrained by resources, they express the extent
to which parallelism and registers can be exploited. The nodes
belonging to a loop must be combined to one node for this
correlation. The external dependencies inside the loop are
considered internal dependencies and the new node weight is the
smallest weight of the nodes belonging to the loop. The
correlation for one node and number of registers can be calculated
using equation 1, where ( ) Rce ~ is the number of registers in the
core model.

External data availability correlation deals with bus efficiency.
The bus usage should correlate to the bus capacity. The number of
program bus operations is assumed equal to the number of
executed instructions, ii . The number of data operations is
estimated using external dependencies in W  and operations
without successors. It is assumed that external dependencies that
are not part of a loop require bus operations, because the program
flow is undeterministic, and that the results of the operations
without successors must be written into memory, because,
otherwise, the whole operations are useless. In the number of read
and write operations, ri  and wi , the bus widths are taken into
account. The estimated algorithm characteristic is then the bus
usage, e.g. ( ) wri iiiae ++~ .

The number of execution units limits the usability of bus capacity,
because the core cannot use more data or instruction words than



there are units. We have modeled the effect by adjusting the bus
capacity with the number of functional units. The estimated
processor characteristic is the effective bus capacity, e.g.

( ) DW BBBce +~~ .

Control flow continuity correlation depends on the number of
branch instructions and superpipelining degree. The branch
instruction ratio is the estimated algorithm characteristic and is
calculated by dividing the number of branch instructions bi  by

the number of all instructions jI in a program path, e.g.

( ) jb Iiae ~ .

The branch prediction reduces the number of executed branch
instructions and branch penalties. If static branch prediction
techniques are used, it is assumed that the compiler can optimize
all branches correctly and, in the case of dynamic prediction
technique, the value must be given as a parameter eP . The
estimated core characteristic is the effective superpipelinining
degree, ( ) ( ) DPce e ⋅−1~ .

The best mappability value is achieved when we have a long
superpipeline and few branches, because the execution of
instructions can be overlapped effectively. If we have a short
superpipeline and a lot of branches, the branch penalties are small.
If we have a short superpipeline and few branches, we do not
exploit all the overlapping possibilities of the algorithm, and if we
have a long superpipeline and lot of branches, the overlapping
benefits are wasted because of branch penalties.

In data flow continuity correlation the idea is that if the
execution order of instructions is fixed by data dependencies, it
will cause data hazards and degrade the pipeline efficiency. The
degree of data dependency can be estimated by analyzing the
number of instructions in a schedule step in unconstrained ASAP
or ALAP schedule of jW . The instructions that can be scheduled

on the same step can fill the pipeline without data hazards. The
topology of W  and bypassing support of the processor has an
effect on the mobility of instructions, d , and a higher mobility
makes it easier to exploit the pipeline more efficiently. The
estimated algorithm characteristic is then ( ) jidae ⋅~ , where ji
is average number of instruction in a schedule step. The core
characteristic is the superpipelining degree, ( ) Dce ~ .

The execution unit availability correlation compares operation
level parallelism in an algorithm to the number of parallel
execution units. The parallelism of algorithm is constrained by the
data dependencies and it can be studied by dividing the number of
instructions in W  by the number of steps in the shortest possible

schedule, so ( ) jiae ~ .

The parallelism of the architecture is constrained by the available
execution units in each parallel execution path. The parallel
execution units in the core are, typically, not alike and all the
execution units cannot execute all the instructions. We estimate
the number of parallel execution units by calculating the coverage
of execution unit c  by dividing the possible instruction/unit by all
instructions/core and then adjusting the number of execution paths
E  with this value, e.g. ( ) Ecce ⋅~ .

3.3 CAMALA PROTOTYPE TOOL
The presented analysis method is implemented using SUIF and
SUIF2 compilers, IR converter and CAMALA correlator written
with C++ in PC/Linux environment. The correlator is about 6000
lines of C++ and a typical analysis takes only a few seconds in a
333 MHz laptop PC.

In the analysis procedure the algorithm is given as ANSI-C-
program and the core model as a text file. The C-code is compiled
in SUIF intermediate format with SUIF2. For the target-
independent optimizations we have used SUIF. The SUIF
intermediate format is then converted into our representation
using an IR converter. We have used the gcov tool of gcc in the
execution count and branch probability analyses. Bounds of data
values have been analyzed manually and the results added to the
algorithm model. The mappability values can then be calculated
with the CAMALA tool and the results analyzed. In addition to
the final mappability value, the tool also gives optimal values to
core parameters.

4. EXPERIMENTAL RESULTS
Mappability values are difficult to compare to the measurable
system characteristics such as cost, performance, resource
utilization or power consumption because they all show only a
part of the problem and because they have dependencies. For
example, the execution time might keep getting lower with more
powerful processors but mappability values start to decrease
because all the resources of the processor cannot be used
effectively anymore. On the other hand, reaching 100% utilization
does not guarantee that all the potential of the algorithms has been
exploited.  It is also impossible to combine these quality
characteristics into one quality measure, because the relative
weights of these factors depend on the type of system, production
volumes and other non-technical issues.

We have tested our method by identifying suitable processor
architectures for the Hiperlan/2 WLAN transceiver and by
analyzing their feasibility. We first modeled the main algorithms
of the WLAN modem in C and generated our intermediate
representations using SUIF2, gcov and the CAMALA tool. The
Viterbi algorithm that is a major part of Hiperlan/2 was excluded
due to its very high processing power requirements that make a
hardware implementation more feasible.

Secondly, we generated a database of 10800 processor
architecture models. These models have different architectural
parameters for superpipelining degree ( D ), number of execution
paths ( E ), number of registers ( R ) and number of data buses
( B ). They represent the typical means to improve performance.
In the database the [ ]20,1=D , [ ]6,1=E , [ ]6,1=B  and

[ ]64,1=R . All the other parameters were fixed so that the size of
the database would stay reasonable. We also excluded the
instruction set correlation by assuming identical instruction sets,
because in this case the objective was to identify the main
architectural characteristics of the processors prior to entering into
the detailed design.

Thirdly, we calculated 140400 mappability values for alternative
mappings. Based on this information, we finally identified the
most suitable architectures for each algorithm, the best
architecture for all algorithms, and sets of architectures and



mappings where the computational load of architectures is
feasible.

Table 2 presents the average parameter values based on the ten
best mapping processors and the MOPS requirements for each
algorithm. For the encoding, demodulation and symbol filtering,
the suitable processor structure is notably different than for the
other algorithms, and their worst-case MOPS requirements are
quite high. This indicates that the hardware implementation might
be preferable. For the rest of the algorithms, the parameter values
are similar enough to justify executing them on the same
processor. In fact, this, or complete hardware implementation,
also seems to be the solution in commercial modems [15].

However, we wanted to analyze in more detail what kind of single
or asymmetric multiprocessor systems could be feasible assuming
that every algorithm in Table 2 would be implemented in
software. The architectures and mappings were selected so that
average mappability was optimized. Figure 2 summarizes the
results. As expected, the mappability values decrease when the
number of processors is reduced because the algorithms would be
executed in non-suitable processors.

Table 2. Average architecture parameters of best ten
architectures for each WLAN modem algorithm and

computational complexities of those algorithms.

Algorithm D E R B MOPS

Convolutional
encoding

3.5 1.5 1.0 1.5 54 - 486

Guard interval
insertion

7.5 2.0 4.0 2.0 80

Interleaving 7.5 2.0 3.0 2.0 12 - 72

Modulation 4.5 2.0 4.0 2.0 12

Symbol filtering 9.5 3.0 12.0 1.0 120

Deinterleaving 6.5 3.0 3.0 2.0 12 - 72

Synchronization 10.5 2.0 8.0 2.0 200

FFT 10.5 2.0 9.0 1.0 296

Frequency error
correction

10.5 2.0 8.0 1.0 156

Guard interval
deletion

7.0 2.0 4.0 1.0 -

BPSK demodulation 4.0 1.5 2.0 2.5

QPSK demodulation 4.5 1.0 3.0 2.0

QAM16
demodulation

5.5 1.0 6.0 2.0
60 - 504

As we can see from Table 2 and Figure 2, there is no single
processor that suits all. With more processors the average
mappability can be increased considerably, but after seven
processors only minor improvements can be achieved.

The selected architectures and mappings, and MOPS requirements
in the two- and three-processor cases are shown in Table 3. The
computational capacity requirement of a single processor solution

would be almost 2000 MOPS, even without the Viterbi algorithm.
In the two-processor case the algorithms that can exploit longer
pipeline and internal registers are mapped to a more complex
architecture (D = 11, E = 2, R = 9, and B = 1), except
synchronization that would need more resources to external
communication. The rest of the algorithms were mapped to a
simpler architecture (D = 5, E = 2, R = 4, and B = 2). In the three-
processor case the demodulation functions were mapped to a more
optimal and simpler architecture (D = 5, E = 1, R = 3, and B = 2).
According to this analysis, the pure software modem is not
feasible unless the processors are used for other purposes when
communication is not needed. Mappability-based partitioning
alone did not result in a very balanced system. However, if we
were to implement the convolutional encoding and demodulation
algorithms in the hardware, it would lower the requirements for
both architectures in the two-processor case to a reasonable level
of 500 MOPS.

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of processors

M
ap

p
ab

ili
ty

 

Figure 2. The mappability values and their variations
(minimum and maximum mappability values)

in the case of multiple processors.

Table 3. Mappings and estimated complexities of
two and three processor core solutions.

Number
of cores

Core
type

Algorithms mapped to
core

MOPS

11-2-9-1 Symbol filtering, FFT,
frequency error correction

5722

5-2-4-2 Synchronization,
encoding, demodulation,
etc.

1426

11-2-9-1 Symbol filtering, FFT,
frequency error correction

572

5-1-3-2 All demodulation
algorithms

504

3

5-2-4-2 Synchronization,
encoding, etc.

922

The mappability estimation is a fast and easy way of performing
design space exploration in case of the WLAN modem. The
results that are presented here are in line with both the commercial
implementations of modems and common understanding of the
implementations of these algorithms. However, the results are



only applicable to analyzed algorithm models. The optimization
of algorithms has not been considered. The effect of instruction
set has also been omitted. The instruction sets of the architectures
used in this study would be very different from each other in real
cases and it would affect the final results. The effects of memory
organization have also been ignored. Again, the architectures
would benefit differently from advanced caches, etc.

5. CONCLUSIONS
This paper presents a method for the estimation of algorithm-
architecture mappability, which identifies how different
characteristics of algorithms and architectures correlate. It can be
used for the identification of required architecture characteristics
for a set of algorithms or for the selection of processor cores in the
design of a multiprocessor system on chips. Only simple
algorithm and architecture models are needed, therefore the
method is suitable for fast reduction of design space. The method
is demonstrated with the CAMALA tool.

The ideas have been applied to the identification of suitable
architectures for Hiperlan/2 transceiver algorithms. 140400
different architecture-algorithm pairs were analyzed and the
results were equal to existing implementations and more extensive
analyses of algorithm characteristics. Currently, only the internal
execution architecture of the core is considered in the approach.
The effect of memory organization and caches are excluded.

The extension of the method to general-purpose processing seems
possible. Integration with the estimation of required computing
capacity of the core, the addition of memory organization effects
and integration with the validation of performance would improve
the usability of the methods significantly. However, the
mappability estimation as such is one of tools needed by system-
on-chip architects today.

6. ACKNOWLEDGEMENTS
The work was partially funded in the Finnish - Swedish research
program Explorative System-Integrated Technologies (EXSITE)
by the TEKES, VINNOVA, Nokia, Ericsson, VTT and Spirea.
We thankfully acknowledge the support from research professor
Aarne Mämmelä and his team. Mr. Mika Kasslin from Nokia and
Mr. Kari Tiensyrjä and Mr. Tapio Rautio from VTT Electronics
have also given extremely valuable comments.

7. REFERENCES

[1] Allan, A., et al, “2001 Technology Roadmap for
Semiconductors”, Computer, Vol. 35., No. 1, 2002, pp.
42-53

[2] Chang, H. et al., Surviving the SOC Revolution – A Guide
to Platform-Based Design, Kluwer Academic Publishers,
1999, 235 pp.

[3] Kreutzer, K. et al., “System Level Design:
Orthogonalization of Concerns and Platform Based
Design”, IEEE Transactions on Computer-Aided Design
of Circuits and Systems, Vol. 19, No. 12, December 2000,
pp. 1523 –1543.

[4] Hennessy, J.L. & Patterson, D. A., Computer Architecture
– A Quantitative Approach, 2nd ed. Morgan Kauffman
Publishers Inc, 1996, 760 pp.

[5] Ernst, R., ”Codesign of Embedded Systems: Status and
Trends”. IEEE Design and Test of Computers, Vol. 15 No.
2, 1998 pp. 45-53.

[6] Soininen, J.-P. et al., "Mappability Estimation of
Architecture and Algorithm",  Proceedings of Design
Automation & Test in Europe 2002 Conference, 2002, p.
1132.

[7] Krishna, C. (ed.), "Performance Modeling for Computer
Architects", IEEE CS Press, Los Alamitos, CA, 1996, 391
pp.

[8] Flynn, M. et al., “Deep-Submicron Microprocessor
Design Issues”, IEEE Micro, Vol. 19, No. 4, July-August
1999, pp. 11-22.

[9] Heidelberger, P. & Lavenberg, S., Computer Performance
Evaluation Methodology, IEEE Transaction on
Computers, Vol. C-33, No. 12, 1984, pp. 1195-1220

[10] Gong, J. et al., “Performance evaluation for application-
specific architectures”, IEEE Transactions on VLSI, Vol.
3, No. 4, December 1995, pp 483-490.

[11] Suzuki, K. & Sangiovanni-Vincentelli, A., “Efficient
Software Performance Estimation Methods for
Hardware/Software Codesign”, Proceedings of 33rd

Design Automation Conference, 1996 pp. 605-610.

[12] Lazarescu, M. et al., “Compilation-based Software
Performance Estimation for System Level Design”,
Proceedings of  High Level Design Validation and Test
Workshop,  2000,  pp. 167-172.

[13] Ghazal, N. et al., “Retargetable Estimation Scheme for
DSP Architectures”, Proceedings of the Asia and South
Pacific Design Automation Conference, 2000, pp. 485-
489.

[14] Carro, L. et al., “System Synthesis for Multiprocessor
Embedded Applications”, Proceedings of Design
Automation and Test in Europe, 2000, pp. 697-702.

[15] Grass, E. et al., “On the Single-Chip Implementation of a
Hiperlan/2 and IEEE 802.11a Capable Modem”, IEEE
Personal Communications, December 2001, pp. 48-57.


	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index




